Why is 'publishing' function not being found in my custom gradle.kts file within buildSrc directory? - gradle

I have a custom gradle.kts script I am building that will do our maven publishing for all of our various modules to our sonatype repository, but encountering a strange error. Here are the contents of my maven-deploy.gradle.kts file:
plugins {
`maven-publish`
signing
}
publishing {
//expression 'publishing' cannot be invoked as a function.
//The function invoke() is not found
}
I can run tasks and whatnot within the maven-deploy.gradle.kts file fine, but trying to use the publishing function from the gradle documentation is proving to be impossible. Any ideas? I'm using gradle version 4.10.3 (I need Android support). The maven-deploy.gradle.kts file is in buildSrc/src/main/kotlin and is being added by id("maven-deploy") in my main project's build.gradle.kts file.

This happens because Gradle only imports the generated type-safe accessors for Gradle Kotlin DSL into the main build script, but not into script plugins:
Only the main project build scripts have type-safe model accessors. Initialization scripts, settings scripts, script plugins (precompiled or otherwise) do not. These limitations will be removed in a future Gradle release.
See Understanding when type-safe model accessors are available
In the script you mentioned, you can access the publishing extension dynamically, for example, using configure<PublishingExtension> { ... }:
import org.gradle.api.publish.PublishingExtension
plugins {
`maven-publish`
signing
}
configure<PublishingExtension> {
// ...
}
This is described here: Project extensions and conventions
UPD: Gradle 5.3 RC1 seems to add a possibility to use the generated extensions in script plugins.

Related

Gradle7 Version Catalog: How to use it with buildSrc?

I am very excited about the incubating Gradle's version catalogs and have been experimenting with it. I’ve found that the information in my gradle/libs.versions.toml is accessible in the build.gradle.kts scripts for my app and utility-lib projects.
However, I am unable to use the content of the toml file for buildSrc/build.gradle.kts or the convention files.
The only way that I could build was to hard-code the dependencies into those files, as I did before the version catalog feature.
In the buildSrc folder, I created a settings.gradle.kts file and inserted the dependencyResolutionManagement code for versionCatalogs, which is pointing to the same file as for my app and utility-lib projects.
Based on the Gradle7 docs, it seems that sharing a version catalog with buildSrc and modules is possible… I’d appreciate a nudge into getting it to work with buildSrc, if possible.
Here is a simple sample project, which I created via gradle init: my-version-catalog
Thank you for your time and help,
Mike
With Gradle 7.3.3, it is possible. Note version catalogs are GA since Gradle 7.4
The code snippet assumes Gradle is at least 7.4, but if you need them prior that version, insert enableFeaturePreview("VERSION_CATALOGS") at the beginning of each settings.gradle.kts.
Using buildSrc
buildSrc/settings.gradle.kts
dependencyResolutionManagement {
versionCatalogs {
create("libs") {
from(files("../gradle/libs.versions.toml"))
}
}
}
buildSrc/build.gradle.kts
dependencies {
implementation(libs.gradleplugin.intellij) // <- the lib reference
}
You can even use the version catalog for plugins
gradle/libs.versions.toml
...
[plugins]
kotlin-jvm = { id = "org.jetbrains.kotlin.jvm", version.ref = "kotlin" }
jetbrains-changelog = { id = "org.jetbrains.changelog", version.ref = "changelog-plugin" }
jetbrains-intellij = { id = "org.jetbrains.intellij", version.ref = "intellij-plugin" }
hierynomus-license = { id = "com.github.hierynomus.license", version.ref = "license-plugin" }
nebula-integtest = { id = "nebula.integtest", version.ref = "nebula-integtest-plugin" }
build.gradle.kts
plugins {
id("java")
alias(libs.plugins.kotlin.jvm)
alias(libs.plugins.nebula.integtest)
alias(libs.plugins.jetbrains.intellij)
alias(libs.plugins.jetbrains.changelog)
alias(libs.plugins.hierynomus.license)
}
Note for accessing the catalog within scripts, please refer to the below section, the trick is the same.
Using convention plugins and included build
In the main project include a the Gradle project that holds the convention plugins.
build.gradle.kts
includeBuild("convention-plugins") // here it's a subfolder
convention-plugins/settings.gradle.kts
dependencyResolutionManagement {
repositories {
gradlePluginPortal()
}
versionCatalogs {
create("libs") {
from(files("../gradle/libs.versions.toml"))
}
}
}
rootProject.name = "convention-plugins"
The trick to enable convention plugins to access the version catalog is split in two part, add an ugly implementation dependency that locate where the version catalog generated classes are located.
libs.javaClass.superclass.protectionDomain.codeSource.location
Then in the convention plugin refer to the libs extension via Project::the.
val libs = the<LibrariesForLibs>()
This is tracked by gradle/gradle#15383.
convention-plugins/build.gradle.kts
plugins {
`kotlin-dsl`
}
dependencies {
implementation(libs.gradleplugin.kotlin.jvm)
// https://github.com/gradle/gradle/issues/15383
implementation(files(libs.javaClass.superclass.protectionDomain.codeSource.location))
}
And in the actual convention plugin
import org.gradle.accessors.dm.LibrariesForLibs
plugins {
id("org.jetbrains.kotlin.jvm")
}
// https://github.com/gradle/gradle/issues/15383
val libs = the<LibrariesForLibs>()
dependencies {
detektPlugins(libs.bundles.kotlinStuff) // access catalog entries
}
The org.gradle.accessors.dm.LibrariesForLibs class is generated by gradle is somewhere in local gradle folder ./gradle/<version>/dependency-accessors/<hash>/classes
Quick note that older IntelliJ IDEA currently (2022.3) reports alias(libs.gradleplugin.thePlugin) as an error in the editor,
although the dependencies are correctly resolved.
This tracked by KTIJ-19369, the ticket indicates this is actually a bug in Gradle Kotlin DSL gradle/gradle#22797, and someone made a simple IntelliJ IDEA plugin to hide this error until resolved.
Brice, it looks like a can of worms to go down that path, particularly for my situation, where I'm trying to use a libs.version.toml file from an android project, but the custom plugin is of course from a java/kotlin project. I tried creating the libs file by hardwiring the path to the toml file in the custom plugin. It might work if both were java projects, but I never tried that since that's not what I'm after. The ideal solution would be for the plugin to use the libs file from the project it is applied to, but it looks like the version catalog needs to be created in the settings file, before you even have access to "Project", so that's why you would have to hardwire the path.
Short answer. No, but there are other techniques for a custom plugin to get project version data from the project it is applied to.

Git repository with Maven project as a Gradle source dependency

This article describes an interesting feature of Gradle 4.10+ called a source dependency:
https://blog.gradle.org/introducing-source-dependencies
It allows to use a Git (for example a GitHub) source code repository to build a dependency from it. However it seems like it supports only Gradle projects as source dependencies. Is it possible to use a Maven project as well and if it's possible, please show an example.
When I try to use this feature with Maven project Gradle tries to find the build.gradle file there anyway (I see it when run Gradle with the --info option) and fails with an error message like:
Git repository at https://github.com/something/something.git did not contain a project publishing the specified dependency.
The short answer
... is: "no".
Under the hood, source dependencies are composite builds. These needs to be Gradle projects as the external projects are sort of merged with the main project.
The long answer
... is: "yes but it is hard".
It is actually mentioned in the same blog post you linked to (emphasis mine):
Source dependencies make these use cases simpler to implement. Gradle takes care of automatically checking out the correct versions of dependencies, making sure the binaries are built when required. It does this everywhere that the build is run. The checked out project doesn’t even need to have an existing Gradle build. This example shows a Gradle build consuming two source dependencies that have no build system by injecting a Gradle build via plugins. The injected configuration could do anything a regular Gradle plugin can do, such as wrapping an existing CMake or Maven build.
Because it sounded like it wasn't the biggest thing in the world to create bridge between a Maven and a Gradle project in source dependencies, I gave it a shot. And I have it working except for transitive dependencies. You will basically need to do what is shown in the examples linked to above, but instead of building native libraries, you make a call-out to Maven (e.g. using a Maven plugin for Gradle).
However, the scripts I ended up with are complex enough that I would suggest you instead build the Maven project yourself, deploy it to a local Maven repository and then add that repository to the Gradle project.
<edit>
The loooooooong answer
Alright, so here is how to actually do it. The feature is poorly documented, and appears to be mostly targeted towards native projects (like C++ or Swift).
Root project setup
Take a normal Gradle project with the Java plugin applied. I did a "gradle init" in an empty folder. Assume that in this project, you are depending on a library called `` that you later want to include as a source dependency:
// [root]/build.gradle
dependencies {
implementation 'org.example:my-maven-project:1.1'
}
Note that the version number defined here must match a Git tag in the repository. This is the code revision that will be checkout out.
Then in the settings file, we define a source dependency mapping for it:
// [root]/settings.gradle
rootProject.name = 'my-project'
includeBuild('plugins') // [1]
sourceControl {
gitRepository("https://github.com/jitpack/maven-simple") { // [2]
producesModule("org.example:my-maven-project") // [3]
plugins {
id "external-maven-build" // [4]
}
}
}
[1]: This includes a Gradle project called plugins that will be explained later.
[2]: This is just an arbitrary Maven project that I found, which was relatively simple. Substitute with the actual repository you have.
[3]: This is the name of the Maven module (the same as in the dependency block) that we are defining a source build for
[4]: This defines a custom settings plugin called external-maven-build that is defined in the plugins project, which will be explained later.
Plugins project structure
Inside the root project, we define a new Gradle project. Again, you can use gradle init to initialize it as a Groovy (or whatever you like) project. Delete all generated sources and tests.
// [root]/plugins/settings.gradle
// Empty, but used to mark this as a stand-alone project (and not part of a multi-build)
// [root]/plugins/build.gradle
plugins {
id 'groovy'
id 'java-gradle-plugin' // [1]
}
repositories {
gradlePluginPortal() // [2]
}
dependencies {
implementation "gradle.plugin.com.github.dkorotych.gradle.maven.exec:gradle-maven-exec-plugin:2.2.1" // [3]
}
gradlePlugin {
plugins {
"external-maven-build" { // [4]
id = "external-maven-build"
implementationClass = "org.example.ExternalMavenBuilder"
}
}
}
[1]: In this project, we are defining a new Gradle plugin. This is a standard way to do that.
[2]: To invoke Maven, I am using another 3rd party plugin, so we need to add the Gradle plugin portal as a repository.
[3]: This is the plugin used to invoke Maven. I am not too familiar with it, and I don't know how production ready it is. One thing I noticed is that it does not model inputs and outputs, so there are no built-in support for up-to-date checking. But this can be added retrospectively.
[4]: This defines the custom plugin. Notice that it has the same ID as used in the settings file in the root project.
Plugin implementation class
Now comes the fun stuff. I chose to do it in Groovy, but it can be done in any supported JVM languages of cause.
The plugin structure is just like any other Gradle plugin. One thing to note is that it is a Settings plugin, whereas you normally do Project plugins. This is needed as it we are basically defining a Gradle project at run-time, which needs to be done as part of the initialization phase.
// [root]/plugins/src/main/groovy/org/example/ExternalMavenBuilder.groovy
package org.example
import com.github.dkorotych.gradle.maven.exec.MavenExec
import org.gradle.api.Plugin
import org.gradle.api.artifacts.ConfigurablePublishArtifact
import org.gradle.api.initialization.Settings
class ExternalMavenBuilder implements Plugin<Settings> {
void apply(Settings settings) {
settings.with {
rootProject.name = 'my-maven-project' // [1]
gradle.rootProject {
group = "org.example" //[2]
pluginManager.apply("base") // [3]
pluginManager.apply("com.github.dkorotych.gradle-maven-exec") // [4]
def mavenBuild = tasks.register("mavenBuild", MavenExec) {
goals('clean', 'package') // [5]
}
artifacts.add("default", file("$projectDir/target/maven-simple-0.2-SNAPSHOT.jar")) { ConfigurablePublishArtifact a ->
a.builtBy(mavenBuild) // [6]
}
}
}
}
}
[1]: Must match the Maven module name
[2]: Must match the Maven module group
[3]: Defines tasks like "build" and "clean"
[4]: The 3rd party plugin that makes it more easy to invoke Maven
[5]: For options, see https://github.com/dkorotych/gradle-maven-exec-plugin
[6]: Adds the Maven output as an artifact in the "default" configuration
Be aware that it does not model transitive dependencies, and it is never up-to-date due to missing inputs and outputs.
This is as far as I got with a few hours of playing around with it. I think it can be generalized into a generic plugin published to the Gradle portal. But I think I have too much on my plate as it is already. If anyone would like to continue on from here, you have my blessing :)

Apply plugin in precompile script with Gradle and Kotlin

I'm trying to apply precompile script gradle.kts file (gradle.kts script is put in buildSrc/main/java. everything work normally except that i can not add a plugin with version. for example my test.gradle.kts
plugins {
id("io.gitlab.arturbosch.detekt") version "1.1.1"
}
but always got the error
Invalid plugin request [id: 'io.gitlab.arturbosch.detekt', version: '1.1.1']. Plugin requests from precompiled scripts must not include a version number. Please remove the version from the offending request and make sure the module containing the requested plugin 'io.gitlab.arturbosch.detekt' is an implementation dependency of project ':buildSrc'.
And also I cannot the class to configure extension
For example, this normally configuration is not working
configure<DetektExtension>
How can we specify plugin version in precompile script? and how can we configure the plugin?
Without being able to see your build structure and file tree I can only answer based on how I'm understanding your question. Based on the error message you are receiving, you should be declaring the plugin dependency in the project level build.gradle.kts:
plugins {
id("io.gitlab.arturbosch.detekt") version "1.1.1"
}
Then in your buildSrc/build.gradle implement it like so:
plugins {
`io.gitlab.arturbosch.detekt`
}
Gradle has samples on GitHub, from which I drew this example, here:
https://github.com/gradle/kotlin-dsl-samples/tree/master/samples/multi-kotlin-project-with-buildSrc

How to execute gradle task during project import in Intellij Idea

Let's assume my build.gradle file contains task generateSources which as name suggests generates additional java files. It's easy to ensure that generateSources is executed before compileJava: compileJava.dependsOn generateSources. How can I make sure generateSources is called when importing project into Intellij Idea as well?
To elaborate on #vladimir-sitnikov's answer: I added the idea-ext-plugin to my root project:
apply plugin: 'org.jetbrains.gradle.plugin.idea-ext'
// ...
buildscript {
dependencies {
classpath "org.jetbrains.gradle.plugin.idea-ext:org.jetbrains.gradle.plugin.idea-ext.gradle.plugin:0.7"
}
}
Because without that I wasn't able to use it in my sub project, but now it works like this:
idea.project.settings.taskTriggers {
beforeSync tasks.getByName("generateSources")
}
Adding the plugin to the sub-project only didn't do it.
Note: The plugin's documentation is kind of limited, but in "DSL spec v. 0.2" is stated
beforeSync - before each Gradle project sync. Will NOT be executed on initial import
Didn't try that, but it works with existing projects.
This can be done via id("org.jetbrains.gradle.plugin.idea-ext") plugin (https://github.com/JetBrains/gradle-idea-ext-plugin).
See sample code in Gradle sources: https://github.com/gradle/gradle/blob/135fb4751faf2736c231636e8a2a92d47706a3b9/buildSrc/subprojects/ide/src/main/kotlin/org/gradle/gradlebuild/ide/IdePlugin.kt#L147
You can set the task in Gradle tool window: Execute Before Sync:

Gradle: Unable to get plugin class in scope in build script

I've been creating my own gradle plugin for the last few days (partly for learning, and partly to clean up some gradle build scripts I have laying around), however I've run into a problem that I can't figure out how to fix. In my plugin jar there is an interface named me.alxandr.gradle.bintray.maven.MavenPackage, yet when I try to import it I get an error saying that it can't be found. This is really weird, because the plugin is obviously running (I'm seeing output from it, and it's tasks are registering).
Currently I've done a hack to get around this as following:
project.ext.MavenPackage = MavenPackage
This just makes MavenPackage an available name in the buildscript, which works, but I loose any editor support for it cause it's entirely dynamic. Is there any way I can (from my plugin) get the buildscript to import a package when it's applied? Like how MavenPublication is in scope without me needing to import it. If not, why can I not import classes from my plugin package?
The entire source code is available at https://github.com/Alxandr/gradle-utils. You can see an attempted here: https://github.com/Alxandr/gradle-utils/blob/master/gradle/publish.gradle#L1. The current code works as is (with the hack explained above), but I'm just looking for a better way to do this.
In order to use a class from your plugin in your Gradle script, you must add the plugin JAR to the buildscript classpath.
Here's how to do just that:
buildscript {
repositories { /* where to get your plugin jar from, e.g. mavenLocal() */ }
dependencies {
classpath 'some_group:me.alxandr.plugin:1.0.0'
}
}
import me.alxandr.gradle.bintray.maven.MavenPackage
You can find more information in the Gradle User Guide about using external dependencies in your build script

Resources