Setting and clearing the zero flag in x86 - performance

What's the most efficient way to set and also to clear the zero flag (ZF) in x86-64?
Methods that work without the need for a register with a known value, or without any free registers at all are preferred, but if a better method is available when those or other assumptions are true it is also worth mentioning.

ZF=0
This is harder. cmp between any two regs known to be not equal. Or cmp reg,imm with any value some reg couldn't possibly have. e.g. cmp reg,1 with any known-zero register.
In general test reg,reg is good with any known-non-0 register value, e.g. a pointer.
test rsp, rsp is probably a good choice, or even test esp, esp to save a byte will work except if your stack is in the unusual location of spanning a 4G boundary.
I don't see a way to create ZF=0 in one instruction without a false dependency on some input reg. xor eax,eax / inc eax or dec will do the trick in 2 uops if you don't mind destroying a register, breaking false dependencies. (not doesn't set FLAGS, and neg will just do 0-0 = 0.)
or eax, -1 doesn't need any pre-condition for the register value. (False dependency, but not a true dependency so you can pick any register even if it might be zero.) It doesn't have to be -1, it's not gaining you anything so if you can make it something useful so much the better.
or eax,-1 FLAG results: ZF=0 PF=1 SF=1 CF=0 OF=0 (AF=undefined).
If you need to do this in a loop, you can obviously set up for it outside the loop, if you can dedicate a register to being non-zero for use with test.
ZF=1
Least destructive: cmp eax,eax - but has a false dependency (I assume) and needs a back-end uop: not a zeroing idiom. RSP doesn't usually change much so cmp esp, esp could be a good choice. (Unless that forces a stack-sync uop).
Most efficient: xor-zeroing (like xor eax,eax using any free register) is definitely the most efficient way on SnB-family (same cost as a 2-byte nop, or 3-byte if it needs a REX because you want to zero one of r8d..r15d): 1 front-end uop, zero back-end uops on SnB-family, and the FLAGS result is ready in the same cycle it issues. (Relevant only in case the front-end was stalled, or some other case where a uop depending on it issues in the same cycle and there aren't any older uops in the RS with ready inputs, otherwise such uops would have priority for whichever execution port.)
Flag results: ZF=1 PF=1 SF=0 CF=0 OF=0 (AF=undefined). (Or use sub eax,eax to get well-defined AF=0. In practice modern CPUs pick AF=0 for xor-zeroing, too, so they can decode both zeroing idioms the same way. Silvermont only recognizes 32-bit operand-size xor as a zeroing idiom, not sub.)
xor-zero is very cheap on all other uarches as well, of course: no input dependencies, and doesn't need any pre-existing register value. (And thus doesn't contribute to P6-family register-read stalls). So it will be at worst tied with anything else you could do on any other uarch (where it does require an execution unit.)
(On early P6-family, before Pentium M, xor-zeroing does not break dependencies; it only triggers the special al=eax state that avoids partial-register stuff. But none of those CPUs are x86-64, all 32-bit only.)
It's pretty common to want a zeroed register for something anyway, e.g. as a sub destination for 0 - x to copy-and-negate, so take advantage of it by putting the xor-zeroing where you need it to also create a useful FLAG condition.
Interesting but probably not useful: test al, 0 is 2 bytes long. But so is cmp esp,esp.
As #prl suggested, cmp same,same with any register will work without disturbing a value. I suspect this is not special-cased as dependency breaking the way sub same,same is on some CPUs, so pick a "cold" register. Again 2 or 3 bytes, 1 uop. It can micro-fuse with a JCC, but that would be dumb (unless the JCC is also a branch target from some other condition?)
Flag results: same as xor-zeroing.
Downsides:
(probably) false dependency
on P6-family can contribute to a register-read stall, so pick a cold register you're already reading in nearby instructions.
needs a back-end execution unit on SnB-family
Just for fun, other as-cheap alternatives include test al, 0. 2 bytes for AL, 3 or 4 bytes for any other 8-bit register. (REX) + opcode + modrm + imm8. The original register value doesn't matter because an imm8 of zero guarantees that reg & 0 = 0.
If you happen to have a 1 or -1 in a register you can destroy, 32-bit mode inc or dec would set ZF in only 1 byte. But in x86-64 that's at least 2 bytes. Nothing comes to mind for a 1-byte instruction in 64-bit mode that's actually efficient and sets FLAGS.
ZF=!CF
sbb same,same can set ZF=!CF (leaving CF unmodified), and setting the reg to 0 (CF=0) or -1 (CF=1). On AMD since Bulldozer (BD-family and Zen-family), this has no dependency on the GP register, only CF. But on other uarches it's not special cased and there is a false dep on the reg. And it's 2 uops on Intel before Broadwell.
ZF=!bool(integer register)
To set ZF=!integer_reg, obviously the normal test reg,reg is your best bet. (Better than and reg,reg or or reg,reg, unless you're intentionally rewriting the register to avoid P6 register-read stalls.)
ZF=1 if the register value is zero, so it's like C's logical inverse operator.
ZF=!ZF
Perhaps setz al / test al, al. No single instruction: I don't think any read ZF and write FLAGS. setz materializes ZF in a register, then test is just ZF = !reg.
Other FLAGS conditions:
How to read and write x86 flags registers directly?
One instruction to clear PF (Parity Flag) -- get odd number of bits in result register (not possible without pre-existing register values for test or cmp).
How can I set or clear overflow flag in x86 assembly? (e.g. for the start of an ADOX chain.)
pushf/pop rax is not terrible, but writing flags with popf is very slow (e.g. 1/20c throughput on SKL). It's microcoded because flags like IF also live in EFLAGS, and there isn't a condition-codes-only version or a special fast-path for user-space. (Or maybe 20c is the fast path.)
lahf (FLAGS->AH) / sahf (AH->FLAGS) can be useful but miss OF.
CF has clc/stc/cmc instructions. (clc is as efficient as xor-zeroing on SnB-family.)

The least intrusive way to manipulate any(i) of the lower 8 bits of Flags is to use the classic LAHF/SAHF instructions which bring them to/from AH, on which any bit operation can be applied.
(i) Just bits 7 (SF), 6 (ZF), 4 (AF), 2 (PF), and 0 (CF)
Turning off ZF
LAHF ; Load lower 8 bit from Flags into AH
AND AH,010111111b ; Clear bit for ZF
SAHF ; Store AH back to Flags
Turning on ZF
LAHF ; Load AH from FLAGS
OR AH,001000000b ; Set bit for ZF
SAHF ; Store AH back to Flags
Of course any CMP (E)AX,(E)AX will set ZF faster and with less code; the point of this is to leave other FLAGS unmodified, as in How to read and write x86 flags registers directly? and how to change flags manually (in assembly code) for 8086?
CAVEAT for early AMD64 - LAHF in long mode is an extension
Some very early x86-64 CPU's, most notably all
AMD Athlon 64, Opteron and Turion 64 before revision D (March 2005) and
Intel before Pentium 4 stepping G1* (December 2005)
As that instruction was originally removed from the AMD64 instruction subset, but later reintroduced. Luckily that happened before x86-64 became a common sight, so only a few, early-on high-end CPUs are affected and even less, surviving today. More so as these are the CPUs that are not able to run Windows 10, or any 64-bit Windows before Windows 10 (see this answer at SuperUser.SE).
If you really expect that someone might try to run that software on a more than 17 year old high-end CPU, it can be checked for by executing CPUID with EAX=80000001h and test for 2^0=1.

Assuming you don’t need to preserve the values of the other flags,
cmp eax, eax

Related

Are some general purpose registers faster than others?

In x86-64, will certain instructions execute faster if some general purpose registers are preferred over others?
For instance, would mov eax, ecx execute faster than mov r8d, ecx? I can imagine that the latter would need a REX prefix which would make the instruction fetch slower?
What about using rax instead of rcx? What about add or xor? Other operations? Smaller registers like r15b vs al? al vs ah?
AMD vs Intel? Newer processors? Older processors? Combinations of instructions?
Clarification: Should certain general purpose registers be preferred over others, and which ones are they?
In general, architectural registers are all equal, and renamed onto a large array of physical registers.
(Except partial registers can be slower, especially high-byte AH/BH/CH/DH which are slow to read after writing the full register, on Haswell and later. See How exactly do partial registers on Haswell/Skylake perform? Writing AL seems to have a false dependency on RAX, and AH is inconsistent and also Why doesn't GCC use partial registers? for problems when writing 8-bit and 16-bit registers). The rest of this answer is just going to consider 32/64-bit operand-size.)
But some instruction require specific registers, like legacy variable-count shifts (without BMI2 shrx etc) require the count in CL. Division requires the dividend in EDX:EAX (or RDX:RAX for the slower 64-bit version).
Using a call-preserved register like RBX means your function has to spend extra instructions saving/restoring it.
But of course there are perf differences if you need more instructions. So lets assume all else is equal, and just talk about the uops, latency, and code-size of a single instruction just by changing which register is used for one of its operands. TL:DR: the only perf difference is due to instruction-encoding restrictions / differences. Sometimes a different register will allow / require (or get the assembler to pick) a different encoding, which will often be smaller / larger as a special case, and sometimes even executes differently.
Generally smaller code is faster, and packs better in the uop cache and I-cache, so unless you've analyzed a specific case and found a problem, favour the smaller encoding. Often that means keeping a byte value in AL so you can use those special-case instructions, and avoiding RBP / R13 for pointers.
Special cases where a specific encoding is extra slow, not just size
LEA with RBP or R13 as a base can be slower on Intel if the addressing mode didn't already have a +displacement constant.
e.g. lea eax, [rbp + 12] is encodeable as-written, and is just as fast as lea eax, [rcx + 12].
But lea eax, [rbp + rcx*4] can only be encoded in machine code as lea eax, [rbp + rcx*4 + 0] (because of addressing mode escape-code stuff), which is a 3-component LEA, and thus slower on Intel (3 cycle latency on Sandybridge-family instead of 1 cycle, see https://agner.org/optimize/ instruction tables and microarch PDF). On AMD, having a scaled-index would already make it a slow-LEA even with lea eax, [rdx + rcx*4]
Outside of LEA, using RBP / R13 as the base in any addressing mode always requires a disp8/32 byte or dword, but I don't think the actual AGUs are slower for a 3-component addressing mode. So it's just a code-size effect.
Other cases include Which Intel microarchitecture introduced the ADC reg,0 single-uop special case? where the short-form 2-byte encoding for adc al, imm8 is 2 uops even on modern uarches like Skylake, where adc bl, imm8 is 1 uop.
So not only does the adc reg,0 special case not work for adc al,0 on Sandybridge through Haswell, Broadwell and newer forgot (or chose not to) optimize how that encoding decodes to uops. (Of course you could manually encode adc al,0 using the 3-byte Mod/RM encoding, but assemblers will always pick the shortest encoding so adc al,0 will assemble to the short form by default.) Only a problem with byte registers; adc eax,0 will use the opcode ModRM imm8 3-byte encoding, not 5-byte opcode imm32.
For other cases of op al,imm8, the only difference is code-size, which only indirectly matters for performance. (Because of decoding, uop-cache packing, and I-cache misses).
See Tips for golfing in x86/x64 machine code for more about special cases of code-size, like xchg eax, ecx being 1-byte vs. xchg edx, ecx being 2 bytes.
add rsp, 8 can need an extra stack-sync uop if there hasn't been an explicit use of RSP or ESP since the last push/pop/call/ret (along the path of execution of course, not in the static code layout). (What is the stack engine in the Sandybridge microarchitecture?). This is why compilers like clang use a dummy push or pop to reserve / free a single stack slot: Why does this function push RAX to the stack as the first operation?
LEA will be slower with EBP, RBP, or R13 as the base (PDF warning, page 3-22). But generally the answer is No.
Taking a step back, it's important to realize that since the advent of register renaming that architectural registers don't deal with actual, physical registers on most micro-architectures. For example, each Cascade Lake core has a register file of 180 integer and 168 FP registers.
You have stuffed too many questions altogether, however, if I understood the question well, you are confusing the processor architecture with the small but fast Register file, which fills in the speed gap between the processor and memory technologies. The register file is small enough that it can only support one instruction at a time, i.e. the current instruction, and fast enough that it can almost catch up with the processor speed.
I would like to build a short background, the naming conventions of these registers serves two purposes: one, it makes the older versions of the x86 ISA implementations compatible up till now, and two, every name of these registers has a special purpose to it besides its general purpose use. For example, the ECX register is used as a counter to implement loops i.e. instructions like JECXZ and LOOP uses ECX register exclusively. Though you need to watch out for some flags that you would not want to lose.
And now the answer to your question stems from the second purpose. So some registers would seem to be faster because these special registers are hardcoded into the processor and can be accessed much quicker, however, the difference should not be much.
And the second thing that you might know, not all instructions are of the same complexity, especially in x86, the opcode of instructions can be from 1-3 bytes and as more and more functionality is added to the instruction in terms of, prefixes, addressing modes, etc. these instructions start to become slower, So it is not the case that some registers are slower than other, it is just that some registers are encoded into the instruction and therefore those instructions run faster with that combination of register. And if otherwise used, it would seem slower. I hope that helps. Thanks

Which is generally faster to test for zero in x86 ASM: "TEST EAX, EAX" versus "TEST AL, AL"?

Which is generally faster to test the byte in AL for zero / non-zero?
TEST EAX, EAX
TEST AL, AL
Assume a previous "MOVZX EAX, BYTE PTR [ESP+4]" instruction loaded a byte parameter with zero-extension to the remainder of EAX, preventing the combine-value penalty that I already know about.
So AL=EAX and there are no partial-register penalties for reading EAX.
Intuitively just examining AL might let you think it's faster, but I'm betting there are more penalty issues to consider for byte access of a >32-bit register.
Any info/details appreciated, thanks!
Code-size is equal, and so is performance on all x86 CPUs AFAIK.
Intel CPUs (with partial-register renaming) definitely don't have a penalty for reading AL after writing EAX. Other CPUs also have no penalty for reading low-byte registers.
Reading AH would have a penalty on Intel CPUs, like some extra latency. (How exactly do partial registers on Haswell/Skylake perform? Writing AL seems to have a false dependency on RAX, and AH is inconsistent)
In general 32-bit operand-size and 8-bit operand size (with low-8 not high-8) are equal speed except for the false-dependencies or later partial-register reading penalties of writing an 8-bit register. Since TEST only reads registers, this can't be a problem. Even add al, bl is fine: the instruction already had an input dependency on both registers, and on Sandybridge-family a RMW to the low byte of a register doesn't rename it separately. (Haswell and later don't rename low-byte registers separately anyway).
Pick whichever operand-size you like. 8-bit and 32-bit are basically equal. The choice is just a matter of human readability. If you're going to work with the value as a 32-bit integer later, then go 32-bit. If it's logically still an 8-bit value and you were only using movzx as the x86 equivalent of ARM ldrb or MIPS lbu, then using 8-bit makes sense.
There are code-size advantages to instructions like cmp al, imm which can use the no-modrm short-form encoding. cmp al, 0 is still worse than test al,al on some old CPUs (Core 2), where cmp/jcc macro-fusion is less flexible than test/jcc macro-fusion. (Test whether a register is zero with CMP reg,0 vs OR reg,reg?)
There is one difference between these instructions: test al,al sets SF according to the high bit of AL (which can be non-zero). test eax,eax will always clear SF. If you only care about ZF then that makes no difference, but if you have a use for the high bit in SF for a later branch or cmovcc/setcc then you can avoid doing a 2nd test.
Other ways to test a byte in memory:
If you're consuming the flag result with setcc or cmovcc, not a jcc branch, then macro-fusion doesn't matter in the discussion below.
If you also need the actual value in a register later, movzx/test/jcc is almost certainly best. Otherwise you can consider a memory-destination compare.
cmp [mem], immediate can micro-fuse into a load+cmp uop on Intel, as long as the addressing mode is not RIP-relative. (On Sandybridge-family, indexed addressing modes will un-laminate even on Haswell and later: See Micro fusion and addressing modes). Agner Fog doesn't mention whether AMD has this limitation for fusing cmp/jcc with a memory operand.
;;; no downside for setcc or cmovcc, only with JCC on Intel
;;; unknown on AMD
cmp byte [esp+4], 0 ; micro-fuses into load+cmp with this addressing mode
jnz ... ; breaks macro-fusion on SnB-family
I don't have an AMD CPU to test whether Ryzen or any other AMD still fuses cmp/jcc when the cmp is mem, immediate. Modern AMD CPUs do in general do cmp/jcc and test/jcc fusion. (But not add/sub/and/jcc fusion like SnB-family).
cmp mem,imm / jcc (vs. movzx/test+jcc):
smaller code-size in bytes
same number of front-end / fused-domain uops (2) on mainstream Intel. This would be 3 front-end uops if micro-fusion of the cmp+load wasn't possible, e.g. with a RIP-relative addressing mode + immediate. Or on Sandybridge-family with an indexed addressing mode, it would unlaminate to 3 uops after decode but before issuing into the back-end.
Advantage: this is still 2 on Silvermont/Goldmont / KNL or very old CPUs without macro-fusion. The main advantage of movzx/test/jcc over this is macro-fusion, so it falls behind on CPUs where that doesn't happen.
3 back-end uops (unfused domain = execution ports and space in the scheduler aka RS) because cmp-immediate can't macro-fuse with a JCC on Intel Sandybridge-family CPUs (tested on Skylake). The uops are load, cmp, and a separate branch uop. (vs. 2 for movzx / test+jcc). Back-end uops usually aren't a bottleneck directly, but if the load isn't ready for a while it takes up more space in the RS, limiting how much further past this out-of-order execution can see.
cmp [mem], reg / jcc can macro + micro-fuse into a single compare+branch uop so it's excellent. If you need a zeroed register for anything later in your function, do xor-zero it first and use it for a single-uop compare+branch on memory.
movzx eax, [esp+4] ; 1 uop (load-port only on Intel and Ryzen)
test al,al ; fuses with jcc
jnz ... ; 1 uop
This is still 2 uops for the front-end but only 2 for the back-end as well. The test/jcc macro-fuse together. It costs more code-size, though.
If you aren't branching but instead using the FLAGS result for cmovcc or setcc, using cmp mem, imm has no downside. It can micro-fuse as long as you don't use a RIP-relative addressing mode (which always blocks micro-fusion when there's also an immediate), or an indexed addressing mode.

Are scaled-index addressing modes a good idea?

Consider the following code:
void foo(int* __restrict__ a)
{
int i; int val = 0;
for (i = 0; i < 100; i++) {
val = 2 * i;
a[i] = val;
}
}
This complies (with maximum optimization but no unrolling or vectorization) into...
GCC 7.2:
foo(int*):
xor eax, eax
.L2:
mov DWORD PTR [rdi], eax
add eax, 2
add rdi, 4
cmp eax, 200
jne .L2
rep ret
clang 5.0:
foo(int*): # #foo(int*)
xor eax, eax
.LBB0_1: # =>This Inner Loop Header: Depth=1
mov dword ptr [rdi + 2*rax], eax
add rax, 2
cmp rax, 200
jne .LBB0_1
ret
What are the pros and cons of GCC's vs clang's approach? i.e. an extra variable incremented separately, vs multiplying via a more complex addressing mode?
Notes:
This question also relates to this one with about the same code, but with float's rather than int's.
Yes, take advantage of the power of x86 addressing modes to save uops, in cases where an index doesn't unlaminate into more extra uops than it would cost to do pointer increments.
(In many cases unrolling and using pointer increments is a win because of unlamination on Intel Sandybridge-family, but if you're not unrolling or if you're only using mov loads instead of folding memory operands into ALU ops for micro-fusion, then indexed addressing modes are often break even on some CPUs and a win on others.)
It's essential to read and understand Micro fusion and addressing modes if you want to make optimal choices here. (And note that IACA gets it wrong, and doesn't simulate Haswell and later keeping some uops micro-fused, so you can't even just check your work by having it do static analysis for you.)
Indexed addressing modes are generally cheap. At worst they cost one extra uop for the front-end (on Intel SnB-family CPUs in some situations), and/or prevent a store-address uop from using port7 (which only supports base + displacement addressing modes). See Agner Fog's microarch pdf, and also David Kanter's Haswell write-up, for more about the store-AGU on port7 which Intel added in Haswell.
On Haswell+, if you need your loop to sustain more than 2 memory ops per clock, then avoid indexed stores.
At best they're free other than the code-size cost of the extra byte in the machine-code encoding. (Having an index register requires a SIB (Scale Index Base) byte in the encoding).
More often the only penalty is the 1 extra cycle of load-use latency vs. a simple [base + 0-2047] addressing mode, on Intel Sandybridge-family CPUs.
It's usually only worth using an extra instruction to avoid an indexed addressing mode if you're going to use that addressing mode in multiple instructions. (e.g. load / modify / store).
Scaling the index is free (on modern CPUs at least) if you're already using a 2-register addressing mode. For lea, Agner Fog's table lists AMD Ryzen as having 2c latency and only 2 per clock throughput for lea with scaled-index addressing modes (or 3-component), otherwise 1c latency and 0.25c throughput. e.g. lea rax, [rcx + rdx] is faster than lea rax, [rcx + 2*rdx], but not by enough to be worth using extra instructions instead.) Ryzen also doesn't like a 32-bit destination in 64-bit mode, for some reason. But the worst-case LEA is still not bad at all. And anyway, mostly unrelated to address-mode choice for loads, because most CPUs (other than in-order Atom) run LEA on the ALUs, not the AGUs used for actual loads/stores.
The main question is between one-register unscaled (so it can be a "base" register in the machine-code encoding: [base + idx*scale + disp]) or two-register. Note that for Intel's micro-fusion limitations, [disp32 + idx*scale] (e.g. indexing a static array) is an indexed addressing mode.
Neither function is totally optimal (even without considering unrolling or vectorization), but clang's looks very close.
The only thing clang could do better is save 2 bytes of code size by avoiding the REX prefixes with add eax, 2 and cmp eax, 200. It promoted all the operands to 64-bit because it's using them with pointers and I guess proved that the C loop doesn't need them to wrap, so in asm it uses 64-bit everywhere. This is pointless; 32-bit operations are always at least as fast as 64, and implicit zero-extension is free. But this only costs 2 bytes of code-size, and costs no performance other than indirect front-end effects from that.
You've constructed your loop so the compiler needs to keep a specific value in registers and can't totally transform the problem into just a pointer-increment + compare against an end pointer (which compilers often do when they don't need the loop variable for anything except array indexing).
You also can't transform to counting a negative index up towards zero (which compilers never do, but reduces the loop overhead to a total of 1 macro-fused add + branch uop on Intel CPUs (which can fuse add + jcc, while AMD can only fuse test or cmp / jcc).
Clang has done a good job noticing that it can use 2*var as the array index (in bytes). This is a good optimization for tune=generic. The indexed store will un-laminate on Intel Sandybridge and Ivybridge, but stay micro-fused on Haswell and later. (And on other CPUs, like Nehalem, Silvermont, Ryzen, Jaguar, or whatever, there's no disadvantage.)
gcc's loop has 1 extra uop in the loop. It can still in theory run at 1 store per clock on Core2 / Nehalem, but it's right up against the 4 uops per clock limit. (And actually, Core2 can't macro-fuse the cmp/jcc in 64-bit mode, so it bottlenecks on the front-end).
Indexed addressing (in loads and stores, lea is different still) has some trade-offs, for example
On many µarchs, instructions that use indexed addressing have a slightly longer latency than instruction that don't. But usually throughput is a more important consideration.
On Netburst, stores with a SIB byte generate an extra µop, and therefore may cost throughput as well. The SIB byte causes an extra µop regardless of whether you use it for indexes addressing or not, but indexed addressing always costs the extra µop. It doesn't apply to loads.
On Haswell/Broadwell (and still in Skylake/Kabylake), stores with indexed addressing cannot use port 7 for address generation, instead one of the more general address generation ports will be used, reducing the throughput available for loads.
So for loads it's usually good (or not bad) to use indexed addressing if it saves an add somewhere, unless they are part of a chain of dependent loads. For stores it's more dangerous to use indexed addressing. In the example code it shouldn't make a large difference. Saving the add is not really relevant, ALU instructions wouldn't be the bottleneck. The address generation happening in ports 2 or 3 doesn't matter either since there are no loads.

INC instruction vs ADD 1: Does it matter?

From Ira Baxter answer on, Why do the INC and DEC instructions not affect the Carry Flag (CF)?
Mostly, I stay away from INC and DEC now, because they do partial condition code updates, and this can cause funny stalls in the pipeline, and ADD/SUB don't. So where it doesn't matter (most places), I use ADD/SUB to avoid the stalls. I use INC/DEC only when keeping the code small matters, e.g., fitting in a cache line where the size of one or two instructions makes enough difference to matter. This is probably pointless nano[literally!]-optimization, but I'm pretty old-school in my coding habits.
And I would like to ask why it can cause stalls in the pipeline while add doesn't? After all, both ADD and INC updates flag registers. The only difference is that INC doesn't update CF. But why it matters?
Update: the Efficiency cores on Alder Lake are Gracemont, and run inc reg as a single uop, but at only 1/clock, vs. 4/clock for add reg, 1 (https://uops.info/). This may be a false dependency on FLAGS like P4 had; the uops.info tests didn't try adding a dep-breaking instruction. Other than the TL:DR, I haven't updated other parts of this answer.
TL:DR/advice for modern CPUs: Probably use add; Intel Alder Lake's E-cores are relevant for "generic" tuning and seem to run inc slowly.
Other than Alder Lake and earlier Silvermont-family, use inc except with a memory destination; that's fine on mainstream Intel or any AMD. (e.g. like gcc -mtune=core2, -mtune=haswell, or -mtune=znver1). inc mem costs an extra uop vs. add on Intel P6 / SnB-family; the load can't micro-fuse.
If you care about Silvermont-family (including KNL in Xeon Phi, and some netbooks, chromebooks, and NAS servers), probably avoid inc. add 1 only costs 1 extra byte in 64-bit code, or 2 in 32-bit code. But it's not a performance disaster (just locally 1 extra ALU port used, not creating false dependencies or big stalls), so if you don't care much about SMont then don't worry about it.
Writing CF instead of leaving it unmodified can potentially be useful with other surrounding code that might benefit from CF dep-breaking, e.g. shifts. See below.
If you want to inc/dec without touching any flags, lea eax, [rax+1] runs efficiently and has the same code-size as add eax, 1. (Usually on fewer possible execution ports than add/inc, though, so add/inc are better when destroying FLAGS is not a problem. https://agner.org/optimize/)
On modern CPUs, add is never slower than inc (except for indirect code-size / decode effects), but usually it's not faster either, so you should prefer inc for code-size reasons. Especially if this choice is repeated many times in the same binary (e.g. if you are a compiler-writer).
inc saves 1 byte (64-bit mode), or 2 bytes (opcodes 0x40..F inc r32/dec r32 short form in 32-bit mode, re-purposed as the REX prefix for x86-64). This makes a small percentage difference in total code size. This helps instruction-cache hit rates, iTLB hit rate, and number of pages that have to be loaded from disk.
Advantages of inc:
code-size directly
Not using an immediate can have uop-cache effects on Sandybridge-family, which could offset the better micro-fusion of add. (See Agner Fog's table 9.1 in the Sandybridge section of his microarch guide.) Perf counters can easily measure issue-stage uops, but it's harder to measure how things pack into the uop cache and uop-cache read bandwidth effects.
Leaving CF unmodified is an advantage in some cases, on CPUs where you can read CF after inc without a stall. (Not on Nehalem and earlier.)
There is one exception among modern CPUs: Silvermont/Goldmont/Knight's Landing decodes inc/dec efficiently as 1 uop, but expands to 2 in the allocate/rename (aka issue) stage. The extra uop merges partial flags. inc throughput is only 1 per clock, vs. 0.5c (or 0.33c Goldmont) for independent add r32, imm8 because of the dep chain created by the flag-merging uops.
Unlike P4, the register result doesn't have a false-dep on flags (see below), so out-of-order execution takes the flag-merging off the latency critical path when nothing uses the flag result. (But the OOO window is much smaller than mainstream CPUs like Haswell or Ryzen.) Running inc as 2 separate uops is probably a win for Silvermont in most cases; most x86 instructions write all the flags without reading them, breaking these flag dependency chains.
SMont/KNL has a queue between decode and allocate/rename (See Intel's optimization manual, figure 16-2) so expanding to 2 uops during issue can fill bubbles from decode stalls (on instructions like one-operand mul, or pshufb, which produce more than 1 uop from the decoder and cause a 3-7 cycle stall for microcode). Or on Silvermont, just an instruction with more than 3 prefixes (including escape bytes and mandatory prefixes), e.g. REX + any SSSE3 or SSE4 instruction. But note that there is a ~28 uop loop buffer, so small loops don't suffer from these decode stalls.
inc/dec aren't the only instructions that decode as 1 but issue as 2: push/pop, call/ret, and lea with 3 components do this too. So do KNL's AVX512 gather instructions. Source: Intel's optimization manual, 17.1.2 Out-of-Order Engine (KNL). It's only a small throughput penalty (and sometimes not even that if anything else is a bigger bottleneck), so it's generally fine to still use inc for "generic" tuning.
Intel's optimization manual still recommends add 1 over inc in general, to avoid risks of partial-flag stalls. But since Intel's compiler doesn't do that by default, it's not too likely that future CPUs will make inc slow in all cases, like P4 did.
Clang 5.0 and Intel's ICC 17 (on Godbolt) do use inc when optimizing for speed (-O3), not just for size. -mtune=pentium4 makes them avoid inc/dec, but the default -mtune=generic doesn't put much weight on P4.
ICC17 -xMIC-AVX512 (equivalent to gcc's -march=knl) does avoid inc, which is probably a good bet in general for Silvermont / KNL. But it's not usually a performance disaster to use inc, so it's probably still appropriate for "generic" tuning to use inc/dec in most code, especially when the flag result isn't part of the critical path.
Other than Silvermont, this is mostly-stale optimization advice left over from Pentium4. On modern CPUs, there's only a problem if you actually read a flag that wasn't written by the last insn that wrote any flags. e.g. in BigInteger adc loops. (And in that case, you need to preserve CF so using add would break your code.)
add writes all the condition-flag bits in the EFLAGS register. Register-renaming makes write-only easy for out-of-order execution: see write-after-write and write-after-read hazards. add eax, 1 and add ecx, 1 can execute in parallel because they are fully independent of each other. (Even Pentium4 renames the condition flag bits separate from the rest of EFLAGS, since even add leaves the interrupts-enabled and many other bits unmodified.)
On P4, inc and dec depend on the previous value of the all the flags, so they can't execute in parallel with each other or preceding flag-setting instructions. (e.g. add eax, [mem] / inc ecx makes the inc wait until after the add, even if the add's load misses in cache.) This is called a false dependency. Partial-flag writes work by reading the old value of the flags, updating the bits other than CF, then writing the full flags.
All other out-of-order x86 CPUs (including AMD's), rename different parts of flags separately, so internally they do a write-only update to all the flags except CF. (source: Agner Fog's microarchitecture guide). Only a few instructions, like adc or cmc, truly read and then write flags. But also shl r, cl (see below).
Cases where add dest, 1 is preferable to inc dest, at least for Intel P6/SnB uarch families:
Memory-destination: add [rdi], 1 can micro-fuse the store and the load+add on Intel Core2 and SnB-family, so it's 2 fused-domain uops / 4 unfused-domain uops.
inc [rdi] can only micro-fuse the store, so it's 3F / 4U.
According to Agner Fog's tables, AMD and Silvermont run memory-dest inc and add the same, as a single macro-op / uop.
But beware of uop-cache effects with add [label], 1 which needs a 32-bit address and an 8-bit immediate for the same uop.
Before a variable-count shift/rotate to break the dependency on flags and avoid partial-flag merging: shl reg, cl has an input dependency on the flags, because of unfortunate CISC history: it has to leave them unmodified if the shift count is 0.
On Intel SnB-family, variable-count shifts are 3 uops (up from 1 on Core2/Nehalem). AFAICT, two of the uops read/write flags, and an independent uop reads reg and cl, and writes reg. It's a weird case of having better latency (1c + inevitable resource conflicts) than throughput (1.5c), and only being able to achieve max throughput if mixed with instructions that break dependencies on flags. (I posted more about this on Agner Fog's forum). Use BMI2 shlx when possible; it's 1 uop and the count can be in any register.
Anyway, inc (writing flags but leaving CF unmodified) before variable-count shl leaves it with a false dependency on whatever wrote CF last, and on SnB/IvB can require an extra uop to merge flags.
Core2/Nehalem manage to avoid even the false dep on flags: Merom runs a loop of 6 independent shl reg,cl instructions at nearly two shifts per clock, same performance with cl=0 or cl=13. Anything better than 1 per clock proves there's no input-dependency on flags.
I tried loops with shl edx, 2 and shl edx, 0 (immediate-count shifts), but didn't see a speed difference between dec and sub on Core2, HSW, or SKL. I don't know about AMD.
Update: The nice shift performance on Intel P6-family comes at the cost of a large performance pothole which you need to avoid: when an instruction depends on the flag-result of a shift instruction: The front end stalls until the instruction is retired. (Source: Intel's optimization manual, (Section 3.5.2.6: Partial Flag Register Stalls)). So shr eax, 2 / jnz is pretty catastrophic for performance on Intel pre-Sandybridge, I guess! Use shr eax, 2 / test eax,eax / jnz if you care about Nehalem and earlier. Intel's examples makes it clear this applies to immediate-count shifts, not just count=cl.
In processors based on Intel Core microarchitecture [this means Core 2 and later], shift immediate by 1 is handled by special hardware such that it does not experience partial flag stall.
Intel actually means the special opcode with no immediate, which shifts by an implicit 1. I think there is a performance difference between the two ways of encoding shr eax,1, with the short encoding (using the original 8086 opcode D1 /5) producing a write-only (partial) flag result, but the longer encoding (C1 /5, imm8 with an immediate 1) not having its immediate checked for 0 until execution time, but without tracking the flag output in the out-of-order machinery.
Since looping over bits is common, but looping over every 2nd bit (or any other stride) is very uncommon, this seems like a reasonable design choice. This explains why compilers like to test the result of a shift instead of directly using flag results from shr.
Update: for variable count shifts on SnB-family, Intel's optimization manual says:
3.5.1.6 Variable Bit Count Rotation and Shift
In Intel microarchitecture code name Sandy Bridge, The “ROL/ROR/SHL/SHR reg, cl” instruction has three micro-ops. When the flag result is not needed, one of these micro-ops may be discarded, providing
better performance in many common usages. When these instructions update partial flag results that are subsequently used, the full three micro-ops flow must go through the execution and retirement pipeline,
experiencing slower performance. In Intel microarchitecture code name Ivy Bridge, executing the full three micro-ops flow to use the updated partial flag result has additional delay.
Consider the looped sequence below:
loop:
shl eax, cl
add ebx, eax
dec edx ; DEC does not update carry, causing SHL to execute slower three micro-ops flow
jnz loop
The DEC instruction does not modify the carry flag. Consequently, the
SHL EAX, CL instruction needs to execute the three micro-ops flow in
subsequent iterations. The SUB instruction will update all flags. So
replacing DEC with SUB will allow SHL EAX, CL to execute the two
micro-ops flow.
Terminology
Partial-flag stalls happen when flags are read, if they happen at all. P4 never has partial-flag stalls, because they never need to be merged. It has false dependencies instead.
Several answers / comments mix up the terminology. They describe a false dependency, but then call it a partial-flag stall. It's a slowdown which happens because of writing only some of the flags, but the term "partial-flag stall" is what happens on pre-SnB Intel hardware when partial-flag writes have to be merged. Intel SnB-family CPUs insert an extra uop to merge flags without stalling. Nehalem and earlier stall for ~7 cycles. I'm not sure how big the penalty is on AMD CPUs.
(Note that partial-register penalties are not always the same as partial-flags, see below).
### Partial flag stall on Intel P6-family CPUs:
bigint_loop:
adc eax, [array_end + rcx*4] # partial-flag stall when adc reads CF
inc rcx # rcx counts up from negative values towards zero
# test rcx,rcx # eliminate partial-flag stalls by writing all flags, or better use add rcx,1
jnz
# this loop doesn't do anything useful; it's not normally useful to loop the carry-out back to the carry-in for the same accumulator.
# Note that `test` will change the input to the next adc, and so would replacing inc with add 1
In other cases, e.g. a partial flag write followed by a full flag write, or a read of only flags written by inc, is fine. On SnB-family CPUs, inc/dec can even macro-fuse with a jcc, the same as add/sub.
After P4, Intel mostly gave up on trying to get people to re-compile with -mtune=pentium4 or modify hand-written asm as much to avoid serious bottlenecks. (Tuning for a specific microarchitecture will always be a thing, but P4 was unusual in deprecating so many things that used to be fast on previous CPUs, and thus were common in existing binaries.) P4 wanted people to use a RISC-like subset of the x86, and also had branch-prediction hints as prefixes for JCC instructions. (It also had other serious problems, like the trace cache that just wasn't good enough, and weak decoders that meant bad performance on trace-cache misses. Not to mention the whole philosophy of clocking very high ran into the power-density wall.)
When Intel abandoned P4 (NetBurst uarch), they returned to P6-family designs (Pentium-M / Core2 / Nehalem) which inherited their partial-flag / partial-reg handling from earlier P6-family CPUs (PPro to PIII) which pre-dated the netburst mis-step. (Not everything about P4 was inherently bad, and some of the ideas re-appeared in Sandybridge, but overall NetBurst is widely considered a mistake.) Some very-CISC instructions are still slower than the multi-instruction alternatives, e.g. enter, loop, or bt [mem], reg (because the value of reg affects which memory address is used), but these were all slow in older CPUs so compilers already avoided them.
Pentium-M even improved hardware support for partial-regs (lower merging penalties). In Sandybridge, Intel kept partial-flag and partial-reg renaming and made it much more efficient when merging is needed (merging uop inserted with no or minimal stall). SnB made major internal changes and is considered a new uarch family, even though it inherits a lot from Nehalem, and some ideas from P4. (But note that SnB's decoded-uop cache is not a trace cache, though, so it's a very different solution to the decoder throughput/power problem that NetBurst's trace cache tried to solve.)
For example, inc al and inc ah can run in parallel on P6/SnB-family CPUs, but reading eax afterwards requires merging.
PPro/PIII stall for 5-6 cycles when reading the full reg. Core2/Nehalem stall for only 2 or 3 cycles while inserting a merging uop for partial regs, but partial flags are still a longer stall.
SnB inserts a merging uop without stalling, like for flags. Intel's optimization guide says that for merging AH/BH/CH/DH into the wider reg, inserting the merging uop takes an entire issue/rename cycle during which no other uops can be allocated. But for low8/low16, the merging uop is "part of the flow", so it apparently doesn't cause additional front-end throughput penalties beyond taking up one of the 4 slots in an issue/rename cycle.
In IvyBridge (or at least Haswell), Intel dropped partial-register renaming for low8 and low16 registers, keeping it only for high8 registers (AH/BH/CH/DH). Reading high8 registers has extra latency. Also, setcc al has a false dependency on the old value of rax, unlike in Nehalem and earlier (and probably Sandybridge). See this HSW/SKL partial-register performance Q&A for the details.
(I've previously claimed that Haswell could merge AH with no uop, but that's not true and not what Agner Fog's guide says. I skimmed too quickly and unfortunately repeated my wrong understanding in lots of comments and other posts.)
AMD CPUs, and Intel Silvermont, don't rename partial regs (other than flags), so mov al, [mem] has a false dependency on the old value of eax. (The upside is no partial-reg merging slowdowns when reading the full reg later.)
Normally, the only time add instead of inc will make your code faster on AMD or mainstream Intel is when your code actually depends on the doesn't-touch-CF behaviour of inc. i.e. usually add only helps when it would break your code, but note the shl case mentioned above, where the instruction reads flags but usually your code doesn't care about that, so it's a false dependency.
If you do actually want to leave CF unmodified, pre SnB-family CPUs have serious problems with partial-flag stalls, but on SnB-family the overhead of having the CPU merge the partial flags is very low, so it can be best to keep using inc or dec as part of a loop condition when targeting those CPU, with some unrolling. (For details, see the BigInteger adc Q&A I linked earlier). It can be useful to use lea to do arithmetic without affecting flags at all, if you don't need to branch on the result.
Skylake doesn't have partial-flag merging costs
Update: Skylake doesn't have partial-flag merging uops at all: CF is just a separate register from the rest of FLAGS. Instructions that need both parts (like cmovbe) read both inputs separately. That makes cmovbe a 2-uop instruction, but most other cmovcc instructions 1-uop on Skylake. See What is a Partial Flag Stall?.
adc only reads CF so it can be single-uop on Skylake with no interaction at all with an inc or dec in the same loop.
(TODO: rewrite earlier parts of this answer.)
Depending on the CPU implementation of the instructions, a partial register update may cause a stall. According to Agner Fog's optimization guide, page 62,
For historical reasons, the INC and DEC instructions leave the carry flag unchanged, while the other arithmetic flags are written to. This causes a false dependence on the previous value of the flags and costs an extra μop. To avoid these problems, it is recommended that you always use ADD and SUB instead of INC and DEC. For example, INC EAX should be replaced by ADD EAX,1.
See also page 83 on "Partial flags stalls" and page 100 on "Partial flags stall".

Why would introducing useless MOV instructions speed up a tight loop in x86_64 assembly?

Background:
While optimizing some Pascal code with embedded assembly language, I noticed an unnecessary MOV instruction, and removed it.
To my surprise, removing the un-necessary instruction caused my program to slow down.
I found that adding arbitrary, useless MOV instructions increased performance even further.
The effect is erratic, and changes based on execution order: the same junk instructions transposed up or down by a single line produce a slowdown.
I understand that the CPU does all kinds of optimizations and streamlining, but, this seems more like black magic.
The data:
A version of my code conditionally compiles three junk operations in the middle of a loop that runs 2**20==1048576 times. (The surrounding program just calculates SHA-256 hashes).
The results on my rather old machine (Intel(R) Core(TM)2 CPU 6400 # 2.13 GHz):
avg time (ms) with -dJUNKOPS: 1822.84 ms
avg time (ms) without: 1836.44 ms
The programs were run 25 times in a loop, with the run order changing randomly each time.
Excerpt:
{$asmmode intel}
procedure example_junkop_in_sha256;
var s1, t2 : uint32;
begin
// Here are parts of the SHA-256 algorithm, in Pascal:
// s0 {r10d} := ror(a, 2) xor ror(a, 13) xor ror(a, 22)
// s1 {r11d} := ror(e, 6) xor ror(e, 11) xor ror(e, 25)
// Here is how I translated them (side by side to show symmetry):
asm
MOV r8d, a ; MOV r9d, e
ROR r8d, 2 ; ROR r9d, 6
MOV r10d, r8d ; MOV r11d, r9d
ROR r8d, 11 {13 total} ; ROR r9d, 5 {11 total}
XOR r10d, r8d ; XOR r11d, r9d
ROR r8d, 9 {22 total} ; ROR r9d, 14 {25 total}
XOR r10d, r8d ; XOR r11d, r9d
// Here is the extraneous operation that I removed, causing a speedup
// s1 is the uint32 variable declared at the start of the Pascal code.
//
// I had cleaned up the code, so I no longer needed this variable, and
// could just leave the value sitting in the r11d register until I needed
// it again later.
//
// Since copying to RAM seemed like a waste, I removed the instruction,
// only to discover that the code ran slower without it.
{$IFDEF JUNKOPS}
MOV s1, r11d
{$ENDIF}
// The next part of the code just moves on to another part of SHA-256,
// maj { r12d } := (a and b) xor (a and c) xor (b and c)
mov r8d, a
mov r9d, b
mov r13d, r9d // Set aside a copy of b
and r9d, r8d
mov r12d, c
and r8d, r12d { a and c }
xor r9d, r8d
and r12d, r13d { c and b }
xor r12d, r9d
// Copying the calculated value to the same s1 variable is another speedup.
// As far as I can tell, it doesn't actually matter what register is copied,
// but moving this line up or down makes a huge difference.
{$IFDEF JUNKOPS}
MOV s1, r9d // after mov r12d, c
{$ENDIF}
// And here is where the two calculated values above are actually used:
// T2 {r12d} := S0 {r10d} + Maj {r12d};
ADD r12d, r10d
MOV T2, r12d
end
end;
Try it yourself:
The code is online at GitHub if you want to try it out yourself.
My questions:
Why would uselessly copying a register's contents to RAM ever increase performance?
Why would the same useless instruction provide a speedup on some lines, and a slowdown on others?
Is this behavior something that could be exploited predictably by a compiler?
The most likely cause of the speed improvement is that:
inserting a MOV shifts the subsequent instructions to different memory addresses
one of those moved instructions was an important conditional branch
that branch was being incorrectly predicted due to aliasing in the branch prediction table
moving the branch eliminated the alias and allowed the branch to be predicted correctly
Your Core2 doesn't keep a separate history record for each conditional jump. Instead it keeps a shared history of all conditional jumps. One disadvantage of global branch prediction is that the history is diluted by irrelevant information if the different conditional jumps are uncorrelated.
This little branch prediction tutorial shows how branch prediction buffers work. The cache buffer is indexed by the lower portion of the address of the branch instruction. This works well unless two important uncorrelated branches share the same lower bits. In that case, you end-up with aliasing which causes many mispredicted branches (which stalls the instruction pipeline and slowing your program).
If you want to understand how branch mispredictions affect performance, take a look at this excellent answer: https://stackoverflow.com/a/11227902/1001643
Compilers typically don't have enough information to know which branches will alias and whether those aliases will be significant. However, that information can be determined at runtime with tools such as Cachegrind and VTune.
You may want to read http://research.google.com/pubs/pub37077.html
TL;DR: randomly inserting nop instructions in programs can easily increase performance by 5% or more, and no, compilers cannot easily exploit this. It's usually a combination of branch predictor and cache behaviour, but it can just as well be e.g. a reservation station stall (even in case there are no dependency chains that are broken or obvious resource over-subscriptions whatsoever).
I believe in modern CPUs the assembly instructions, while being the last visible layer to a programmer for providing execution instructions to a CPU, actually are several layers from actual execution by the CPU.
Modern CPUs are RISC/CISC hybrids that translate CISC x86 instructions into internal instructions that are more RISC in behavior. Additionally there are out-of-order execution analyzers, branch predictors, Intel's "micro-ops fusion" that try to group instructions into larger batches of simultaneous work (kind of like the VLIW/Itanium titanic). There are even cache boundaries that could make the code run faster for god-knows-why if it's bigger (maybe the cache controller slots it more intelligently, or keeps it around longer).
CISC has always had an assembly-to-microcode translation layer, but the point is that with modern CPUs things are much much much more complicated. With all the extra transistor real estate in modern semiconductor fabrication plants, CPUs can probably apply several optimization approaches in parallel and then select the one at the end that provides the best speedup. The extra instructions may be biasing the CPU to use one optimization path that is better than others.
The effect of the extra instructions probably depends on the CPU model / generation / manufacturer, and isn't likely to be predictable. Optimizing assembly language this way would require execution against many CPU architecture generations, perhaps using CPU-specific execution paths, and would only be desirable for really really important code sections, although if you're doing assembly, you probably already know that.
Preparing the cache
Move operations to memory can prepare the cache and make subsequent move operations faster. A CPU usually have two load units and one store units. A load unit can read from memory into a register (one read per cycle), a store unit stores from register to memory. There are also other units that do operations between registers. All the units work in parallel. So, on each cycle, we may do several operations at once, but no more than two loads, one store, and several register operations. Usually it is up to 4 simple operations with plain registers, up to 3 simple operations with XMM/YMM registers and a 1-2 complex operations with any kind of registers. Your code has lots of operations with registers, so one dummy memory store operation is free (since there are more than 4 register operations anyway), but it prepares memory cache for the subsequent store operation. To find out how memory stores work, please refer to the Intel 64 and IA-32 Architectures Optimization Reference Manual.
Breaking the false dependencies
Although this does not exactly refer to your case, but sometimes using 32-bit mov operations under the 64-bit processor (as in your case) are used to clear the higher bits (32-63) and break the dependency chains.
It is well known that under x86-64, using 32-bit operands clears the higher bits of the 64-bit register. Pleas read the relevant section - 3.4.1.1 - of The Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1:
32-bit operands generate a 32-bit result, zero-extended to a 64-bit result in the destination general-purpose register
So, the mov instructions, that may seem useless at the first sight, clear the higher bits of the appropriate registers. What it gives to us? It breaks dependency chains and allows the instructions to execute in parallel, in random order, by the Out-of-Order algorithm implemented internally by CPUs since Pentium Pro in 1995.
A Quote from the Intel® 64 and IA-32 Architectures Optimization Reference Manual, Section 3.5.1.8:
Code sequences that modifies partial register can experience some delay in its dependency chain, but can be avoided by using dependency breaking idioms. In processors based on Intel Core micro-architecture, a number of instructions can help clear execution dependency when software uses these instruction to clear register content to zero. Break dependencies on portions of registers between instructions by operating on 32-bit registers instead of partial registers. For
moves, this can be accomplished with 32-bit moves or by using MOVZX.
Assembly/Compiler Coding Rule 37. (M impact, MH generality): Break dependencies on portions of registers between instructions by operating on 32-bit registers instead of partial registers. For moves, this can be accomplished with 32-bit moves or by using MOVZX.
The MOVZX and MOV with 32-bit operands for x64 are equivalent - they all break dependency chains.
That's why your code executes faster. If there are no dependencies, the CPU can internally rename the registers, even though at the first sight it may seem that the second instruction modifies a register used by the first instruction, and the two cannot execute in parallel. But due to register renaming they can.
Register renaming is a technique used internally by a CPU that eliminates the false data dependencies arising from the reuse of registers by successive instructions that do not have any real data dependencies between them.
I think you now see that it is too obvious.

Resources