Firewall blocks connection to second WebSocket server - websocket

In short we have two separate servers for our web app. The first one is the main server that uses Websockets for handling "chat rooms", and the second server only handles WebRTC audio chat rooms via Websocket. Both servers use Express to create a HTTPS server, use secure Websocket and the port 443.
I recently encountered a problem where a corporate client's firewall blocked the wss-connection to only the WebRTC server. The error logged in the user's browser was "ERR_CONNECTION_TIMED_OUT", which means the user never connects via Websocket. This has not happened with any other clients.
The Websocket connection works normally between the user and the main server, and no rules have been added to their firewall to use our app.
Has anyone encountered something similar? What kind of a firewall setting might cause this? Could this be a cors problem, since the servers are on their own sub-domains?

The main server could be restricting the type of data sent on port 443, which will use SSL to secure that transmitted data.
Refer to this page for information on the "Well-know port numbers".
The WebRTC audio data may need to be transmitted on its own dedicated port number that has been configured on the main server for this.

The problem was that the main server WebSocket used TCP and the WebRTC server used UDP, and UDP was blocked by corporate firewall on default.
WebRTC should use TCP as a backup, but I'm assuming UDP is still needed for the handshake.

Related

Restrict insecure web socket protocol connections in PCF

We are hosting an application in the preprod azure PCF environment which exposes websocket endpoints for client devices to connect to. Is there a prescribed methodology to secure the said websocket endpoint using TLS/SSL when hosted on PCF and running behind the PCF HAProxy?
I am having trouble interpreting this information, as in, are we supposed to expose port 4443 on the server and PCF shall by default pick it up to be a secure port that ensures unsecured connections cannot be established? Or does it require some configuration to be done on HAProxy?
Is there a prescribed methodology to secure the said websocket endpoint using TLS/SSL when hosted on PCF and running behind the PCF HAProxy?
A few things:
You don't need to configure certs or anything like that when deploying your app to PCF. The platform takes care of all that. In your case, it'll likely be handled by HAProxy, but it could be some other load balancer or even Gorouter depending on your platform operations team installed PCF. The net result is that TLS is first terminated before it hits your app, so you don't need to worry about it.
Your app should always force users to HTTPS. How you do this depends on the language/framework you're using, but most have some functionality for this.
This process generally works by checking to see if the incoming request was over HTTP or HTTPS. If it's HTTP, then you issue a redirect to the same URL, but over HTTPS. This is important for all apps, not just ones using WebSockets. Encrypt all the things.
Do keep in mind that you are behind one or more reverse proxies, so if you are doing this manually, you'll need to consider what's in x-forwarded-proto or x-forwarded-port, not just the upstream connection which would be Gorouter, not your client's browser.
https://docs.pivotal.io/platform/application-service/2-7/concepts/http-routing.html#http-headers
If you are forcing your user's to HTTPS (#1 above), then your users will be unable to initiate an insecure WebSocket connection to your app. Browsers like Chrome & Firefox have restrictions to prevent an insecure WebSocket connection from being made when the site was loaded over HTTPS.
You'll get a message like The operation is insecure in Firefox or Cannot connect: SecurityError: Failed to construct 'WebSocket': An insecure WebSocket connection may not be initiated from a page loaded over HTTPS. in Chrome.
I am having trouble interpreting this information, as in, are we supposed to expose port 4443 on the server and PCF shall by default pick it up to be a secure port that ensures unsecured connections cannot be established? Or does it require some configuration to be done on HAProxy?
From the application perspective, you don't do anything different. Your app is supposed to start and listen on the assigned port, i.e. what's in $PORT. This is the same for HTTP, HTTP, WS & WSS traffic. In short, as an app developer you don't need to think about this when deploying to PCF.
The only exception would be if your platform operations team uses a load balancer that does not natively support WebSockets. In this case, to work around the issue they need to separate traffic. HTTP and HTTPS go on the traditional ports 80 and 443, and they will route WebSockets on a different port. The PCF docs recommend 4443, which is where you're probably seeing that port. I can't tell you if your platform is set up this way, but if you know that you're using HAproxy, it is probably not.
https://docs.pivotal.io/platform/application-service/2-8/adminguide/supporting-websockets.html
At any rate, if you don't know just push an app and try to initiate a secure WebSocket connection over port 443 and see if it works. If it fails, try 4443 and see if that works. That or ask your platform operations team.
For what it's worth, even if your need to use port 4443 there is no difference to your application that runs on PCF. The only difference would be in your JavaScript code that initiates the WebSocket connection. It would need to know to use port 4443 instead of the default 443.

Why browsers can receive incoming connections and other soft's cant!?

my question is simple
When you send data through TCP/IP protocol with EX:firefox you can receive reply on some random port that the browser listen on, while when i try to use a port for another task like CS Gaming or anything else it don't work unless i use kind of VPN ?
PS: there r no firewall blocking connection and port forwarding from my router didn't work as well.
Browsers are client apps that make outbound connections to web servers. When connecting to a server through a router’s NAT, the NAT takes note of the source and destination IP/port pairs so messages sent back from the server on the same connection are automatically routed to the correct client IP/port.
Browsers also support the websocket protocol. This feature makes it seem like the browser is listening on a specific port. However, in reality, it is initiated on a new connection to the server, a connection which remains open all throughout the websocket communication.
What matters is which peer is behind the NAT — the server or the client. For an outbound connection from a client, it can usually use any random port that is available at the time. For an inbound connection to a server, the server's IP/port must be known ahead of time and be routable. If the server is behind a NAT, the router(s) must be configured to make the server reachable from the other side of the NAT.
The server software can make a UPnP request to ask a router to forward inbound packets to the correct IP/Port. The router, depending on its configuration, may or may not honor such a request. If not, the router has to be configured manually by a network administrator.

Shall I use WebSocket on ports other than 80?

Shall I use WebSocket on non-80 ports? Does it ruin the whole purpose of using existing web/HTTP infrastructures? And I think it no longer fits the name WebSocket on non-80 ports.
If I use WebSocket over other ports, why not just use TCP directly? Or is there any special benefits in the WebSocket protocol itself?
And since current WebSocket handshake is in the form of a HTTP UPGRADE request, does it mean I have to enable HTTP protocol on the port so that WebSocket handshake can be accomplished?
Shall I use WebSocket on non-80 ports? Does it ruin the whole purpose
of using existing web/HTTP infrastructures? And I think it no longer
fits the name WebSocket on non-80 ports.
You can run a webSocket server on any port that your host OS allows and that your client will be allowed to connect to.
However, there are a number of advantages to running it on port 80 (or 443).
Networking infrastructure is generally already deployed and open on port 80 for outbound connections from the places that clients live (like desktop computers, mobile devices, etc...) to the places that servers live (like data centers). So, new holes in the firewall or router configurations, etc... are usually not required in order to deploy a webSocket app on port 80. Configuration changes may be required to run on different ports. For example, many large corporate networks are very picky about what ports outbound connections can be made on and are configured only for certain standard and expected behaviors. Picking a non-standard port for a webSocket connection may not be allowed from some corporate networks. This is the BIG reason to use port 80 (maximum interoperability from private networks that have locked down configurations).
Many webSocket apps running from the browser wish to leverage existing security/login/auth infrastructure already being used on port 80 for the host web page. Using that exact same infrastructure to check authentication of a webSocket connection may be simpler if everything is on the same port.
Some server infrastructures for webSockets (such as socket.io in node.js) use a combined server infrastructure (single process, one listener) to support both HTTP requests and webSockets. This is simpler if both are on the same port.
If I use WebSocket over other ports, why not just use TCP directly? Or
is there any special benefits in the WebSocket protocol itself?
The webSocket protocol was originally defined to work from a browser to a server. There is no generic TCP access from a browser so if you want a persistent socket without custom browser add-ons, then a webSocket is what is offered. As compared to a plain TCP connection, the webSocket protocol offers the ability to leverage HTTP authentication and cookies, a standard way of doing app-level and end-to-end keep-alive ping/pong (TCP offers hop-level keep-alive, but not end-to-end), a built in framing protocol (you'd have to design your own packet formats in TCP) and a lot of libraries that support these higher level features. Basically, webSocket works at a higher level than TCP (using TCP under the covers) and offers more built-in features that most people find useful. For example, if using TCP, one of the first things you have to do is get or design a protocol (a means of expressing your data). This is already built-in with webSocket.
And since current WebSocket handshake is in the form of a HTTP UPGRADE
request, does it mean I have to enable HTTP protocol on the port so
that WebSocket handshake can be accomplished?
You MUST have an HTTP server running on the port that you wish to use webSocket on because all webSocket requests start with an HTTP request. It wouldn't have to be heavily featured HTTP server, but it does have to handle the initial HTTP request.
Yes - Use 443 (ie, the HTTPS port) instead.
There's little reason these days to use port 80 (HTTP) for anything other than a redirection to port 443 (HTTPS), as certification (via services like LetsEncrypt) are easy and free to set up.
The only possible exceptions to this rule are local development, and non-internet facing services.
Should I use a non-standard port?
I suspect this is the intent of your question. To this, I'd argue that doing so adds an unnecessary layer of complication with no obvious benefits. It doesn't add security, and it doesn't make anything easier.
But it does mean that specific firewall exceptions need to be made to host and connect to your websocket server. This means that people accessing your services from a corporate/school/locked down environment are probably not going to be able to use it, unless they can somehow convince management that it is mandatory. I doubt there are many good reasons to exclude your userbase in this way.
But there's nothing stopping you from doing it either...
In my opinion, yes you can. 80 is the default port, but you can change it to any as you like.

Socks 4 Bind Request Explanation

i was reading this topic
http://ftp.icm.edu.pl/packages/socks/socks4/SOCKS4.protocol
and what im trying to do is:
i have a client/server application, what im trying to do is to use socks 4 BIND request to bind my server to a remote socks server, and make the clients connect to that socks server and the socks server will make them connect to my server (at least thats how i understand socks BIND request)
but i don't fully understand it (my English is kinda bad), what im asking is, is it possible to do so when i dunno any of the remote IPs of the clients? since the server's BIND request package must contain the address of the remote client and i dont really have than since the clients are from unknown users retrieving status info from my server (or can i use 0 for INANY_ADDR) ?
What you are asking for is not possible with SOCKS, nor is it meant for that purpose. Read the spec again more carefully. The BIND command is meant for use with multi-connection protocols (like FTP), where a primary connection is used to communicate between a client and a server, and BIND facilitates situations where the server needs to connect a secondary connection to the client after the client tells the server where to connect. In that situation, the client would issue a BIND command to SOCKS telling it the server's IP/Port so it only accepts that connection, then send the resulting SOCKS listening IP/Port to the server to connect to.
What you are asking for is better served by using a router with Port Forwarding rules defined. Then you can open a listening port on the router that accepts any inbound connection and forwards it to your app's listening IP/Port. Most modern routers support uPNP (Universal Plug-N-Play) so you can configure the forwarding rules programmably instead of requiring admin access to the router's configuration software.

Why don't current websocket client implementations support proxies?

A Web Socket detects the presence of a proxy server and automatically sets up a tunnel to pass through the proxy. The tunnel is established by issuing an HTTP CONNECT statement to the proxy server, which requests for the proxy server to open a TCP/IP connection to a specific host and port. Once the tunnel is set up, communication can flow unimpeded through the proxy. Since HTTP/S works in a similar fashion, secure Web Sockets over SSL can leverage the same HTTP CONNECT technique. [1]
OK, sounds useful! But, in the client implementations I've seen thus far (Go [2], Java [3]) I do not see anything related to proxy detection.
Am I missing something or are these implementations just young? I know WebSockets is extremely new and client implementations may be equally young and immature. I just want to know if I'm missing something about proxy detection and handling.
[1] http://www.kaazing.org/confluence/display/KAAZING/What+is+an+HTML+5+WebSocket
[2] http://golang.org/src/pkg/websocket/client.go
[3] http://github.com/adamac/Java-WebSocket-client/raw/master/src/com/sixfire/websocket/WebSocket.java
Let me try to explain the different success rates you may have encountered. While the HTML5 Web Socket protocol itself is unaware of proxy servers and firewalls, it features an HTTP-compatible handshake so that HTTP servers can share their default HTTP and HTTPS ports (80 and 443) with a Web Sockets gateway or server.
The Web Socket protocol defines a ws:// and wss:// prefix to indicate a WebSocket and a WebSocket Secure connection, respectively. Both schemes use an HTTP upgrade mechanism to upgrade to the Web Socket protocol. Some proxy servers are harmless and work fine with Web Sockets; others will prevent Web Sockets from working correctly, causing the connection to fail. In some cases additional proxy server configuration may be required, and certain proxy servers may need to be upgraded to support Web Sockets.
If unencrypted WebSocket traffic flows through an explicit or a transparent proxy server on its way the WebSocket server, then, whether or not the proxy server behaves as it should, the connection is almost certainly bound to fail today (in the future, proxy servers may become Web Socket aware). Therefore, unencrypted WebSocket connections should be used only in the simplest topologies.
If encrypted WebSocket connection is used, then the use of Transport Layer Security (TLS) in the Web Sockets Secure connection ensures that an HTTP CONNECT command is issued when the browser is configured to use an explicit proxy server. This sets up a tunnel, which provides low-level end-to-end TCP communication through the HTTP proxy, between the Web Sockets Secure client and the WebSocket server. In the case of transparent proxy servers, the browser is unaware of the proxy server, so no HTTP CONNECT is sent. However, since the wire traffic is encrypted, intermediate transparent proxy servers may simply allow the encrypted traffic through, so there is a much better chance that the WebSocket connection will succeed if Web Sockets Secure is used. Using encryption, of course, is not free, but often provides the highest success rate.
One way to see it in action is to download and install the Kaazing WebSocket Gateway--a highly optimized, proxy-aware WebSocket gateway, which provides native WebSocket support as well as a full emulation of the standard for older browsers.
The answer is that these clients simply do not support proxies.
-Occam
The communication channel is already established by the time the WebSocket protocol enters the scene. The WebSocket is built on top of TCP and HTTP so you don't have to care about the things already done by these protocols, including proxies.
When a WebSocket connection is established it always starts with a HTTP/TCP connection which is later "upgraded" during the "handshake" phase of WebSocket. At this time the tunnel is established so the proxies are transparent, there's no need to care about them.
Regarding websocket clients and transparent proxies,
I think websocket client connections will fail most of the time for the following reasons (not tested):
If the connection is in clear, since the client does not know it is communicating with a http proxy server, it won't send the "CONNECT TO" instruction that turns the http proxy into a tcp proxy (needed for the client after the websocket handshake). It could work if the proxy supports natively websocket and handles the URL with the ws scheme differently than http.
If the connection is in SSL, the transparent proxy cannot know to which server it should connect to since it has decrypt the host name in the https request. It could by either generating a self-signed certificate on the fly (like for SSLStrip) or providing its own static certificate and decrypt the communication but if the client validates the server certificate it will fail (see https://serverfault.com/questions/369829/setting-up-a-transparent-ssl-proxy).
You mentioned Java proxies, and to respond to that I wanted to mention that Java-Websocket now supports proxies.
You can see the information about that here: http://github.com/TooTallNate/Java-WebSocket/issues/88
websocket-client, a Python package, supports proxies, at the very least over secure scheme wss:// as in that case proxy need no be aware of the traffic it forwards.
https://github.com/liris/websocket-client/commit/9f4cdb9ec982bfedb9270e883adab2e028bbd8e9

Resources