Opensplice failed to build dcpsisocpp2 - makefile

I downloaded the latest source code of Opensplice DDS from https://github.com/ADLINK-IST/opensplice and tried to build it by following its instructions (source setenv, source ./configure, then make ..) in my Cygwin 64 bit.
The build (make command) appeared to be completed, but a number of modules such as dcpsisocpp2, durability, spliced didn't get built (I can't find dcpsisocpp2.dll, etc).
I wonder if anyone who is familar with Opensplice's makefile system can direct me to solve the problem.

You should identify you are going to use community or enterprise version.
It seems the community version doesn't have spliced and durability services. Also, dcpsisocpp2 use C++03 which is a very old C++ standard, that when you use C++11 or C++14 writing your application, you might get some warning or error and spend lots of time fixing compile problems.
Try to use dcpssacpp which follows the C++11 standard.

Related

How to install CBC for Pyomo locally on Windows machine?

My goal is to connect the open-source CBC solver with Pyomo in Spyder. I am working on a Windows 10 machine and it is not an option for me to use the NEOS server due to company policy.
I have downloaded the binaries from Bintray (https://bintray.com/coin-or/download/Cbc#files) that include a cbc.exe file. However when trying to run it, several errors come up stating that I am missing files (among other libbz2-1.dll and zlib1.dll). I do not know much about linux or software development but after a lot of time on google I understand that these are used for unpacking data among other things. I found all files except zlib1.dll in a developer chat on the same subject and zlib1.dll I found on another page. However when running I now get the error: “The application was unable to start correctly (0xc000007b).
I have also tried downloading MSYS2 MinGW and followed instructions from CBC. I don’t know if I require this or if it is only for developers.
Can anyone tell me what to do? I suspect other people than myself want to use CBC in Pyomo as an alternative to GLPK.
If you already have the .exe file, make sure it is in your current working folder (set as the working directory in Spyder, simply opening your file is not enough) and call it using the SolveFactory function:
opt = SolverFactory("cbc.exe")
results = opt.solve(model)
It works for me.
You will find some general information here where i outlined some approaches.
While this was targeted at Clp, it also applies to Cbc.
It's a bit strange as i observed too, that some libs are not statically linked (zlib) while it's certainly doable. But as mentioned in the thread, this should not be the case anymore (see the restriction about which files are fully statically linked) and therefore your observation is strange (and you did not say, which file you downloaded).
So i would trying one of the following (in this order):
Try again with your source, but stick to the master-versions (see first link) as the maintainer only guaranteed fully-static builds for those!
Use the builds from AMPL
(tested and works for me; generally recommended in terms of quality/stability of builds)
Use the builds from coin-or/pulp, another modelling-tool for python
(tested and works for me)
Compile from source using mingw64
(Use any build and provide some external dll of zlib and co -> hard to debug)
Of course i completely ignored other potential issues:
license-stuff (what's part of those builds)
not sure if a company can afford to use binaries not build themself in regards to legal stuff
version-compatibility with python
does every version of Cbc work
cbc version + configuration
modern version
compiled with multi-threading
...

How to create visual studio projects that use LLVM

I'm trying to use LLVM to implement a compiler for a toy language. Something like the Kaleidoscope Tutorial. I'm using Visual Studio on 64 bit Windows.
I've managed to build LLVM and clang using VS, but now I want to use the LLVM libraries in my own project. It seems like a silly question but how to I do this? What compiler options do I need? What libraries should I link with etc. etc.
As far as I can see this isn't covered anywhere in the LLVM documentation although I could have easily missed it.
I discovered llvm-config which is designed to solve the problems I'm having. It often seems to give incorrect information (for instance llvm-config --includedir is wrong) but it at least gives me a list of libraries to link with.
I suppose I could also use CMake to generate project files, but CMake seems to be difficult to learn from free resources.

building boost with clang 3.8 on windows

From some Googling around it seems that clang's support for windows has been improving recently and boost's support for clang may also have improved. But I'm fairly new to all this heavy-lifting compiler configuration stuff and new to boost, so I'm not sure what the current status really is.
I'm trying to run the command:
b2 --build-dir=build toolset=clang --build-type=complete stage
as suggested in section 5.2.4 in www.boost.org/.../getting_started/windows.
This does work to some extent, but watching the logs being printed to screen I see a few worrying things:
statements starting clang-linux.compile.c++.... even though I am on windows.
12 warnings generated. (or similar) perhaps always these are -Wunused-local-typedef, but I'm not sure.
2 warnings and 8 errors generated (or similar) surely if there are errors the build has failed? How am I supposed to know which component of boost has not built properly and what can I do to fix this?
I'm not clear whether I need MSVC the compiler, Visual Stufio the IDE, and/or MinGW and whether I need to manually set flags to pass to the compiler? Perhaps clang+boost is not ready for windows yet?
Ultimately I want to use boost.python, and at a later date maybe boost.coroutine.
Presumably if I want to use clang for my own projects I need to compile boost with clang too?
bootstrap --with-toolset=clang-win
b2 toolset=clang-win
Make sure that clang.exe is on your PATH.

How to install and use open source library on Windows?

I'd like to use open source library on Windows. (ex:Aquila, following http://aquila-dsp.org/articles/iteration-over-wave-file-data-revisited/) But I can't understand anything about "Build System"... Everyone just say like, "Unzip the tar, do configure, make, make file" at Linux, but I want to use them for Windows. There are some several questions.
i) Why do I have to "Install" for just source code? Why can't I use these header files by copying them to the working directory and throw #include ".\aquila\global.h" ??
ii) What are Configuration and Make/Make Install? I can't understand them. I just know that configuration open source with Windows need "CMake", and it is configuration tool... But what it actually does??
iii) Though I've done : cmake, mingw32-make, mingw32-make install... My compiler said "undefined references to ...". What this means and what should I do with them?
You don't need to install for sources. You do need to install for the libraries that get built from that source code and that your code is going to use.
configure is the standard name for the script that does build configuration for the software about to be built. The usual way it is run (and how you will see it mentioned) is ./configure.
make is a build management tool (as the tag here on SO will tell you). One of the most common mechanisms for building code on linux (etc.) is to use the autotools suite which uses the aforementioned configure script to generate build configuration information for use by generated makefiles which make then uses to build the software. make is also the way to run the default build target defined in a makefile (which is often the all target and which usually builds the appropriate library/binary/etc.).
make install is a specific, secondary, invocation of the make tool on the install target which (generally) installs the (in this case previously) built code into an appropriate location (in the autotools/configure universe the default location is generally under /usr/local).
cmake is, again as the SO tag says, a build system that generates configuration files for other build tools (make, VS, etc.). This allows the developers to create the build configuration once and build on multiple platforms/etc. (at least in theory).
If running cmake worked correctly then it should have generated the correct information for whatever target system you told it to use (make or VS or whatever). Assuming that was make that should have allowed mingw32-make to build the software correctly (assuming additionally that mingw32-make is not a distinct cmake target than make). If that is not working correctly then something is still missing from your system (and cmake probably should have caught that).
But to give any more detail you will need to give more detail about what errors you are actually getting and from what command.
(Oh, and on Windows, and especially if you plan on building your software with VS (or some other non-mingw32-make tool) the chances of you needing to run mingw32-make install are incredibly small).
For Windows use cmake or latest ninja.
The process is not simple or straight, but achievable. You need to write CMake configuration.
Building process is not simple and straight, that's why there exists language like Java(that's another thing though)
Rely on CMake build the library, and you will get the Open-Source library for Windows.
You can distribute this as library for Windows systems, distribute and integrate with your own software, include the Open Source library, in either cases, you would have to build it for Windows.
Writing CMake helps, it would be helpful to build for other platforms as well.
Now Question comes: Is there any other way except CMake for Windows Build
Would you love the flavor of writing directly Assembly?
If obviously answer is no, you would have to write CMake and generate sln for MSVC and other compilers.
Just fix some of the errors comes, read the FAQ, Documentation before building an Open Source library. And fix the errors as they lurk through.
It is like handling burning iron, but it pays if you're working on something meaningful. Most of the server libraries are Open Source(e.g. age old Apache httpd). So, think before what you're doing.
There are also not many useful Open Source libraries which you could use in your project, but it's the way to Use the Open Source libraries.

How do you build the Windows D3D9 refrast from source?

Microsoft distributes source code to reference implementations of their different Direct3D APIs to hardware vendors, driver developers, etc. This code builds using the ever-cryptic WDK (formerly DDK) build system, and virtually never works out-of-the-box. Though widely used, this code is semi-private, so there is never any basic helpful information available on the wider web. This is commonly used enough (and a well-known pain in the ass in this community), and the basic build information insensitive enough, that it should be discoverable on Google.
The build readme suggests using the WDK and building with the command build -cz -daytona. This, confusingly, spits out a bunch of output yet builds nothing.
Getting past this, the Vista with WDK 6001.18002, the latest d3def9 source distribution fails in the link subproject with "failed to produce any output - warning treated as error."
The XP d3dref9.dll can also be confusing to build, frequently failing to find D3D headers and types.
There are generally two major issues quite common in building the refrast source drops as they come direct from Microsoft.
First, the build -cz -daytona command is either a typo or relies on undocumented additional external configuration. Building in this mode parses all the source, but never specifies which platform(s) to build. Since all platform dirs (daytona and win9x), where the actual outputs are specified, are "optional," nothing is ever actually built. The solution to this is to instead use the correctly-specified command build -cz daytona (no '-' on daytona). This should parse the sources and then actually build everything.
Past this, there are usually also problems with the out-of-the-box build setup.
The new WDKs (e.g. on Vista) generally fail in the final linking step with a spurious linker error. This is easily fixed by adding:
LIBRARIAN_FLAGS = $(LIBRARIAN_FLAGS) /IGNORE:4001
to the link/sources.inc build file. After this, build -cz daytona in the root of the source drop should build and link everything out-of-the-box.
On XP, it is also common to have issues if using older DDKs (pre-Windows Server 2003, i.e. "XP"-labeled DDKs). In particular, the refrast project relies on core D3D9 headers existing externally, and these are not included in the XP DDK. Simply using the latest WDKs (rebranded from "DDK" post-XP) solves this. Contrary to the naming, all newer WDKs are generally supersets of older releases, and so include build environments for platforms back through XP.
There may also be issues with some XP refrast source releases including code which triggers more pedantic compiler errors in the newer WDK compiler releases. These, however, can usually be easily fixed by iterative compilation and source tweaking in response to any simple safety/correctness errors raised by the compiler.

Resources