This article describes an interesting feature of Gradle 4.10+ called a source dependency:
https://blog.gradle.org/introducing-source-dependencies
It allows to use a Git (for example a GitHub) source code repository to build a dependency from it. However it seems like it supports only Gradle projects as source dependencies. Is it possible to use a Maven project as well and if it's possible, please show an example.
When I try to use this feature with Maven project Gradle tries to find the build.gradle file there anyway (I see it when run Gradle with the --info option) and fails with an error message like:
Git repository at https://github.com/something/something.git did not contain a project publishing the specified dependency.
The short answer
... is: "no".
Under the hood, source dependencies are composite builds. These needs to be Gradle projects as the external projects are sort of merged with the main project.
The long answer
... is: "yes but it is hard".
It is actually mentioned in the same blog post you linked to (emphasis mine):
Source dependencies make these use cases simpler to implement. Gradle takes care of automatically checking out the correct versions of dependencies, making sure the binaries are built when required. It does this everywhere that the build is run. The checked out project doesn’t even need to have an existing Gradle build. This example shows a Gradle build consuming two source dependencies that have no build system by injecting a Gradle build via plugins. The injected configuration could do anything a regular Gradle plugin can do, such as wrapping an existing CMake or Maven build.
Because it sounded like it wasn't the biggest thing in the world to create bridge between a Maven and a Gradle project in source dependencies, I gave it a shot. And I have it working except for transitive dependencies. You will basically need to do what is shown in the examples linked to above, but instead of building native libraries, you make a call-out to Maven (e.g. using a Maven plugin for Gradle).
However, the scripts I ended up with are complex enough that I would suggest you instead build the Maven project yourself, deploy it to a local Maven repository and then add that repository to the Gradle project.
<edit>
The loooooooong answer
Alright, so here is how to actually do it. The feature is poorly documented, and appears to be mostly targeted towards native projects (like C++ or Swift).
Root project setup
Take a normal Gradle project with the Java plugin applied. I did a "gradle init" in an empty folder. Assume that in this project, you are depending on a library called `` that you later want to include as a source dependency:
// [root]/build.gradle
dependencies {
implementation 'org.example:my-maven-project:1.1'
}
Note that the version number defined here must match a Git tag in the repository. This is the code revision that will be checkout out.
Then in the settings file, we define a source dependency mapping for it:
// [root]/settings.gradle
rootProject.name = 'my-project'
includeBuild('plugins') // [1]
sourceControl {
gitRepository("https://github.com/jitpack/maven-simple") { // [2]
producesModule("org.example:my-maven-project") // [3]
plugins {
id "external-maven-build" // [4]
}
}
}
[1]: This includes a Gradle project called plugins that will be explained later.
[2]: This is just an arbitrary Maven project that I found, which was relatively simple. Substitute with the actual repository you have.
[3]: This is the name of the Maven module (the same as in the dependency block) that we are defining a source build for
[4]: This defines a custom settings plugin called external-maven-build that is defined in the plugins project, which will be explained later.
Plugins project structure
Inside the root project, we define a new Gradle project. Again, you can use gradle init to initialize it as a Groovy (or whatever you like) project. Delete all generated sources and tests.
// [root]/plugins/settings.gradle
// Empty, but used to mark this as a stand-alone project (and not part of a multi-build)
// [root]/plugins/build.gradle
plugins {
id 'groovy'
id 'java-gradle-plugin' // [1]
}
repositories {
gradlePluginPortal() // [2]
}
dependencies {
implementation "gradle.plugin.com.github.dkorotych.gradle.maven.exec:gradle-maven-exec-plugin:2.2.1" // [3]
}
gradlePlugin {
plugins {
"external-maven-build" { // [4]
id = "external-maven-build"
implementationClass = "org.example.ExternalMavenBuilder"
}
}
}
[1]: In this project, we are defining a new Gradle plugin. This is a standard way to do that.
[2]: To invoke Maven, I am using another 3rd party plugin, so we need to add the Gradle plugin portal as a repository.
[3]: This is the plugin used to invoke Maven. I am not too familiar with it, and I don't know how production ready it is. One thing I noticed is that it does not model inputs and outputs, so there are no built-in support for up-to-date checking. But this can be added retrospectively.
[4]: This defines the custom plugin. Notice that it has the same ID as used in the settings file in the root project.
Plugin implementation class
Now comes the fun stuff. I chose to do it in Groovy, but it can be done in any supported JVM languages of cause.
The plugin structure is just like any other Gradle plugin. One thing to note is that it is a Settings plugin, whereas you normally do Project plugins. This is needed as it we are basically defining a Gradle project at run-time, which needs to be done as part of the initialization phase.
// [root]/plugins/src/main/groovy/org/example/ExternalMavenBuilder.groovy
package org.example
import com.github.dkorotych.gradle.maven.exec.MavenExec
import org.gradle.api.Plugin
import org.gradle.api.artifacts.ConfigurablePublishArtifact
import org.gradle.api.initialization.Settings
class ExternalMavenBuilder implements Plugin<Settings> {
void apply(Settings settings) {
settings.with {
rootProject.name = 'my-maven-project' // [1]
gradle.rootProject {
group = "org.example" //[2]
pluginManager.apply("base") // [3]
pluginManager.apply("com.github.dkorotych.gradle-maven-exec") // [4]
def mavenBuild = tasks.register("mavenBuild", MavenExec) {
goals('clean', 'package') // [5]
}
artifacts.add("default", file("$projectDir/target/maven-simple-0.2-SNAPSHOT.jar")) { ConfigurablePublishArtifact a ->
a.builtBy(mavenBuild) // [6]
}
}
}
}
}
[1]: Must match the Maven module name
[2]: Must match the Maven module group
[3]: Defines tasks like "build" and "clean"
[4]: The 3rd party plugin that makes it more easy to invoke Maven
[5]: For options, see https://github.com/dkorotych/gradle-maven-exec-plugin
[6]: Adds the Maven output as an artifact in the "default" configuration
Be aware that it does not model transitive dependencies, and it is never up-to-date due to missing inputs and outputs.
This is as far as I got with a few hours of playing around with it. I think it can be generalized into a generic plugin published to the Gradle portal. But I think I have too much on my plate as it is already. If anyone would like to continue on from here, you have my blessing :)
Related
First of all, sorry for my poor english.
Goal
I want create multi project containing some custom libraries as subproject with gradle.
For centralized dependency version control, using buildSrc and setting versions (spring-boot, detekt, ktlint etc.)
my-core-project(root)
+buildSrc
+-src/main/kotlin
+--int-test-convention.gradle.kts
+--library-convention.gradle.kts
+library-A
+-src
+--main/kotlin
+--test/kotlin
+-build.gradle.kts
+library-B
+-src
+--main/kotlin
+--test/kotlin
+-build.gradle.kts
+build.gradle.kts
+setting.gradle.kts
buildSrc contains common tasks for libraries(integration test, detekt, etc.)
library-A and library-B are custom libraries based on spring boot.
There is no application module or any main method.
my goal is using method of library-A and/or library-B with another separated project with adding my-core-project to dependency.
Problem
./gradlew build created 3 jar files
my-core-project
+build/libs
+-my-core-project.jar
+library-A
+-build/libs
+--library-A.jar
+library-B
+-build/libs
+--library-B.jar
copied 3 jar files to libs directory under project which actually using these library,
tried adding dependency created jar
with implementation(files("libs/library-A.jar")), class and methods are resolved well.
but with implementation(files("libs/my-core-project.jar")),
class and methods are not unresolved.
when check my-core-project.jar, recognized that any information of sub projects contained.
Here is my setting.gradle.kts and build.gradle.kts of root directory.
# setting.gradle.kts
pluginManagement {
repositories {
mavenCentral()
gradlePluginPortal()
}
}
rootProject.name = "my-core-project"
include(
"library-A",
"library-B"
)
# build.gradle.kts
plugins {
id("java-library")
id("io.spring.dependency-management")
}
group = "com.demo"
version = "0.0.1-SNAPSHOT"
dependencies {
api(project(":library-A"))
api(project(":library-B"))
}
repositories {
mavenCentral()
}
Tried things
In my opinion, my-core-project.jar should be fatJar(uberJar),
so i added FatJar task like this
val fatJar = task("fatJar", type = Jar::class) {
archiveBaseName.set("${project.name}-fat")
from(configurations.runtimeClasspath.get().map { if (it.isDirectory) it else zipTree(it) })
with(tasks.jar.get() as CopySpec)
duplicatesStrategy = DuplicatesStrategy.EXCLUDE
}
tasks {
"build" {
dependsOn(fatJar)
}
}
but cannot resolve class and method,
additionally occurs version conflict with other dependency of projects using this package, due to library-A created as fatJar too.
Question
Is there a simple way packaging/bundling sub-modules into one jar file?
if there are tasks like this already in gradle, prefer to use that.
Modifying fatJar task like "add jar of submodules, not contained dependencies" can solve this problem?(even couldn't try completely newbie to gradle and kts.)
if so, can you show me how to modify task?
tried shadowJar already. that solved version-conflict problem with relocate option. but still couldn't resolve package in library-A
If structure has problem, is there a good practice/example for "bundle of library"?
thanks for reading.
TL;DR
If someone faced this problem, try set archive name shorter than current one.
For someone who faced same problem, sharing some informations.
as result, resolved this problem.(maybe even not problem)
current shadowJar configure is as following
tasks.named<ShadowJar>("shadowJar").configure {
archiveBaseName.set("shorten-name")
archiveClassifier.set("")
exclude("**/*.kotlin_metadata")
exclude("**/*.kotlin_builtins")
}
exclude kotlin_metadata, kotlin_builtins
set shorten name(original project name was 30 long characters)
I have no idea but shorten jar file name has no problem.
Interesting one is, upload in artifactory package with original(long) name worked well.
I don't know Gradle declaring dependency with files has length constraints.
implementation(files("path/to/package"))
And now it works well with original name with local jar package file.
i'm currently writing a small plugin but i'm stuck when i want to get a list of all dependencies that are used.
what i'm doing
inside the plugin i create a new configuration
def config = project.configurations.create(sourceSet.getTaskName('foo', 'bar'))
in the build.gradle that uses the plugin i add some dependencies to this configuration
dependencies {
fooTestBar(project(':module'))
}
and in module/build.gradle i have
plugins {
id 'java-library'
}
dependencies {
implementation('org.apache.commons:commons-collections4:4.4')
api('org.springframework:spring-context:5.2.11.RELEASE')
}
when i now do the following in the plugin
List<ResolvedArtifact> = config.resolvedConfiguration.firstLevelModuleDependencies.allModuleArtifacts.flatten()
i get the artifacts from both declarations in :module, but what i'm interested in is only the api dependency, means the one that is also used when compiling the project
it looks like the entire configurations is treated as a runtime configuration, so i have all artifacts including the transitive ones from both declarations, instead of only the api one including the transitive ones from api
until now i was not able to find any way to see if a resolved dependency / artifact is of type api which i do not want to have in my result list
i had to add the attribute for the usage
config.attributes {
attribute( Usage.USAGE_ATTRIBUTE, objects.named( Usage, Usage.JAVA_API ) )
}
https://docs.gradle.org/current/userguide/variant_model.html
https://docs.gradle.org/current/userguide/variant_attributes.html
thanks Chris Doré on https://discuss.gradle.org/t/custom-configuration-and-resolving-only-compile-dependencies/38891
We have a tool that runs from the command line. One of the commands is -version.
Before we converted to the nebula release plugin, the version was in the gradle.properties file, and as part of the build we copied it from there to a src/main/resources/version.txt file, that was later read by the tool to output the version.
But now the version is never in a file that's checked into git. Instead, it is only known during the nebula release process.
We want to obtain that version during the nebula release process and inject it into the jar that nebula is about to publish. For example, it could be added to the manifest.
We've tried to figure out how to do this, but don't see any examples online, and nothing about it in the documentation.
Simply create a task that caches the version that is dynamically inferred by Nebula.
Since you originally copied/created src/main/resources/version.txt, we'll use that that model our task.
Assuming a simple/standard Java project, using the Kotlin DSL:
val cacheNebulaVersion by tasks.registering {
mustRunAfter(tasks.named("release"))
doLast {
val sourceSets = project.extensions.getByName("sourceSets") as SourceSetContainer
sourceSets.getByName(SourceSet.MAIN_SOURCE_SET_NAME).output.resourcesDir?.let {
// If there are not existing resources in your project then you must create
// the resources dir otherwise a FileNotFoundException will be thrown.
if (!it.exists()) {
it.mkdirs()
}
File(it, "version.txt").printWriter().use { out ->
out.println(project.version)
}
}
}
}
When I invoke ./gradlew clean build snapshot cacheNebulaVersion, the version produced by Nebula is cached/created at src/main/resources/version.txt in the build output. The task above does not bundle it with the jar.
Hopefully that gives you an idea what to do.
I have a custom gradle.kts script I am building that will do our maven publishing for all of our various modules to our sonatype repository, but encountering a strange error. Here are the contents of my maven-deploy.gradle.kts file:
plugins {
`maven-publish`
signing
}
publishing {
//expression 'publishing' cannot be invoked as a function.
//The function invoke() is not found
}
I can run tasks and whatnot within the maven-deploy.gradle.kts file fine, but trying to use the publishing function from the gradle documentation is proving to be impossible. Any ideas? I'm using gradle version 4.10.3 (I need Android support). The maven-deploy.gradle.kts file is in buildSrc/src/main/kotlin and is being added by id("maven-deploy") in my main project's build.gradle.kts file.
This happens because Gradle only imports the generated type-safe accessors for Gradle Kotlin DSL into the main build script, but not into script plugins:
Only the main project build scripts have type-safe model accessors. Initialization scripts, settings scripts, script plugins (precompiled or otherwise) do not. These limitations will be removed in a future Gradle release.
See Understanding when type-safe model accessors are available
In the script you mentioned, you can access the publishing extension dynamically, for example, using configure<PublishingExtension> { ... }:
import org.gradle.api.publish.PublishingExtension
plugins {
`maven-publish`
signing
}
configure<PublishingExtension> {
// ...
}
This is described here: Project extensions and conventions
UPD: Gradle 5.3 RC1 seems to add a possibility to use the generated extensions in script plugins.
I've been creating my own gradle plugin for the last few days (partly for learning, and partly to clean up some gradle build scripts I have laying around), however I've run into a problem that I can't figure out how to fix. In my plugin jar there is an interface named me.alxandr.gradle.bintray.maven.MavenPackage, yet when I try to import it I get an error saying that it can't be found. This is really weird, because the plugin is obviously running (I'm seeing output from it, and it's tasks are registering).
Currently I've done a hack to get around this as following:
project.ext.MavenPackage = MavenPackage
This just makes MavenPackage an available name in the buildscript, which works, but I loose any editor support for it cause it's entirely dynamic. Is there any way I can (from my plugin) get the buildscript to import a package when it's applied? Like how MavenPublication is in scope without me needing to import it. If not, why can I not import classes from my plugin package?
The entire source code is available at https://github.com/Alxandr/gradle-utils. You can see an attempted here: https://github.com/Alxandr/gradle-utils/blob/master/gradle/publish.gradle#L1. The current code works as is (with the hack explained above), but I'm just looking for a better way to do this.
In order to use a class from your plugin in your Gradle script, you must add the plugin JAR to the buildscript classpath.
Here's how to do just that:
buildscript {
repositories { /* where to get your plugin jar from, e.g. mavenLocal() */ }
dependencies {
classpath 'some_group:me.alxandr.plugin:1.0.0'
}
}
import me.alxandr.gradle.bintray.maven.MavenPackage
You can find more information in the Gradle User Guide about using external dependencies in your build script