CLion is a powerful multi-platform IDE that allows to run and debug C++ applications.
I tried to use it with an AzerothCore core project.
It is smart enough to detect all the processes:
Mostly I'm interested in running the worldserver.
However when I try to run or debug it, it correctly compile and runs but it will look for the worldserver.conf.dist configuration file in the directory /usr/local/etc/, giving error because that file is not there.
I would like to manually specify the path of such configuration file, as well as passing other CMake parameters.
I made it work by opening File -> Settings and looking for "CMake" under "Build, Execution, Deployment".
From that window I could pass my CMake options, which in my case where:
-G "Unix Makefiles" -DTOOLS=0 -DSCRIPTS=static -DCMAKE_C_FLAGS="-Werror" -DCMAKE_CXX_FLAGS="-Werror" -DCMAKE_INSTALL_PREFIX=/path/to/the/main/server/dir
The /path/to/the/main/server/dir is where my etc, data, etc... folders are and the worldserver.config.dist is inside this etc folder. So doing this everything worked fine.
I also changed the "Build options" to better use my processor, passing -j 10.
For macOS users, you'll probably need to add these CMake options as well:
-DMYSQL_ADD_INCLUDE_PATH=/usr/local/include
-DMYSQL_LIBRARY=/usr/local/lib/libmysqlclient.dylib
-DREADLINE_INCLUDE_DIR=/usr/local/opt/readline/include
-DREADLINE_LIBRARY=/usr/local/opt/readline/lib/libreadline.dylib
-DOPENSSL_INCLUDE_DIR=/usr/local/opt/openssl/include
-DOPENSSL_SSL_LIBRARIES=/usr/local/opt/openssl/lib/libssl.dylib
-DOPENSSL_CRYPTO_LIBRARIES=/usr/local/opt/openssl/lib/libcrypto.dylib
Related
I'm trying to use the lightning fast swc compiler in tsc-watch, but it does not seem to parse it properly. I've tried various locations in #swc/cli and #swc/core, but to no avail.
I've also tried using ts-node, which has a configuration option for swc, but this also doesn't appear to work.
Here's the script I'm trying to run:
When running this, it prints the command and then stops.
I'm looking to compile OCCT 7.5 in Windows 10 (x64 via VS2019) for use with FreeCAD, to enable exporting glTF files, which requires RapidJSON support (in OCCT). I've checked out OCCT 7.5.3 and RapidJSON 1.1.0 from their git repos, then grabbed the FreeCAD libpack 12.5.2 (for OCCT 7.5). I started from FreeCAD's build docs, then attempted to follow OCCT's build docs.
When configuring the OCCT project in CMake-GUI, I've been able to find what I think are correct values for some variables (e.g. those regarding FREETYPE) within the FreeCAD libpack, as well as RapidJSON, but still get some errors in the config, seemingly no matter what values I try:
Could not find headers of used third-party products:
3RDPARTY_TCL_INCLUDE_DIR 3RDPARTY_TK_INCLUDE_DIR
...
Could not find DLLs of used third-party products: 3RDPARTY_TCL_DLL_DIR
3RDPARTY_TK_DLL_DIR
I've tried using *.lib, *.h and *.dll files found within the FreeCAD Libpack (and their corresponding directories) for *_LIBRARY/INCLUDE/DLL variables, but nothing is found. I see
Info: TCL is used by OCCT
Could NOT find Tclsh (missing: TCL_TCLSH)
even though tclsh86t.exe exists in the libpack/bin directory.
What should the 3RDPARTY_TCL_* & 3RDPARTY_TK_* CMake variables be set to, to use the FreeCAD libpack?
The problem was my lack of familiarity with CMake and Cmake-gui: the gui opened a dialog for a FILEPATH when specifying a PATH variable. I naively thought, "I don't know CMake, so I'll trust the gui". Totally wrong.
I manually edited the 3RDPARTY_* variable entries to point to the correct directories (or libs, when needed) in the FreeCAD libpack, using the variable name and description/hint for each to determine what the variable's value should be. Below are my entries, for reference:
I did need to check "Advanced", to edit the FREETYPE_LIBRARY_DEBUG & FREETYPE_LIBRARY_RELEASE variables (CMake set them to separate libs found in a jdk directory, presumably because it was added to the system path at some point).
At $DAYJOB, I am trying to implement reproducible builds to make debugging released software where we no longer have the full debug versions on our build servers easier, using the tips from reproducible-builds.org.
Using the -ffile-prefix-map=/path/to/build=src option in GCC to avoid leaking internal file paths does help making some error messages cleaner, but does produce problems when using GDB. I am in /path/to/build/some/binary/ and hitting a breakpoint in /path/to/build/lib/cclib/:
Breakpoint 1, [...]
at src/lib/cclib/eventloop.cc:154
154 src/lib/cclib/eventloop.cc: No such file or directory.
(gdb)
As a workaround, I can symlink src to the root of the build tree, but is there a better way to make sure gdb understands the mapping?
GDB has a few configuration commands to direct the way it searches for source code. In your case, where you have a tree of source code and you need to change a path prefix, set substitute-path DWARF-compilation-dir actual-dir should be all you need to do.
set substitute-path src /path/to/build
I have an autotools project which successfully builds and tests an app (https://github.com/goglecm/AutoBrightnessCam). The app is installed in the bin directory (preceded by any prefix the user specifies). That's pretty straightforward. I now need to make a systemd service to start it at boot time. I've created the service file and ran it manually and it works fine.
The last bit is to tell configure.ac and Makefile.am to patch a *.service.in file with the correct path for the app (just like config.h is created from config.h.in).
Will using AC_CONFIG_HEADERS be appropriate to patch *.service.in into *.service? Is there another macro used for "non-headers" perhaps?
Also, how do I specify that the service file should land (i.e. installed) in /etc/systemd/system?
Is there perhaps a better way of starting this app at boot time without systemd?
How do I specify that the service file should land (i.e. installed) in /etc/systemd/system?
According to Systemd's daemon man page:
<BEGINQUOTE>
Installing systemd Service Files
At the build installation time (e.g. make install during package build), packages are recommended to install their systemd unit files in the directory returned by pkg-config systemd --variable=systemdsystemunitdir (for system services) or pkg-config systemd --variable=systemduserunitdir (for user services). This will make the services available in the system on explicit request but not activate them automatically during boot. Optionally, during package installation (e.g. rpm -i by the administrator), symlinks should be created in the systemd configuration directories via the enable command of the systemctl(1) tool to activate them automatically on boot.
Packages using autoconf(1) are recommended to use a configure script excerpt like the following to determine the unit installation path during source configuration:
PKG_PROG_PKG_CONFIG
AC_ARG_WITH([systemdsystemunitdir],
[AS_HELP_STRING([--with-systemdsystemunitdir=DIR], [Directory for systemd service files])],,
[with_systemdsystemunitdir=auto])
AS_IF([test "x$with_systemdsystemunitdir" = "xyes" -o "x$with_systemdsystemunitdir" = "xauto"], [
def_systemdsystemunitdir=$($PKG_CONFIG --variable=systemdsystemunitdir systemd)
AS_IF([test "x$def_systemdsystemunitdir" = "x"],
[AS_IF([test "x$with_systemdsystemunitdir" = "xyes"],
[AC_MSG_ERROR([systemd support requested but pkg-config unable to query systemd package])])
with_systemdsystemunitdir=no],
[with_systemdsystemunitdir="$def_systemdsystemunitdir"])])
AS_IF([test "x$with_systemdsystemunitdir" != "xno"],
[AC_SUBST([systemdsystemunitdir], [$with_systemdsystemunitdir])])
AM_CONDITIONAL([HAVE_SYSTEMD], [test "x$with_systemdsystemunitdir" != "xno"])
This snippet allows automatic installation of the unit files on systemd machines, and optionally allows their installation even on machines lacking systemd. (Modification of this snippet for the user unit directory is left as an exercise for the reader.)
Additionally, to ensure that make distcheck continues to work, it is recommended to add the following to the top-level Makefile.am file in automake(1)-based projects:
AM_DISTCHECK_CONFIGURE_FLAGS = \
--with-systemdsystemunitdir=$$dc_install_base/$(systemdsystemunitdir)
Finally, unit files should be installed in the system with an automake excerpt like the following:
if HAVE_SYSTEMD
systemdsystemunit_DATA = \
foobar.socket \
foobar.service
endif
...
</ENDQUOTE>
So it appears you should use systemdsystemunitdir and systemduserunitdir. How well Autotools supports it, well...
A quick grep on Fedora 31 using grep systemdsystemunitdir /bin/autoconf and grep -IR systemdsystemunitdir /usr/share shows no Autotools support yet. 7 years and counting...
Is there perhaps a better way of starting this app at boot time without systemd?
Systemd should be OK to start your app. Simply use systemctl(1) to enable and start them as you normally would.
Based on your GitHub and autobrightnesscam.service.in, I would not dick around with Autotools for this. You can waste copious amounts of time working around Autotols short comings (speaking from experience).
My configure.ac script (which is just a shell script) would copy autobrightnesscam.service.in to autobrightnesscam.service, and then use sed to copy-in the correct directories and files. Then, I would copy the updated autobrightnesscam.service to its proper location in AC_CONFIG_COMMANDS_POST. Maybe something like:
SERVICE_FILE=autobrightnesscam.service
SYSTEMD_DIR=`pkg-config systemd --variable=systemdsystemunitdir`
# Use default if SYSTEMD_DIR is empty
if test x"$SYSTEMD_DIR" = "x"; then
SYSTEMD_DIR=/etc/systemd/system
fi
AC_CONFIG_COMMANDS_POST([cp "$SERVICE_FILE" "$SYSTEMD_DIR"])
AC_CONFIG_COMMANDS_POST([systemctl enable "$SYSTEMD_DIR/$SERVICE_FILE"])
AC_CONFIG_COMMANDS_POST([systemctl start "$SERVICE_FILE"])
Will using AC_CONFIG_HEADERS be appropriate to patch *.service.in into *.service? Is there another macro used for "non-headers" perhaps?
No. AC_CONFIG_HEADERS is for setting up configuration headers to support your build. It is rarely used for anything other than building a config.h recording the results of certain tests that Autoconf performs, and it is not as flexible as other options in this area.
If you have additional files that you want Autoconf to build from templates then you should tell Autoconf about them via AC_CONFIG_FILES. Example:
AC_CONFIG_FILES([Makefile AutoBrightnessCam.service])
But if some of the data with which you are filling that template are installation directories then Autoconf is probably not the right place to do this at all, because it makes provision for the installation prefix to be changed by arguments to make. You would at least need to work around that, but the best thing to do is to roll with it instead, and build the .service file under make's control. It's not that hard, and there are several technical advantages, some applying even if there aren't any installation directory substitutions to worry about.
You can do it the same way that configure does, by running the very same template you're already using through sed, with an appropriate script. Something like this would appear in your Makefile.am:
SERVICE_SUBS = \
s,[#]VARIABLE_NAME[#],$(VARIABLE_NAME),g; \
s,[#]OTHER_VARIABLE[#],$(OTHER_VARIABLE),g
AutoBrightnessCam.service: AutoBrightnessCam.service.in
$(SED) -e '$(SERVICE_SUBS)' < $< > $#
Also, how do I specify that the service file should land (i.e.
installed) in /etc/systemd/system?
You use Automake's standard mechanism for specifying custom installation locations. Maybe something like this:
sytemdsysdir = $(sysconfdir)/systemd/system
systemdsys_DATA = AutoBrightnessCam.service
Is there perhaps a better way of
starting this app at boot time without systemd?
On a systemd-based machine, systemd is in control of what starts at boot. If you want the machine to start your application automatically at boot, then I think your options are limited to
Configuring systemd to start it
Configuring something in a chain of programs ultimately started by systemd to start it
Hacking the bootloader or kernel to start it
There is room for diverging opinions here, but I think the first of those is cleanest and most future-proof, and I cannot recommend the last.
I've encountered a scenario where I'm building a Perl module as part of another Build system on a Windows machine. I use the --install_base option of Module::Build to specify a temporary directory to put module files until the overall build system can use them. Unfortunately, that other Build system has a problem if any of its files that it depends on are read only - it tries to delete any generated files before rebuilding them, and it can't clean any read-only files (it tries to delete it, and it's read only, which gives an error.) By default, Module::Build installs its libraries with the read-only bit enabled.
One option would be to make a new step in the build process that removes the read-only bit from the installed files, but due to the nature of the build tool that will require a second temporary directory...ugh.
Is it possible to configure a Module::Build based installer to NOT enable that read-only bit when the files are installed to the --install_base directory? If so, how?
No, it's not a configurable option. It's done in the copy_if_modified method in Module::Build::Base:
# mode is read-only + (executable if source is executable)
my $mode = oct(444) | ( $self->is_executable($file) ? oct(111) : 0 );
chmod( $mode, $to_path );
If you controlled the Build.PL, you could subclass Module::Build and override copy_if_modified to call the base class and then chmod the file writable. But I get the impression you're just trying to install someone else's module.
Probably the easiest thing to do would be to install a copy of Module::Build in a private directory, then edit it to use oct(666) (or whatever mode you want). Then invoke perl -I /path/to/customized/Module/Build Build.PL. Or, (as you said) just use the standard Module::Build and add a separate step to mark everything writable afterwards.
Update: ysth is right; it's ExtUtils::Install that actually does the final copy. copy_if_modified is for populating blib. But ExtUtils::Install also hardcodes the mode to read-only. You could use a customized version of ExtUtils::Install, but it's probably easier to just have a separate step.