`File.enum_for(:readlines, ...)` not enumerating - ruby

Why does this enumerator unexpectedly return an empty array:
> File.enum_for(:readlines, '/usr/share/dict/words').take(1)
=> []
while this one returns properly:
File.enum_for(:readlines, "/usr/share/dict/words").each{}.take(1)
=> ["A\n"]
For comparison, other enumerators will work without the each:
> "abc".enum_for(:each_byte).take(1)
=> [97]
What's really odd in the File.readlines case is that the body of the each doesn't actually get executed:
File.enum_for(:readlines, "/usr/share/dict/words").
each{|e| p e; raise "stop" }.take(2)
=> ["A\n", "a\n"]
This is on ruby 2.5.3. I tried the code both in pry and in a ruby -e one-liner, with the same results.

Apparently enum_for/to_enum only works with a method that yields. Credit goes to #Anthony for making me realize this.
This is the equivalent of what I was trying to do:
# whoops, `to_a` doesn't yield
[1,2,3].enum_for(:to_a).take(1)
=> []
# Works, but `enum_for` isn't really meant for this, and it's very possible this should be
# considered undefined behavior.
# In this case, as in `File.readlines`, the `each` block isn't really executed.
> [1,2,3].enum_for(:to_a).each{}.take(1)
=> [1]
Another interesting thing is that calling each{} on one of these "weird enumerators" seems to act as though the enum-ed method (e.g. to_a) were called directly. But of course this is pointless.
> arr = [1,2,3]
> arr.object_id
=> 70226978129700
> arr.to_a.object_id
=> 70226978129700
# same as calling `to_a` - doesn't create a new array!
> arr.enum_for(:to_a).each{}.object_id
=> 70226978129700
In the case of File.readlines, its implementation simply reads in the lines and returns them in a single array; it doesn't yield anything.

Related

Ruby - Converting Strings to CamelCase

I'm working on an exercise from Codewars. The exercise is to convert a string into camel case. For example, if I had
the-stealth-warrior
I need to convert it to
theStealthWarrior
Here is my code
def to_camel_case(str)
words = str.split('-')
a = words.first
b = words[1..words.length - 1].map{|x|x.capitalize}
new_array = []
new_array << a << b
return new_array.flatten.join('')
end
I just tested it out in IRB and it works, but in codewars, it won't let me pass. I get this error message.
NoMethodError: undefined method 'map' for nil:NilClass
I don't understand this, my method was definitely right.
You need to think about edge cases. In particular in this situation if the input was an empty string, then words would be [], and so words[1..words.length - 1] would be nil.
Codewars is probably testing your code with a range of inputs, including the emplty string (and likely other odd cases).
The following works in Ruby 2 for me, even if there's only one word in the input string:
def to_camel_case(str)
str.split('-').map.with_index{|x,i| i > 0 ? x.capitalize : x}.join
end
to_camel_case("the-stealth-warrior") # => "theStealthWarrior"
to_camel_case("warrior") # => "warrior"
I know .with_index exists in 1.9.3, but I can't promise it will work with earlier versions of Ruby.
A simpler way to change the text is :
irb(main):022:0> 'the-stealth-warrior'.gsub('-', '_').camelize
=> "TheStealthWarrior"
This should do the trick:
str.gsub("_","-").split('-').map.with_index{|x,i| i > 0 ? x.capitalize : x}.join
It accounts for words with underscores
Maybe there's a test case with only one word?
In that case, you'd be trying to do a map on words[1..0], which is nil.
Add logic to handle that case and you should be fine.

Couldn't understand the difference between `puts{}.class` and `puts({}.class)`

As the anonymous block and hash block looks like approximately same. I was doing kind of playing with it. And doing do I reached to some serious observations as below:
{}.class
#=> Hash
Okay,It's cool. empty block is considered as Hash.
print{}.class
#=> NilClass
puts {}.class
#=> NilClass
Now why the above code showing the same as NilClass,but the below code shows the Hash again ?
puts ({}.class)
#Hash
#=> nil
print({}.class)
#Hash=> nil
Could anyone help me here to understand that what's going one above?
I completely disagree with the point of #Lindydancer
How would you explain the below lines:
print {}.class
#NilClass
print [].class
#Array=> nil
print (1..2).class
#Range=> nil
Why not the same with the below print [].class and print (1..2).class?
EDIT
When ambiguity happens with local variable and method call, Ruby throws an error about the fact as below :
name
#NameError: undefined local variable or method `name' for main:Object
# from (irb):1
# from C:/Ruby193/bin/irb:12:in `<main>'
Now not the same happens with {} (as there is also an ambiguity between empty code block or Hash block). As IRB also here not sure if it's a empty block or Hash. Then why the error didn't throw up when IRB encountered print {}.class or {}.class?
The precedence rules of ruby makes print{}.class interpreted as (print{}).class. As print apparently returns a nil the class method returns #NilClass.
EDIT: As been discussed on other answers and in the updates to the question, print{} it of course interpreted as calling print with a block, not a hash. However, this is still about precedence as {} binds stronger than [] and (1..2) (and stronger than do ... end for that matter).
{} in this case is recognized as block passed to print, while [] unambiguously means empty array.
print {}.class # => NilClass
print do;end.class # => NilClass
You are running into some nuances of Ruby, where characters mean different things depending on context. How the source code is interpreted follows rules, one of which is that {} is a closure block if it follows a method call, and otherwise a Hash constructor.
It's common throughout the language to see characters mean different things depending on context or position within the statement.
Examples:
Parens () used for method call or for precedence
print(1..5).class => NilClass
print (1..5).class => Range <returns nil>
Square brackets [] used to call :[] method or for Array
print[].class => NoMethodError: undefined method `[]' for nil:NilClass
print([].class) => Array <returns nil>
Asterisk * used for multiplication or splatting
1 * 5 => 5
[*1..5] => [1, 2, 3, 4, 5]
Ampersand & used for symbol -> proc or logical and
0 & 1 => 0
[1, 2, 3].map(&:to_s) => ["1", "2", "3"]
Or in your case, braces used for block closures or for a hash
... hope it makes sense now ...

"for" vs "each" in Ruby

I just had a quick question regarding loops in Ruby. Is there a difference between these two ways of iterating through a collection?
# way 1
#collection.each do |item|
# do whatever
end
# way 2
for item in #collection
# do whatever
end
Just wondering if these are exactly the same or if maybe there's a subtle difference (possibly when #collection is nil).
This is the only difference:
each:
irb> [1,2,3].each { |x| }
=> [1, 2, 3]
irb> x
NameError: undefined local variable or method `x' for main:Object
from (irb):2
from :0
for:
irb> for x in [1,2,3]; end
=> [1, 2, 3]
irb> x
=> 3
With the for loop, the iterator variable still lives after the block is done. With the each loop, it doesn't, unless it was already defined as a local variable before the loop started.
Other than that, for is just syntax sugar for the each method.
When #collection is nil both loops throw an exception:
Exception: undefined local variable or method `#collection' for main:Object
See "The Evils of the For Loop" for a good explanation (there's one small difference considering variable scoping).
Using each is considered more idiomatic use of Ruby.
Your first example,
#collection.each do |item|
# do whatever
end
is more idiomatic. While Ruby supports looping constructs like for and while, the block syntax is generally preferred.
Another subtle difference is that any variable you declare within a for loop will be available outside the loop, whereas those within an iterator block are effectively private.
One more different..
number = ["one", "two", "three"]
=> ["one", "two", "three"]
loop1 = []
loop2 = []
number.each do |c|
loop1 << Proc.new { puts c }
end
=> ["one", "two", "three"]
for c in number
loop2 << Proc.new { puts c }
end
=> ["one", "two", "three"]
loop1[1].call
two
=> nil
loop2[1].call
three
=> nil
source: http://paulphilippov.com/articles/enumerable-each-vs-for-loops-in-ruby
for more clear: http://www.ruby-forum.com/topic/179264#784884
Never ever use for it may cause almost untraceable bugs.
Don't be fooled, this is not about idiomatic code or style issues. Ruby's implementation of for has a serious flaw and should not be used.
Here is an example where for introduces a bug,
class Library
def initialize
#ary = []
end
def method_with_block(&block)
#ary << block
end
def method_that_uses_these_blocks
#ary.map(&:call)
end
end
lib = Library.new
for n in %w{foo bar quz}
lib.method_with_block { n }
end
puts lib.method_that_uses_these_blocks
Prints
quz
quz
quz
Using %w{foo bar quz}.each { |n| ... } prints
foo
bar
quz
Why?
In a for loop the variable n is defined once and only and then that one definition is use for all iterations. Hence each blocks refer to the same n which has a value of quz by the time the loop ends. Bug!
In an each loop a fresh variable n is defined for each iteration, for example above the variable n is defined three separate times. Hence each block refer to a separate n with the correct values.
It looks like there is no difference, for uses each underneath.
$ irb
>> for x in nil
>> puts x
>> end
NoMethodError: undefined method `each' for nil:NilClass
from (irb):1
>> nil.each {|x| puts x}
NoMethodError: undefined method `each' for nil:NilClass
from (irb):4
Like Bayard says, each is more idiomatic. It hides more from you and doesn't require special language features.
Per Telemachus's Comment
for .. in .. sets the iterator outside the scope of the loop, so
for a in [1,2]
puts a
end
leaves a defined after the loop is finished. Where as each doesn't. Which is another reason in favor of using each, because the temp variable lives a shorter period.
(1..4).each { |i|
a = 9 if i==3
puts a
}
#nil
#nil
#9
#nil
for i in 1..4
a = 9 if i==3
puts a
end
#nil
#nil
#9
#9
In 'for' loop, local variable is still lives after each loop. In 'each' loop, local variable refreshes after each loop.
As far as I know, using blocks instead of in-language control structures is more idiomatic.
I just want to make a specific point about the for in loop in Ruby. It might seem like a construct similar to other languages, but in fact it is an expression like every other looping construct in Ruby. In fact, the for in works with Enumerable objects just as the each iterator.
The collection passed to for in can be any object that has an each iterator method. Arrays and hashes define the each method, and many other Ruby objects do, too. The for/in loop calls the each method of the specified object. As that iterator yields values, the for loop assigns each value (or each set of values) to the specified variable (or variables) and then executes the code in body.
This is a silly example, but illustrates the point that the for in loop works with ANY object that has an each method, just like how the each iterator does:
class Apple
TYPES = %w(red green yellow)
def each
yield TYPES.pop until TYPES.empty?
end
end
a = Apple.new
for i in a do
puts i
end
yellow
green
red
=> nil
And now the each iterator:
a = Apple.new
a.each do |i|
puts i
end
yellow
green
red
=> nil
As you can see, both are responding to the each method which yields values back to the block. As everyone here stated, it is definitely preferable to use the each iterator over the for in loop. I just wanted to drive home the point that there is nothing magical about the for in loop. It is an expression that invokes the each method of a collection and then passes it to its block of code. Hence, it is a very rare case you would need to use for in. Use the each iterator almost always (with the added benefit of block scope).

hash['key'] to hash.key in Ruby

I have a a hash
foo = {'bar'=>'baz'}
I would like to call foo.bar #=> 'baz'
My motivation is rewriting an activerecord query into a raw sql query (using Model#find_by_sql). This returns a hash with the SELECT clause values as keys. However, my existing code relies on object.method dot notation. I'd like to do minimal code rewrite. Thanks.
Edit: it appears Lua has this feature:
point = { x = 10, y = 20 } -- Create new table
print(point["x"]) -- Prints 10
print(point.x) -- Has exactly the same meaning as line above
>> require 'ostruct'
=> []
>> foo = {'bar'=>'baz'}
=> {"bar"=>"baz"}
>> foo_obj = OpenStruct.new foo
=> #<OpenStruct bar="baz">
>> foo_obj.bar
=> "baz"
>>
What you're looking for is called OpenStruct. It's part of the standard library.
A good solution:
class Hash
def method_missing(method, *opts)
m = method.to_s
if self.has_key?(m)
return self[m]
elsif self.has_key?(m.to_sym)
return self[m.to_sym]
end
super
end
end
Note: this implementation has only one known bug:
x = { 'test' => 'aValue', :test => 'bar'}
x.test # => 'aValue'
If you prefer symbol lookups rather than string lookups, then swap the two 'if' condition
Rather than copy all the stuff out of the hash, you can just add some behaviour to Hash to do lookups.
If you add this defintion, you extend Hash to handle all unknown methods as hash lookups:
class Hash
def method_missing(n)
self[n.to_s]
end
end
Bear in mind that this means that you won't ever see errors if you call the wrong method on hash - you'll just get whatever the corresponding hash lookup would return.
You can vastly reduce the debugging problems this can cause by only putting the method onto a specific hash - or as many hashes as you need:
a={'foo'=>5, 'goo'=>6}
def a.method_missing(n)
self[n.to_s]
end
The other observation is that when method_missing gets called by the system, it gives you a Symbol argument. My code converted it into a String. If your hash keys aren't strings this code will never return those values - if you key by symbols instead of strings, simply substitute n for n.to_s above.
There are a few gems for this. There's my recent gem, hash_dot, and a few other gems with similar names I discovered as I released mine on RubyGems, including dot_hash.
HashDot allows dot notation syntax, while still addressing concerns about NoMethodErrors addressed by #avdi. It is faster, and more traversable than an object created with OpenStruct.
require 'hash_dot'
a = {b: {c: {d: 1}}}.to_dot
a.b.c.d => 1
require 'open_struct'
os = OpenStruct.new(a)
os.b => {c: {d: 1}}
os.b.c.d => NoMethodError
It also maintains expected behavior when non-methods are called.
a.non_method => NoMethodError
Please feel free to submit improvements or bugs to HashDot.

Hidden features of Ruby

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Continuing the "Hidden features of ..." meme, let's share the lesser-known but useful features of Ruby programming language.
Try to limit this discussion with core Ruby, without any Ruby on Rails stuff.
See also:
Hidden features of C#
Hidden features of Java
Hidden features of JavaScript
Hidden features of Ruby on Rails
Hidden features of Python
(Please, just one hidden feature per answer.)
Thank you
From Ruby 1.9 Proc#=== is an alias to Proc#call, which means Proc objects can be used in case statements like so:
def multiple_of(factor)
Proc.new{|product| product.modulo(factor).zero?}
end
case number
when multiple_of(3)
puts "Multiple of 3"
when multiple_of(7)
puts "Multiple of 7"
end
Peter Cooper has a good list of Ruby tricks. Perhaps my favorite of his is allowing both single items and collections to be enumerated. (That is, treat a non-collection object as a collection containing just that object.) It looks like this:
[*items].each do |item|
# ...
end
Don't know how hidden this is, but I've found it useful when needing to make a Hash out of a one-dimensional array:
fruit = ["apple","red","banana","yellow"]
=> ["apple", "red", "banana", "yellow"]
Hash[*fruit]
=> {"apple"=>"red", "banana"=>"yellow"}
One trick I like is to use the splat (*) expander on objects other than Arrays. Here's an example on a regular expression match:
match, text, number = *"Something 981".match(/([A-z]*) ([0-9]*)/)
Other examples include:
a, b, c = *('A'..'Z')
Job = Struct.new(:name, :occupation)
tom = Job.new("Tom", "Developer")
name, occupation = *tom
Wow, no one mentioned the flip flop operator:
1.upto(100) do |i|
puts i if (i == 3)..(i == 15)
end
One of the cool things about ruby is that you can call methods and run code in places other languages would frown upon, such as in method or class definitions.
For instance, to create a class that has an unknown superclass until run time, i.e. is random, you could do the following:
class RandomSubclass < [Array, Hash, String, Fixnum, Float, TrueClass].sample
end
RandomSubclass.superclass # could output one of 6 different classes.
This uses the 1.9 Array#sample method (in 1.8.7-only, see Array#choice), and the example is pretty contrived but you can see the power here.
Another cool example is the ability to put default parameter values that are non fixed (like other languages often demand):
def do_something_at(something, at = Time.now)
# ...
end
Of course the problem with the first example is that it is evaluated at definition time, not call time. So, once a superclass has been chosen, it stays that superclass for the remainder of the program.
However, in the second example, each time you call do_something_at, the at variable will be the time that the method was called (well, very very close to it)
Another tiny feature - convert a Fixnum into any base up to 36:
>> 1234567890.to_s(2)
=> "1001001100101100000001011010010"
>> 1234567890.to_s(8)
=> "11145401322"
>> 1234567890.to_s(16)
=> "499602d2"
>> 1234567890.to_s(24)
=> "6b1230i"
>> 1234567890.to_s(36)
=> "kf12oi"
And as Huw Walters has commented, converting the other way is just as simple:
>> "kf12oi".to_i(36)
=> 1234567890
Hashes with default values! An array in this case.
parties = Hash.new {|hash, key| hash[key] = [] }
parties["Summer party"]
# => []
parties["Summer party"] << "Joe"
parties["Other party"] << "Jane"
Very useful in metaprogramming.
Another fun addition in 1.9 Proc functionality is Proc#curry which allows you to turn a Proc accepting n arguments into one accepting n-1. Here it is combined with the Proc#=== tip I mentioned above:
it_is_day_of_week = lambda{ |day_of_week, date| date.wday == day_of_week }
it_is_saturday = it_is_day_of_week.curry[6]
it_is_sunday = it_is_day_of_week.curry[0]
case Time.now
when it_is_saturday
puts "Saturday!"
when it_is_sunday
puts "Sunday!"
else
puts "Not the weekend"
end
Download Ruby 1.9 source, and issue make golf, then you can do things like this:
make golf
./goruby -e 'h'
# => Hello, world!
./goruby -e 'p St'
# => StandardError
./goruby -e 'p 1.tf'
# => 1.0
./goruby19 -e 'p Fil.exp(".")'
"/home/manveru/pkgbuilds/ruby-svn/src/trunk"
Read the golf_prelude.c for more neat things hiding away.
Boolean operators on non boolean values.
&& and ||
Both return the value of the last expression evaluated.
Which is why the ||= will update the variable with the value returned expression on the right side if the variable is undefined. This is not explicitly documented, but common knowledge.
However the &&= isn't quite so widely known about.
string &&= string + "suffix"
is equivalent to
if string
string = string + "suffix"
end
It's very handy for destructive operations that should not proceed if the variable is undefined.
The Symbol#to_proc function that Rails provides is really cool.
Instead of
Employee.collect { |emp| emp.name }
You can write:
Employee.collect(&:name)
One final one - in ruby you can use any character you want to delimit strings. Take the following code:
message = "My message"
contrived_example = "<div id=\"contrived\">#{message}</div>"
If you don't want to escape the double-quotes within the string, you can simply use a different delimiter:
contrived_example = %{<div id="contrived-example">#{message}</div>}
contrived_example = %[<div id="contrived-example">#{message}</div>]
As well as avoiding having to escape delimiters, you can use these delimiters for nicer multiline strings:
sql = %{
SELECT strings
FROM complicated_table
WHERE complicated_condition = '1'
}
Use a Range object as an infinite lazy list:
Inf = 1.0 / 0
(1..Inf).take(5) #=> [1, 2, 3, 4, 5]
More info here: http://banisterfiend.wordpress.com/2009/10/02/wtf-infinite-ranges-in-ruby/
I find using the define_method command to dynamically generate methods to be quite interesting and not as well known. For example:
((0..9).each do |n|
define_method "press_#{n}" do
#number = #number.to_i * 10 + n
end
end
The above code uses the 'define_method' command to dynamically create the methods "press1" through "press9." Rather then typing all 10 methods which essentailly contain the same code, the define method command is used to generate these methods on the fly as needed.
module_function
Module methods that are declared as module_function will create copies of themselves as private instance methods in the class that includes the Module:
module M
def not!
'not!'
end
module_function :not!
end
class C
include M
def fun
not!
end
end
M.not! # => 'not!
C.new.fun # => 'not!'
C.new.not! # => NoMethodError: private method `not!' called for #<C:0x1261a00>
If you use module_function without any arguments, then any module methods that comes after the module_function statement will automatically become module_functions themselves.
module M
module_function
def not!
'not!'
end
def yea!
'yea!'
end
end
class C
include M
def fun
not! + ' ' + yea!
end
end
M.not! # => 'not!'
M.yea! # => 'yea!'
C.new.fun # => 'not! yea!'
Short inject, like such:
Sum of range:
(1..10).inject(:+)
=> 55
Warning: this item was voted #1 Most Horrendous Hack of 2008, so use with care. Actually, avoid it like the plague, but it is most certainly Hidden Ruby.
Superators Add New Operators to Ruby
Ever want a super-secret handshake operator for some unique operation in your code? Like playing code golf? Try operators like
-~+~-
or
<---
That last one is used in the examples for reversing the order of an item.
I have nothing to do with the Superators Project beyond admiring it.
I'm late to the party, but:
You can easily take two equal-length arrays and turn them into a hash with one array supplying the keys and the other the values:
a = [:x, :y, :z]
b = [123, 456, 789]
Hash[a.zip(b)]
# => { :x => 123, :y => 456, :z => 789 }
(This works because Array#zip "zips" up the values from the two arrays:
a.zip(b) # => [[:x, 123], [:y, 456], [:z, 789]]
And Hash[] can take just such an array. I've seen people do this as well:
Hash[*a.zip(b).flatten] # unnecessary!
Which yields the same result, but the splat and flatten are wholly unnecessary--perhaps they weren't in the past?)
Auto-vivifying hashes in Ruby
def cnh # silly name "create nested hash"
Hash.new {|h,k| h[k] = Hash.new(&h.default_proc)}
end
my_hash = cnh
my_hash[1][2][3] = 4
my_hash # => { 1 => { 2 => { 3 =>4 } } }
This can just be damn handy.
Destructuring an Array
(a, b), c, d = [ [:a, :b ], :c, [:d1, :d2] ]
Where:
a #=> :a
b #=> :b
c #=> :c
d #=> [:d1, :d2]
Using this technique we can use simple assignment to get the exact values we want out of nested array of any depth.
Class.new()
Create a new class at run time. The argument can be a class to derive from, and the block is the class body. You might also want to look at const_set/const_get/const_defined? to get your new class properly registered, so that inspect prints out a name instead of a number.
Not something you need every day, but quite handy when you do.
create an array of consecutive numbers:
x = [*0..5]
sets x to [0, 1, 2, 3, 4, 5]
A lot of the magic you see in Rubyland has to do with metaprogramming, which is simply writing code that writes code for you. Ruby's attr_accessor, attr_reader, and attr_writer are all simple metaprogramming, in that they create two methods in one line, following a standard pattern. Rails does a whole lot of metaprogramming with their relationship-management methods like has_one and belongs_to.
But it's pretty simple to create your own metaprogramming tricks using class_eval to execute dynamically-written code.
The following example allows a wrapper object to forwards certain methods along to an internal object:
class Wrapper
attr_accessor :internal
def self.forwards(*methods)
methods.each do |method|
define_method method do |*arguments, &block|
internal.send method, *arguments, &block
end
end
end
forwards :to_i, :length, :split
end
w = Wrapper.new
w.internal = "12 13 14"
w.to_i # => 12
w.length # => 8
w.split('1') # => ["", "2 ", "3 ", "4"]
The method Wrapper.forwards takes symbols for the names of methods and stores them in the methods array. Then, for each of those given, we use define_method to create a new method whose job it is to send the message along, including all arguments and blocks.
A great resource for metaprogramming issues is Why the Lucky Stiff's "Seeing Metaprogramming Clearly".
use anything that responds to ===(obj) for case comparisons:
case foo
when /baz/
do_something_with_the_string_matching_baz
when 12..15
do_something_with_the_integer_between_12_and_15
when lambda { |x| x % 5 == 0 }
# only works in Ruby 1.9 or if you alias Proc#call as Proc#===
do_something_with_the_integer_that_is_a_multiple_of_5
when Bar
do_something_with_the_instance_of_Bar
when some_object
do_something_with_the_thing_that_matches_some_object
end
Module (and thus Class), Regexp, Date, and many other classes define an instance method :===(other), and can all be used.
Thanks to Farrel for the reminder of Proc#call being aliased as Proc#=== in Ruby 1.9.
The "ruby" binary (at least MRI's) supports a lot of the switches that made perl one-liners quite popular.
Significant ones:
-n Sets up an outer loop with just "gets" - which magically works with given filename or STDIN, setting each read line in $_
-p Similar to -n but with an automatic puts at the end of each loop iteration
-a Automatic call to .split on each input line, stored in $F
-i In-place edit input files
-l Automatic call to .chomp on input
-e Execute a piece of code
-c Check source code
-w With warnings
Some examples:
# Print each line with its number:
ruby -ne 'print($., ": ", $_)' < /etc/irbrc
# Print each line reversed:
ruby -lne 'puts $_.reverse' < /etc/irbrc
# Print the second column from an input CSV (dumb - no balanced quote support etc):
ruby -F, -ane 'puts $F[1]' < /etc/irbrc
# Print lines that contain "eat"
ruby -ne 'puts $_ if /eat/i' < /etc/irbrc
# Same as above:
ruby -pe 'next unless /eat/i' < /etc/irbrc
# Pass-through (like cat, but with possible line-end munging):
ruby -p -e '' < /etc/irbrc
# Uppercase all input:
ruby -p -e '$_.upcase!' < /etc/irbrc
# Same as above, but actually write to the input file, and make a backup first with extension .bak - Notice that inplace edit REQUIRES input files, not an input STDIN:
ruby -i.bak -p -e '$_.upcase!' /etc/irbrc
Feel free to google "ruby one-liners" and "perl one-liners" for tons more usable and practical examples. It essentially allows you to use ruby as a fairly powerful replacement to awk and sed.
The send() method is a general-purpose method that can be used on any Class or Object in Ruby. If not overridden, send() accepts a string and calls the name of the method whose string it is passed. For example, if the user clicks the “Clr” button, the ‘press_clear’ string will be sent to the send() method and the ‘press_clear’ method will be called. The send() method allows for a fun and dynamic way to call functions in Ruby.
%w(7 8 9 / 4 5 6 * 1 2 3 - 0 Clr = +).each do |btn|
button btn, :width => 46, :height => 46 do
method = case btn
when /[0-9]/: 'press_'+btn
when 'Clr': 'press_clear'
when '=': 'press_equals'
when '+': 'press_add'
when '-': 'press_sub'
when '*': 'press_times'
when '/': 'press_div'
end
number.send(method)
number_field.replace strong(number)
end
end
I talk more about this feature in Blogging Shoes: The Simple-Calc Application
Fool some class or module telling it has required something that it really hasn't required:
$" << "something"
This is useful for example when requiring A that in turns requires B but we don't need B in our code (and A won't use it either through our code):
For example, Backgroundrb's bdrb_test_helper requires 'test/spec', but you don't use it at all, so in your code:
$" << "test/spec"
require File.join(File.dirname(__FILE__) + "/../bdrb_test_helper")
Defining a method that accepts any number of parameters and just discards them all
def hello(*)
super
puts "hello!"
end
The above hello method only needs to puts "hello" on the screen and call super - but since the superclass hello defines parameters it has to as well - however since it doesn't actually need to use the parameters itself - it doesn't have to give them a name.
private unless Rails.env == 'test'
# e.g. a bundle of methods you want to test directly
Looks like a cool and (in some cases) nice/useful hack/feature of Ruby.

Resources