Google DFP - rotate creatives with different sizes - rotation

So, there is a campaign with two sizes, let's say: 970x250 and 300x250.
970x250 should run on desktop and 300x250 on mobile. The campaign has total impressions with no specific distribution between the two formats.
Size mapping, banner targeting etc. is properly configured, there is no issue with that. There is no 970x250 when using mobile and there is no 300x250 when using desktop.
Our traffic is 70% mobile and 30% desktop. I would suppose the serving of the two creatives should be approximately within the traffic distribution.
However, it appears that whatever setting is selected on "Rotate creatives" option in DFP, the mobile banner is getting over 95% of the impressions. It appears that "Rotate creatives" applies only for same sized creatives:
https://support.google.com/admanager/answer/99602?hl=en
Is there a way to specify let's say "weight" for the different size creatives, so the impression distribution is a bit more normal?
The only option that comes to my mind is second line item. But the traffic varies by desktop and mobile in weekdays and weekends and I was actually expecting that DFP will distribute the impressions based on the availability for each format. Which is not the case.

It is possible to weight the serving of creatives for a line item but I've had trouble achieving my desired split when mobile/desktop inventory is available at different levels, (I'm guessing) because it seems that the imperative to serve the requested number of impressions is a higher priority than distribution between creatives.
I also experimented with changing the delivery speed of the campaign, but it didn't seem to help (note that my campaign was struggling to fulfil, so your mileage may vary).
I agree that a good workaround would be to create two line items within the same order, with the one targeting mobile, the other desktop, each with only the appropriate creative and number of impressions.

Related

Designing an algorithm for detecting anamoly and statistical significance for ordinal data using python

Firstly, I would like to apologise for the detailed problem statement. Being a novice, I couldn't express it in any lesser words.
Environment Setup Details:
To give some background, I work in a cloud company where we have multiple servers geographically located in all continents. So, we have hierarchy like this:
Several partitions
Each partition has 7 pop's
Each pop has multiple nodes all set up with redundancy.
Turn servers connecting traffic to each node depending on the client location
Actual clients-ios, android, mac, windows,etc.
Now, every time the user uses our product/service, he leaves a rating out of 5, 5 being outstanding. This data is stored in our databases and we mine it and analyse it to pin-point the exact issue on any particular day.
For example, if the users from Asia are giving more bad ratings on Tuesday this week than a usual Tuesday, what factors can cause this - is it something to do with clients app version, or server release , physical factors, loss, increased round trip delay etc.
What we have done:
Till now we have been using visualization tools to track each of these metrics separately per day to see the trends and detect the issues manually.
But, due to growing micr-services, it is becoming difficult day by day. Now, we want to automate it using python/pandas.
What I want to do:
If the ratings drop on a particular day/hour, I run the script and it should do all the manual work by taking all the permutations and combinations of all factors and list out the exact combinations which could have lead to the drop.
The second step would be to check whether the drop was significant due to varying number of ratings.
What I know:
I understand that I can do this using pandas by creating a dataframe for each predictor variable and trying to do it per variable.
And then I can apply tests like whitney test etc for ordinal data.
What I need help with:
But I just wanted to know if there is a better way to do it? It is perfectly fine if there is a learning curve involved. I can learn and do it. I just wanted some help in choosing the right approach for this.

Filtering out noise and generalizing GPS data from mobile

I have a server that receives GPS data from a mobile device (iphone) and then finds the distinct cities from which the data comes for each distinct day. The app syncs every three hours. Since the granularity I need is not that small -I'm not interested in anything "smaller" than cities- I'd like to be able to say "this person was in this or that city during this or that date". The problem is, GPS warm-up, bad accuracy and the sheer amount of data received (the device collects data every ten minutes and syncs with the server every 3 hours) sometimes yield false positives or bad data -I have a user that lives near the border of nyc/nj and I keep getting alternate locations from one or the other place, even though he spends most of his actual day far from the border, so those times when he's home shouldn't matter).
My question is: what algorithms should I consider, what papers should I read, or, even, what terms should I google to find an approach that will help me get rid of the noise and false positives for data that's being synced every n hours and that needn't be more granular than a certain level (city, in this case) and which is significant for a certain period of time? (think about it as the fact that I'm counting the visits to distinct cities, states or countries for distinct dates). I was thinking of something like "clustering" or "dissolving" the data, but I don't know anything about geo algorithms, yet ;)
I use android instead of iphone so I'll answer hoping iphone has similar information available in its stream of fixes.
First, you should only use locations found from GPS and not from wifi or cell tower locations for this effort. In android, the source of the location fix is "GPS" "Network" or "cell", the GPS are the most accurate. Using cell towers, especially near a river or on a hill, you often pick up towers pretty distant from you as you move around, and it sounds like that's what's happening with your ny/nj problem.
2nd, if a guy is in a certain city he should be there for lengths of time without moving too far. You could write something that only declares a location if it receives a bunch of locations in a row that are within that location, that essentially filters out bad results by noting that it is not realistic to bounce back and forth quickly between two locations that are more than a 500 m apart or something like that.

What is the proper way to use the radius parameter in the Google Places API?

I am using the Google Places API to retrieve all the POI (Places of Interest) around a the current location, it works ok but I have noticed that whatever the value of the radius is, I always get the same number of results (~ 20). As a result, if I give a radius that is too big, I don't necessarily get the nearest POIs. If I reduce the amount of the radius to be small enough, I will retrieve those nearest places again (from experimentation, I have noticed that 100 meters is a proper value) but that means that I will not get any POIs beyond 100 meters which is not quite what I want.
My question is: is there any way by which I can get all the POIs (with no limitations) within a certain radius.
Thank you!
The Google Places API always returns 20 results by design, selecting the 20 results that best fit the criteria you define in your request. The Developer's Guide / Docs don't explicitly cite that number anywhere that I have seen. I learned about the limit watching the Autocomplete Demo & Places API Demo & Discussion Video, given by Paul Saxman, a Developer Advocate at Google and Marcelo Camelo, Google's Technical Lead for the Places API.
The entire video is worth watching, but more specific to your question, if you set the playback timer at about 11:50, Marcelo Camelo is contrasting the Autocomplete tool versus the general Places API, and that's the portion of the video where he mentions the 20 result limit. He mentions 20 as the standard result count several times.
There are many other good Places API and Google Maps videos linked to that area on YouTube as well.
As mentioned on the Google Places Issue Tracker here: http://code.google.com/p/gmaps-api-issues/issues/detail?id=3425
We are restricted by our data provider licenses to enable apps to display no more than 20 places results at a time. Consequently we are not able to increase this limit at this time.
It does sound like you are however trying to return results that are closest to a specified location, this is now possible by using the 'rankby=distance' parameter instead of 'radius' in your request.
e.g.
https://maps.googleapis.com/maps/api/place/search/json?location=-33.8670522,151.1957362&rankby=distance&types=food&name=harbour&sensor=false&key=YOUR_API_KEY
Try google.maps.places.RankBy.DISTANCE; as default is google.maps.places.RankBy.PROMINENCE;
An easy example of this is shown Here
(Chrome only)

POS UI design & development: what should be included & avoided? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
I'm having to design & develop UI for a Point of Sale (POS) system.
There are obvious features that need to be included, like product selection & quantity, payment method, tender amount, user login (as many users will use one terminal), etc.
My question is related more towards the UI design aspect of developing this system.
How should UI features/controls be positioned, sized?
Is there a preferred layout?
Are their colours I should be avoiding?
If you know of any resources to guide me, that would also help.
The reason this is critical to me as I am aware of the pressurized environment in which POS systems are used & I want to make the process as (i) quick, (ii) simple to use and (iii) result driven as possible for the user to service customers.
All answers, info & suggestions welcome.
Thanks.
P.s. If you could mention the "playoff" between controls that would also be appreciated (i.e. if touch screen a keypad control is provided, but if also supporting keyboard & mouse input how do you manage the keypad & UI space effectively?)
A couple of thoughts from a couple of projects I've worked with:
For the touch screen ensure that each button can be pressed by someone with "fat fingers" as easily as smaller ones (some layouts encourage the use of thumbs at particular locations). Also highlight each button when it is pressed (with a slow-ish fade if you have spare CPU cycles).
Bigger grids are better than smaller ones. The numeric pad should always be in the same place (often the bottom right). The Enter/Tender/etc. "transaction" keys should be bigger than the individual numeric keys - (1) make it more obvious where it is, (2) it will be pressed more often than other screen areas and will wear out (a bigger area will last longer on average; this was more important with older style touch screens; newer technology is more resilient).
Allow functions/SKUs to be reassigned to different grid positions; the layout that works well for one store will likely be wrong for a slightly different one.
Group related functions by colour, but use excellent contrasts. Make sure that the fore/back combination looks good at all angles (some LCDs "bleed" colours left-to-right and/or top-to-bottom angles).
Positive touch screen feedback with sounds needs to have configurable volume and sound sets. Muted tones might be better in an quieter upmarket store, but "perky" sounds are better in a clothing store with louder background music/noise, etc.
Allow the grid size to be specified in percentages or "grid-block units" instead of pixels and draw everything with vectors, etc. since some hardware combinations may have LCDs with better resolution. (One system I worked on was originally specified as 640x480 but shipped at 1280x1024, so my design pre-planning saved a lot of rework later.)
And of course look at the ready-made solutions first (especially if you can get demo software/hardware for evaluation). Although they can be expensive they've often implemented a lot of things that'll you'll have to work through later, and may be cheaper in the long run, even after creating custom add-ons for your system.
Also:
Our UI supported a normal keyboard/mouse combo too (the touchable buttons were just standard button controls sized appropriately). If you pressed a number key it would trigger the same event as clicking the screen-pad button; other hotkeys were mapped to often used button commands (Enter, etc).
If run on a non-POS desktop (e.g. backoffice) the window could be resized too (the "POS desktop" maintained the same aspect ratio, adding dead space at the sides if needed). A standard top menu was available for additional administrative tasks, reporting, etc.
The design allowed everyone to build and test the UI before the associated hardware was finalized. And standard UI testing tools would work too.
Even More:
Our barcode scanners were serial/USB rather than keyboard-like, so each packet from the device raised a comms event. The selected "scanner type" driver class used the most secure formatting that the device could give us - some can supply prefix, suffix and/or checksum characters if programmed correctly - and then stripped this before handing the code up to the application.
The system made a "bzzzt" noise when the barcode couldn't be used (e.g. while cash drawer is open).
This design also avoided the need to set the keyboard focus to a specific entry area.
A tip: if the user is manually entering a barcode via the keypad, and hasn't completed it by pressing Enter, and then attempts to scan another barcode, it should beep instead, so the user can accept or cancel the pending item first.
Aggregated POS Design Guidelines
Based on the above and other literature, here is my list of guidelines for POS design.
[it would be nice if we grew this list further]
User Performance Priorities (in order):
efficiency (least time to transaction conclusion)
effectiveness (accurate info & output)
user satisfaction (based on first 2 in work context)
learning time (reduce time to learn system by making it simple)
GUIDELINES
Flexible Transaction Building - don't force a sequence to transaction wher possible. Place product orders in any order & allow them to be changed to a point.
Optimise Transaction Rate - allow a user to complete a transaction as quickly as possible (least clicks are not really the issue as more clicks could mean larger value of transaction, which makes business sense)
Support Handedness / Dexterity - most users have a dominant hand and a weaker hand in terms of dexterity. Allow the UI to be customised (on a single click) for handedness. my example: a L->R / R->L toggle button which moves easy features like "OK", "Cancel" in nearer proximity to weaker hand.
Constant Feedback - provide snapshot feedback which describes current state of the transaction and calculated result of transaction (NB: accounts) before & after committing a transaction.
Control "Volume" - control volume refers to the colour saturation/contrast, prominence of positioning and size of a control. Design more frequently used controls to have larger "volumes" relative to less frequently used controls. e.g. "Pay" button larger than "cancel" button. E.g. High contrast & greater colour saturation increase volume.
Target Findability - finding & selecting targets (item, numeric key) is key to efficiency. Group related controls (close proximity), place controls on screen edges (screen edge traps pointer), emphasise control amplitude (this dimension emphasises users normal plain of motion) and colour coding make finding & selecting targets more efficient.
Avoid Clutter - too many options limits control volume and reduces findability.
Use Plain Text - avoid abbreviations as much as possible (only use standard abbreviations e.g. size: S, M, L, etc.). This is especially true for product lookup.
Product Lookup - support shortcuts for regular orders (i.e. burger meal), categorised browsing & item name search (least ordered items). Consider include a special item: this is any item where the user types what is wanted (i.e. specific whiskey order) - this requires pricing though.
Avoid User Burden - the user should be able to read answers to customer questions from the UI. So provide regularly requested/prioritised feedback for transaction (i.e. customer asks: "what will be the the outstanding balance on my account if I buy this item?" It should appear in UI already)
Conversational Ordering - customer drives the ordering not the system. So allows item selection to be non-sequential.
Objective Focused - the purpose of POS is to conclude the transaction from a business perspective. Always make transaction conclusion possible immediately with "Pay" button. If clicked, any incomplete items will be un-done: user then read order back before requesting cash/credit card)
Personas - there are different categories (personas) of users of POS systems like (i) Clerk/Cashier and (ii) Manager. The UI should present the relevant options to that logged-in persona according to these guidelines i.e. Cashier: large volume on transaction building controls; Manager: large volume on transaction/user management controls.
Touch Screens - (i) allow for touch input with generally larger controls to supported a large finger tip as pointer. (ii) Provide proprioceptive feedback - this is feedback that indicate the control pushed (it should have a short delay on it fade: user finger will be in the way initially). (iii) Auditory Feedback (optional) - this helps with feedback especially with regards errors in pressurised environment.
User Training - users must be trained to understand business protocol & how the POS supports that protocol. They are the one's driving the system. Also, speak to POS users to design & enhance your system - again they are experienced users of the POS system
Context Analysis - a thorough analysis of the context of use for your POS system should be performed to best implement the POS heuristics mentioned above effectively. Understanding the user (human factors), the tasks (frequency, duration, stress factors, etc.) and environment (lighting, hardware, space layout, etc.) should be comprehensively conducted during design and should not be assumed. Get your hands dirty & get into the users work space!! That way you can develop something your specific users can use effectively, efficiently and satisfactorily
I hope this helps everyone.
To all respondents, I really appreciate your feedback! Please give me more wrt to this answer. Thanks
I ran across this question, and I thought I'd add my two cents since some of my work has been mentioned here.
I agree with most of what's been said, but it's important to remember that most everything mentioned represents heuristics. That means that while they're good principles to follow, there are likely times when (a) specific rules should be broken, and (b) there will be contradictions between rules. The trick is being able to weigh conflicting principles and apply them to the appropriate degrees (as you noted in a previous comment).
In the end, it's a matter of balancing the business requirements and user needs in a way that produces optimal results. And in the real world, I find that this can never be achieved through heuristics alone.
Here's an example: I recently finished POS designs for Subway, Wendy's, and Starbucks (see Case Studies at POSDesigns.com). All of these designs used solid heuristics, but all of them came out very, very different because of differences in the business goals and requirements, the users' needs and background, the environment in which they work, the technology being used, and a whole host of other differences.
You can never create a great design in a vacuum. For each of the clients mentioned above, I traveled around to a lot of different types of stores in multiple countries to get a feel for how the users' worked, how the systems would be used, how customers ordered, etc. All this information - along with sales and other data provided by the company - was invaluable in creating a highly usable solution.
Here's another example: Guideline #3 you provide previously ("Support Handedness / Dexterity") is fine as a heuristic (though I have to say that I question the conclusion of swapping simply OK/Cancel). But in visiting Subway stores, we discovered that in that context, the location of the register actually plays a greater role in the hand employees prefer.
In other words, registers that were squished against a wall on the right side tended to produce left-handed users, even when the users were right-handed for every other task. This had implications for the way we allowed the UI to be flip-flopped...and who had control of it. There are tons of examples like that, but we never could have achieved the gains that the user interfaces have produced - like 90% reduction in voids, near zero training, increased speed, accuracy, and check sizes, etc. - by following heuristics alone.
One more point (sorry...you've got me going now :-). Many times heuristics are incomplete without more data as to how to apply them. Consider your guideline #11, "Conversational Ordering". There's much more to this guideline than just providing flexibility in order entry. For instance, one of the many things you have to consider is that not all paths should be presented as equally probable.
We analyzed the way Starbucks' customers ordered in various locations across the United States and United Kingdom. Then, we optimized the system for the most commonly spoken patterns. If we had allowed all paths to have the same "volume", we would have sacrificed usability in other areas, since the design would have appeared more cluttered. The new POS system now supports almost all possible order patterns, but the most probable paths are presented at a higher "volume" than those that are less probable.
OK, it turned out to be more than two cents, but the bottom line is this: If you have a chance to visit the environments in which your POS will be used, analyze customer/employee interactions, etc. ...you should take it. Contextual observations and analysis are invaluable in correctly applying heuristics to your situation.
Good luck!
Dr. Kevin Scoresby
FYI - I'd enjoy talking further about this if you or anyone else in the group would like. My office phone number is on my "About Us" page at POSDesigns.com, or you can use the form to initiate an email conversation. Feel free to call anytime during business hours U.S., East Coast Time.
Devstuff already provides some great answers. In addition:
Create a prototype design (can be simply color-printed on paper) and test this in a scenario that is as realistic as possible, i.e. in a store, with a real future user. Enact a few common scenarios and ask the user to really 'use' your prototype as he / she would use the final product. Obtain feedback through interview and observation.
One way to evaluate your design is to check if you have applied the CRAP principles of design. This article discusses how this can relate to user interface design.
In addition to what has already been posted, here are some tips we picked up along the way.
We use two distinct UI's, one for touch-screen with large bold buttons and one for mouse/keyboard entry. the code behind them is the same just the layout is different.
For touch screens
Try not to have pop-up messages that take focus away from the main form, as users may not be looking at the screen, for example if they are chatting with the customer. we found that if this happen users will continues scanning products unaware that they are not been entered into the sale.
If using a bar code scanner be aware that they sometimes send an enter key after the bar code, that will active focused controls (saying yes/no to pop-ups). To help prevent this we disable the enter key-press on buttons, so only a mouse/finger press will fire the click event. we also turn tab stop to false (may be called different in you language), to stop controls that are touch only from getting focus.
As far as colours go we try to stick to bold button and font colours that can easily be distinguished/read in poorly lit rooms and on screens with glare, as most times users are not in the position to move the screen should they have problem reading it.
Anything you can do to speed up/ help the user is a good thing, for example on our payment screen, as well as having 0..9 keys for payment entry, we also have £1,£2,£5,£10 etc so users don't have to add up the money they are given, they can just press the key for each coin/note they received from the customer.
The best tip I can give is to remember that you are designing for a completely different environment form a desktop application, that would be used in an office. and that users may of never used a computer before. since POS systems are usually locked down, try to make it as easy to use out of the box as possible.
another thing to consider is personas (as introduced in cooper's "the inmates are running the asylum").
essentially, you make up a few canonical "users". give them names, hobbies, skills, a picture, and use them as the people you are designing for.
ie:
billy the cashier: has some computer experience (playing on his ps2). he's in high school, may go to community college. he's a primary user of the system, and wants to be able to learn the new system quickly.
cyrus the manager: needs to manage the cashiers. needs a way, with only his authorization, void transactions and be able to review logs of the sales for making reports as well as managing "shrinkage" (theft). he has 2 kids, lives out in the suburbs so has a 45 minute commute; therefore he doesn't want to spend extra time wrangling the system.
you may need three or four personas; any more than that and it becomes hard to design for.
I highly recommend the book "inmates are running the asylum", plus cooper wrote another book: "about face"; which I have yet to read.
good luck!
I would recommend doing some sort of usability survey amongst your current user group. There is no need for this to be a complicated or highly scientific survey. Present them with simple questions to determine:
The users priority when using the system (accuracy of task, speed, aesthetics)
Preferred input devices
Work flow through such a system
Level of education and domain knowledge
I have found that a lot can be learnt from a simple survey like this and can be applied to your UI design to ensure that the users usability experience is satisfactory.
Great comments from everyone else. I'll just add that there's also an article by Dr. Kevin Scoresby titled "How to Design a (POS) System that Everybody Hates" that discusses usability of POS systems and adds a few points to what people have already mentioned, such as:
Don't punish the employee for customer choices
Avoid creating conflicts with the real world
Avoid color coding (1 out of 10 males has a form of color blindness)
I've also discovered lots of helpful POS design tips at POSDesigns.com. One thing I found interesting is that by focusing too much on the number of button presses, you can actually impact speed--which is often a primary goal. There's also a tip titled "Five Factors that Influence Speed" that I found helpful.
Good luck!
Kyle
There are already some really good systems out there i.e. Tabtill for Win 8 http://www.tabtill.com or Shopkeep for iOS http://www.shopkeep.com. The fewest number of clicks your user need to do the better. As I am also involved in coding for such solutions and having worked with clients using various POS systems, some can be really frustrating. Remember watching cashiers in a bar tapping 10 times just to take payment for a couple of items, their fingers are hopelessly hovering over the screen trying to find the right colourful button. Keep it simple! Allow sorting of your visible product range, categorize them or use barcode reader. Keep at least 5% gap between buttons and don't let silly animations slow down your UI. Either invent your own or just copy what is already out there with your own twist.

Regional Proximity UI

I'm developing a UI (AJAX-enabled; LAMP server) which will allow a user to designate regions in which a company operates. A "region" in this case may be a state (if dealing with the US) a province (Canada), or entire country (everyone else).
As there are 195 countries in the world, I would like to avoid a multi-select box or list of checkboxes. In the workflow leading to this particular screen, the user will have already entered the full address of the company, so I have a starting region to work from.
Since the majority of companies only operate out of their own region, and those covering multiple regions tend not to branch out too far, I am considering displaying the list of regions gradually based on proximity. I realize at some point (I'm using 3 passes for now) the full list will need to be displayed; I'm just trying to delay the user from reaching that point as it's a definite edge case.
Here is a PNG mockup that explains this concept a bit more clearly. (196kb)
Questions:
What suggestions do you have for the actual form interaction? This has not been presented to representative end users yet, but I'm open to all suggestions during the prototyping stage.
Do you think 'rolling up' US states and/or Canadian provinces between transitions will negatively affect the user's spatial memory?
More clearly: after the 3rd pass, the company will operate in every US state - so convert those 50 inputs into one.
Are there any existing applications that have utilized this approach to use as a baseline or demo?
And, since I know my developer will want to know - what would be the easiest way to store each region's proximity? Lat/long of the center? Lat/long of each corner of a 'bounding box' (more accurate)? I'm assuming we will end up writing some proximity calculations based on the lat/long of the company's actual address.
Are you expecting users to read the map in order to know what list of checkboxes to go to? If your users have than level of geographic ability, then it’s less work for them to select the regions directly from the map, rather than have them make the map-to-Proximity-Level cognitive transfer, followed by a Proximity-Level-to-region transfer.
If some users do not have that level geographic expertise (you may be surprised how many Americans cannot find their own state on a US map), then I’d try, perhaps in addition to the map, no more than two lists, one proximal (the default) with regions close to the home address, and one exhaustive. I can’t see users with weak geographic abilities being be able to handle multiple arbitrary levels of proximity. People who can’t read maps well are not going to able to estimate the proximity level of one region to another. So the idea is to try a proximal list and if that doesn’t work, then forget about proximity and go exhaustive –don’t send your users wandering among proximity levels looking for Idaho (“I swear it’s near Indiana”).
By default, show the proximal list with regions likely to satisfy most of your users based on research of your likely clients. A “more” button displays the exhaustive list. Both lists should be sorted alphabetically, except first subdivide the exhaustive list into States of the US, Provinces & Territories of Canada, and Country (which includes the US (all) and Canada (all)).
You can provide some command buttons to select multiple regions (e.g., “All 48 contiguous US states, All of South America), allowing users to de-select some regions afterward. For this reason, I wouldn’t roll anything up until the user commits the input.
As an example of someone using a map plus list (all in HTML, no less), see http://justaddwater.dk/2007/12/21/map-with-positions-in-css/
I am not really clear what it is that you are trying to achieve from the current UI (are you looking for branch offices? other companies? etc?)
I am not a big fan of using pure geographical proximity to define regions. For example, if one company operates in NYC, it could have an office in NJ which could well be as far as the moon. On the other hand, for a company in anchorage, an office in Vancouver could still be within the region. Unfortunately, state boundaries are fairly meaningless too. For example, I live in western PA, and can tell you that while Pittsburgh and Philly are in the same state, they could be different countries for all that matters, and most companies have offices in each.
If your project is lamp based, why not just let a user click a point on the map, and based on that ask him what he means (e.g., nearest city, entire county, entire state, entire country?. If you then need to define the entire region, you can perhaps use some sort of a grab tool to click or delineate all the other regions that could be part of it?
Either way, present your offices as pushpins on the map, and then maybe have a list on the side the way that standard google maps handles searches.
It may be a lot of work, but if it's an important form, users may prefer that over manual text entry or selections from a list.

Resources