Find the first missing integer in the sequence of integers
[4,5,1,2,6,7] missing is 3
Then when there is repeated integers
[1,2,2,2,5,8,9] still missing 3
When you also have negative
[-2,0, 1,2,] missing -1
[1,2,3,4,5] missing 6 or 0
Can anyone help me find a good algorithm to cover all these cases. I have an algorithm which covers first 2 cases but not sure how to cover all the cases in effective manner.
What I consider the classic O(n) solution for this problem is to rely on the fact that the array can contain at most N unique numbers, where N is the input's length. Therefore the range for our record is restricted to N.
Since you seem to allow the expected sequence to start anywhere, including negative numbers, we can start by iterating once over the array and recording, L, the lowest number seen. Now use L as an offset so that 0 + L equals the first number we expect to be present.
Initialise an array record of length (N + 1) and set each entry to false. Iterate over the input and for each entry, A[i], if (A[i] - L) is not greater than N, set record[ A[i] - L ] to true. For example:
[-2, 0, 1, 2] ->
N = 4
L = -2
-2 -> -2 - (-2) = 0
-> record[0] = true
0 -> 0 - (-2) = 2
-> record[2] = true
1 -> 1 - (-2) = 3
-> record[3] = true
2 -> 2 - (-2) = 4
-> record[4] = true
record -> [true, false, true, true, true]
Now iterate over the record. Output the first entry at index i that is set to false as i + L. In our example above, this would be:
record[1] is false
output: 1 + (-2) -> -1
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
int main()
{
int n;
scanf("%d",&n);
int a[n],i=0;
//Reading elements
for(i=0;i<n;i++){
scanf("%d",&a[i]);
}
int min=__INT_MAX__,max=0;
//Finding the minimun and maximum from given elements
for(i=0;i<n;i++){
if(a[i]>max)
max=a[i];
if(a[i]<min)
min=a[i];
}
int len=max-min,diff=0-min,miss;
int b[len];
//Creating a new array and assigning 0
for(i=0;i<len;i++)
b[i]=0;
//The corresponding index value is incremented based on the given numbers
for(i=0;i<n;i++){
b[a[i]+diff]++;
}
//Finding the missed value
for(i=0;i<len;i++){
if(b[i]==0){
miss=i-diff;
break;
}
}
printf("%d",miss);
}
Code Explanation:
1.Find the minimum and maximum in the given numbers.
2.Create an count array of size (maximum-minimum) and iniatizing to 0, which maintains the count of the given numbers.
3.Now by iterating, for each given element increment the corresponding index by 1.
4.Finally iterate through the count array and find the first missing number.
This might help you in solving your problem. Correct me if i'm wrong.
I think, it will be easy to solve sort of problems using data-structure like TreeMap in JAVA, e.g:
treeMap.put(array[i], treeMap.get(array[i]) == null ? 1 : treeMap.get(array[i]) + 1);
So, you are putting key and value to the TreeMap the key represent the digit itself e.g, 1,2,3... and the value represent the occurrence times.
Thus, and by taking advantage of this data-structure (Sort elements for us) you can loop through this data-structure and check which key is missing in the sequence, e.g:
for key in treeMap
if(key > currentIndex) // this is the missing digit
if(loop-completed-without-missing-key) // it's not in the array.
Add the numbers to a running array and keep them sorted.
You may also have optional minimum and maximum bounds for the array (to handle your third case, "6 is missing even if not in array"
On examination of a new number:
- try inserting it in the sorting array.
- already present: discard
- below minimum or above maximum: nullify minimum or maximum accordingly
- otherwise add in proper position.
To handle an array: sort it, compare first and last elements to expected minimum / maximum. Nullify minimum if greater than first element, nullify maximum if smaller than last element.
There might be a special case if minimum and maximum are both above first or both above last:
min=5 max=8 array = [ 10, 11, 13 ]
Here 5, 6, 7, 8 and 12 are missing, but what about 9? Should it be considered missing?
When checking for missing numbers include:
- if minimum is not null, all numbers from minimum to first element.
- if maximum is not null, all numbers from last element to maximum.
- if (last - first) = number of elements, no numbers are missing
(total numbers examined minus array size is duplicate count)
- otherwise walk the array and report all missing numbers: when
checking array[i], if array[i]-array[i-1] != 1 you have a gap.
only "first" missing
You still have to manage the whole array even if you're only interested in one missing number. For if you discarded part of the array, and the missing number arrived, then the new missing number might well have been in the discarded part of the array.
However you might keep trace of what the smallest missing number is, and recalculate with cost of o(log n) only when/if it arrives; then you'd be able to tell which is it in o(1) time. To quickly zero on that missing number, consider that there is a gap between arr[i] and arr[j] iff arr[j]-arr[i] > j-i.
So you can use the bisection method: start with i = first, j = last; if gap(i,j) then c = ceil(i+j)/2. If gap(i, c) then j = c, else i = c, and repeat until j-i = 1. At that point arr[i]+1 is your smallest missing number.
Related
We have a number N and the problem is to find the smallest even number E such that E > N and digits in N and E are same. Digits in N could be huge.
For example
1 -> 34722641 answer would be 34724126
111 -> no even number is possible just greater then it.
1123 -> output would be 1132
I have done it with brute force by making all the permutations of the digits of the number. I was thinking if a better approach is there for it? A code would be better.
Thanks.
You can use the following strategy in finding the next permutation:
Lets say your number = 12344875
To find the next permutations which is bigger, you start from the right and find the first number is smaller than the previous one.
In this case: number = 12344875, this is 4.
Now you start from the 4 moving right and find the smallest number there.
Which is the 5 -> 875. Now swap those 2 numbers resulting in 12345874.
After the swap sort the numbers after the 5 in ascending order. 12345874 --> 12345784.
This strategy will always lead to next permutations wich is bigger, only this gives both even and uneven numbers.
So for finding the next even permutations, you need to change this slightly.
If in last step you have an even number, permutate that part till its an even number.
Otherwise start again from the right. And find the first even number, which has a larger number to its right side. For example with the number = 123475531.
Now swap with smallest number to its right which is greater than 4.
Resulting in the following 123575431.
From this put the even number 4 at the end and put the numbers between
the swapped numbers in ascending order, 123575314 --> 123513574.
For the case were you have the following number 136531. There is no even number with a greater number to the right. So you look at the next number,
and see if to the right there is a number wich is greater (but not the first even number). Here it is for 136531 --> 136531 so swap those and put the even number at the back and finally put in ascending order. 136531 --> 156331 --> 153316 --> 151336.
There is no solution when the number is in descending order(for example 97654).
While making this explaination I realised that for an even number this gets more convoluted. Ill try to improve the answer later on.
I hope this was useful.
Cheers
Find the rightmost digit, i, that has a higher digit, j, to its right, where j is not the highest even digit to its right, e. Pick the smallest such j, switch i and j, place e as the rightmost digit, and sort (ascending) the digits to the right of where i was (excluding e).
Find the next greater number for a given number. For eg - for 1234, the next greater number is 1243 and for 534976 the next greater is 536479.
The algorithm can be found here. If the last digit is even then you've found the next greater even number.
Otherwise, repeat the above step until we find the even number.ie-find the next greater even
number than this with the now the new input number as the one that
we output in the previous step (even if we didn't find the desired
output(greater even number))
For eg - Input number - 21856521, running the first steps yields - 21861255(odd) so we again run step 1 on 21861255 which yields 21861525(again odd), running again yields 21861552
PS: C++ code:
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int main(){
string s;cin>>s;
int n = s.length();
while(true){
int idx = -1;
for(int i=n-2;i>=0;--i){
if(s[i]<s[i+1]){
idx = i;
break;
}
}
if(idx==-1){
cout<<-1<<endl;
break;
}
int swapidx = -1;
for(int i=n-1;i>=idx+1;--i){
if(s[i]>s[idx]){
swapidx = i;
break;
}
}
swap(s[idx],s[swapidx]);
//swapidx will never remain -1 bcz. we will surely find an element greater than s[idx](the right next element to idx is greater than s[idx])
sort(s.begin()+idx+1,s.end());
if((s[n-1]-'0')%2==0){
cout<<s<<endl;
break;
}
}
return 0;
}
def getNextEven(self,x):
s,p,flag,r = [],0,0,int(x)
for i in x:
p +=int(i)
if int(i)%2==0:
flag=1
s.append(i)
if flag==0:
return -1
n,x = len(s),int(x)
while r%2!=0 or r<=x:
l,k = -1,-1
for i in range(n-2,-1,-1):
if s[i]<s[i+1]:
k = i
break
if k==-1:
return -1
for i in range(k+1,n):
if s[k]<s[i]:
l = i
s[k],s[l] = s[l],s[k]
s = s[:k+1]+s[k+1:][::-1]
r = int(''.join(s))
return r
The problem I've seen is as bellow, anyone has some idea on it?
http://judgecode.com/problems/1011
Given a permutation of integers from 0 to n - 1, sorting them is easy. But what if you can only swap a pair of integers every time?
Please calculate the minimal number of swaps
One classic algorithm seems to be permutation cycles (https://en.wikipedia.org/wiki/Cycle_notation#Cycle_notation). The number of swaps needed equals the total number of elements subtracted by the number of cycles.
For example:
1 2 3 4 5
2 5 4 3 1
Start with 1 and follow the cycle:
1 down to 2, 2 down to 5, 5 down to 1.
1 -> 2 -> 5 -> 1
3 -> 4 -> 3
We would need to swap index 1 with 5, then index 5 with 2; as well as index 3 with index 4. Altogether 3 swaps or n - 2. We subtract n by the number of cycles since cycle elements together total n and each cycle represents a swap less than the number of elements in it.
Here is a simple implementation in C for the above problem. The algorithm is similar to User גלעד ברקן:
Store the position of every element of a[] in b[]. So, b[a[i]] = i
Iterate over the initial array a[] from left to right.
At position i, check if a[i] is equal to i. If yes, then keep iterating.
If no, then it's time to swap. Look at the logic in the code minutely to see how the swapping takes place. This is the most important step as both array a[] and b[] needs to be modified. Increase the count of swaps.
Here is the implementation:
long long sortWithSwap(int n, int *a) {
int *b = (int*)malloc(sizeof(int)*n); //create a temporary array keeping track of the position of every element
int i,tmp,t,valai,posi;
for(i=0;i<n;i++){
b[a[i]] = i;
}
long long ans = 0;
for(i=0;i<n;i++){
if(a[i]!=i){
valai = a[i];
posi = b[i];
a[b[i]] = a[i];
a[i] = i;
b[i] = i;
b[valai] = posi;
ans++;
}
}
return ans;
}
The essence of solving this problem lies in the following observation
1. The elements in the array do not repeat
2. The range of elements is from 0 to n-1, where n is the size of the array.
The way to approach
After you have understood the way to approach the problem ou can solve it in linear time.
Imagine How would the array look like after sorting all the entries ?
It will look like arr[i] == i, for all entries . Is that convincing ?
First create a bool array named FIX, where FIX[i] == true if ith location is fixed, initialize this array with false initially
Start checking the original array for the match arr[i] == i, till the time this condition holds true, eveything is okay. While going ahead with traversal of array also update the FIX[i] = true. The moment you find that arr[i] != i you need to do something, arr[i] must have some value x such that x > i, how do we guarantee that ? The guarantee comes from the fact that the elements in the array do not repeat, therefore if the array is sorted till index i then it means that the element at position i in the array cannot come from left but from right.
Now the value x is essentially saying about some index , why so because the array only has elements till n-1 starting from 0, and in the sorted arry every element i of the array must be at location i.
what does arr[i] == x means is that , not only element i is not at it's correct position but also the element x is missing from it's place.
Now to fix ith location you need to look at xth location, because maybe xth location holds i and then you will swap the elements at indices i and x, and get the job done. But wait, it's not necessary that the index x will hold i (and you finish fixing these locations in just 1 swap). Rather it may be possible that index x holds value y, which again will be greater than i, because array is only sorted till location i.
Now before you can fix position i , you need to fix x, why ? we will see later.
So now again you try to fix position x, and then similarly you will try fixing till the time you don't see element i at some location in the fashion told .
The fashion is to follow the link from arr[i], untill you hit element i at some index.
It is guaranteed that you will definitely hit i at some location while following in this way . Why ? try proving it, make some examples, and you will feel it
Now you will start fixing all the index you saw in the path following from index i till this index (say it j). Now what you see is that the path which you have followed is a circular one and for every index i, the arr[i] is tored at it's previous index (index from where you reached here), and Once you see that you can fix the indices, and mark all of them in FIX array to be true. Now go ahead with next index of array and do the same thing untill whole array is fixed..
This was the complete idea, but to only conunt no. of swaps, you se that once you have found a cycle of n elements you need n swaps, and after doing that you fix the array , and again continue. So that's how you will count the no. of swaps.
Please let me know if you have some doubts in the approach .
You may also ask for C/C++ code help. Happy to help :-)
For generating a pseudo-random permutation, the Knuth shuffles can be used. An involution is a self-inverse permutation and I guess, I could adapt the shuffles by forbidding touching an element multiple times. However, I'm not sure whether I could do it efficiently and whether it generates every involution equiprobably.
I'm afraid, an example is needed: On a set {0,1,2}, there are 6 permutation, out of which 4 are involutions. I'm looking for an algorithm generating one of them at random with the same probability.
A correct but very inefficient algorithm would be: Use Knuth shuffle, retry if it's no involution.
Let's here use a(n) as the number of involutions on a set of size n (as OEIS does). For a given set of size n and a given element in that set, the total number of involutions on that set is a(n). That element must either be unchanged by the involution or be swapped with another element. The number of involutions that leave our element fixed is a(n-1), since those are involutions on the other elements. Therefore a uniform distribution on the involutions must have a probability of a(n-1)/a(n) of keeping that element fixed. If it is to be fixed, just leave that element alone. Otherwise, choose another element that has not yet been examined by our algorithm to swap with our element. We have just decided what happens with one or two elements in the set: keep going and decide what happens with one or two elements at a time.
To do this, we need a list of the counts of involutions for each i <= n, but that is easily done with the recursion formula
a(i) = a(i-1) + (i-1) * a(i-2)
(Note that this formula from OEIS also comes from my algorithm: the first term counts the involutions keeping the first element where it is, and the second term is for the elements that are swapped with it.) If you are working with involutions, this is probably important enough to break out into another function, precompute some smaller values, and cache the function's results for greater speed, as in this code:
# Counts of involutions (self-inverse permutations) for each size
_invo_cnts = [1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152]
def invo_count(n):
"""Return the number of involutions of size n and cache the result."""
for i in range(len(_invo_cnts), n+1):
_invo_cnts.append(_invo_cnts[i-1] + (i-1) * _invo_cnts[i-2])
return _invo_cnts[n]
We also need a way to keep track of the elements that have not yet been decided, so we can efficiently choose one of those elements with uniform probability and/or mark an element as decided. We can keep them in a shrinking list, with a marker to the current end of the list. When we decide an element, we move the current element at the end of the list to replace the decided element then reduce the list. With that efficiency, the complexity of this algorithm is O(n), with one random number calculation for each element except perhaps the last. No better order complexity is possible.
Here is code in Python 3.5.2. The code is somewhat complicated by the indirection involved through the list of undecided elements.
from random import randrange
def randinvolution(n):
"""Return a random (uniform) involution of size n."""
# Set up main variables:
# -- the result so far as a list
involution = list(range(n))
# -- the list of indices of unseen (not yet decided) elements.
# unseen[0:cntunseen] are unseen/undecided elements, in any order.
unseen = list(range(n))
cntunseen = n
# Make an involution, progressing one or two elements at a time
while cntunseen > 1: # if only one element remains, it must be fixed
# Decide whether current element (index cntunseen-1) is fixed
if randrange(invo_count(cntunseen)) < invo_count(cntunseen - 1):
# Leave the current element as fixed and mark it as seen
cntunseen -= 1
else:
# In involution, swap current element with another not yet seen
idxother = randrange(cntunseen - 1)
other = unseen[idxother]
current = unseen[cntunseen - 1]
involution[current], involution[other] = (
involution[other], involution[current])
# Mark both elements as seen by removing from start of unseen[]
unseen[idxother] = unseen[cntunseen - 2]
cntunseen -= 2
return involution
I did several tests. Here is the code I used to check for validity and uniform distribution:
def isinvolution(p):
"""Flag if a permutation is an involution."""
return all(p[p[i]] == i for i in range(len(p)))
# test the validity and uniformness of randinvolution()
n = 4
cnt = 10 ** 6
distr = {}
for j in range(cnt):
inv = tuple(randinvolution(n))
assert isinvolution(inv)
distr[inv] = distr.get(inv, 0) + 1
print('In {} attempts, there were {} random involutions produced,'
' with the distribution...'.format(cnt, len(distr)))
for x in sorted(distr):
print(x, str(distr[x]).rjust(2 + len(str(cnt))))
And the results were
In 1000000 attempts, there were 10 random involutions produced, with the distribution...
(0, 1, 2, 3) 99874
(0, 1, 3, 2) 100239
(0, 2, 1, 3) 100118
(0, 3, 2, 1) 99192
(1, 0, 2, 3) 99919
(1, 0, 3, 2) 100304
(2, 1, 0, 3) 100098
(2, 3, 0, 1) 100211
(3, 1, 2, 0) 100091
(3, 2, 1, 0) 99954
That looks pretty uniform to me, as do other results I checked.
An involution is a one-to-one mapping that is its own inverse. Any cipher is a one-to-one mapping; it has to be in order for a cyphertext to be unambiguously decrypyed.
For an involution you need a cipher that is its own inverse. Such ciphers exist, ROT13 is an example. See Reciprocal Cipher for some others.
For your question I would suggest an XOR cipher. Pick a random key at least as long as the longest piece of data in your initial data set. If you are using 32 bit numbers, then use a 32 bit key. To permute, XOR the key with each piece of data in turn. The reverse permutation (equivalent to decrypting) is exactly the same XOR operation and will get back to the original data.
This will solve the mathematical problem, but it is most definitely not cryptographically secure. Repeatedly using the same key will allow an attacker to discover the key. I assume that there is no security requirement over and above the need for a random-seeming involution with an even distribution.
ETA: This is a demo, in Java, of what I am talking about in my second comment. Being Java, I use indexes 0..12 for your 13 element set.
public static void Demo() {
final int key = 0b1001;
System.out.println("key = " + key);
System.out.println();
for (int i = 0; i < 13; ++i) {
System.out.print(i + " -> ");
int ctext = i ^ key;
while (ctext >= 13) {
System.out.print(ctext + " -> ");
ctext = ctext ^ key;
}
System.out.println(ctext);
}
} // end Demo()
The output from the demo is:
key = 9
0 -> 9
1 -> 8
2 -> 11
3 -> 10
4 -> 13 -> 4
5 -> 12
6 -> 15 -> 6
7 -> 14 -> 7
8 -> 1
9 -> 0
10 -> 3
11 -> 2
12 -> 5
Where a transformed key would fall off the end of the array it is transformed again until it falls within the array. I am not sure if a while construction will fall within the strict mathematical definition of a function.
I am trying to find different sequences of fixed length which can be generated using the numbers from a given set (distinct elements) such that each element from set should appear in the sequence. Below is my logic:
eg. Let the set consists of S elements, and we have to generate sequences of length K (K >= S)
1) First we have to choose S places out of K and place each element from the set in random order. So, C(K,S)*S!
2) After that, remaining places can be filled from any values from the set. So, the factor
(K-S)^S should be multiplied.
So, overall result is
C(K,S)S!((K-S)^S)
But, I am getting wrong answer. Please help.
PS: C(K,S) : No. of ways selecting S elements out of K elements (K>=S) irrespective of order. Also, ^ : power symbol i.e 2^3 = 8.
Here is my code in python:
# m is the no. of element to select from a set of n elements
# fact is a list containing factorial values i.e. fact[0] = 1, fact[3] = 6& so on.
def ways(m,n):
res = fact[n]/fact[n-m+1]*((n-m)**m)
return res
What you are looking for is the number of surjective functions whose domain is a set of K elements (the K positions that we are filling out in the output sequence) and the image is a set of S elements (your input set). I think this should work:
static int Count(int K, int S)
{
int sum = 0;
for (int i = 1; i <= S; i++)
{
sum += Pow(-1, (S-i)) * Fact(S) / (Fact(i) * Fact(S - i)) * Pow(i, K);
}
return sum;
}
...where Pow and Fact are what you would expect.
Check out this this math.se question.
Here's why your approach won't work. I didn't check the code, just your explanation of the logic behind it, but I'm pretty sure I understand what you're trying to do. Let's take for example K = 4, S = {7,8,9}. Let's examine the sequence 7,8,9,7. It is a unique sequence, but you can get to it by:
Randomly choosing positions 1,2,3, filling them randomly with 7,8,9 (your step 1), then randomly choosing 7 for the remaining position 4 (your step 2).
Randomly choosing positions 2,3,4, filling them randomly with 8,9,7 (your step 1), then randomly choosing 7 for the remaining position 1 (your step 2).
By your logic, you will count it both ways, even though it should be counted only once as the end result is the same. And so on...
This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Finding sorted sub-sequences in a permutation
Given an array A which holds a permutation of 1,2,...,n. A sub-block A[i..j]
of an array A is called a valid block if all the numbers appearing in A[i..j]
are consecutive numbers (may not be in order).
Given an array A= [ 7 3 4 1 2 6 5 8] the valid blocks are [3 4], [1,2], [6,5],
[3 4 1 2], [3 4 1 2 6 5], [7 3 4 1 2 6 5], [7 3 4 1 2 6 5 8]
So the count for above permutation is 7.
Give an O( n log n) algorithm to count the number of valid blocks.
Ok, I am down to 1 rep because I put 200 bounty on a related question: Finding sorted sub-sequences in a permutation
so I cannot leave comments for a while.
I have an idea:
1) Locate all permutation groups. They are: (78), (34), (12), (65). Unlike in group theory, their order and position, and whether they are adjacent matters. So, a group (78) can be represented as a structure (7, 8, false), while (34) would be (3,4,true). I am using Python's notation for tuples, but it is actually might be better to use a whole class for the group. Here true or false means contiguous or not. Two groups are "adjacent" if (max(gp1) == min(gp2) + 1 or max(gp2) == min(gp1) + 1) and contigous(gp1) and contiguos(gp2). This is not the only condition, for union(gp1, gp2) to be contiguous, because (14) and (23) combine into (14) nicely. This is a great question for algo class homework, but a terrible one for interview. I suspect this is homework.
Just some thoughts:
At first sight, this sounds impossible: a fully sorted array would have O(n2) valid sub-blocks.
So, you would need to count more than one valid sub-block at a time. Checking the validity of a sub-block is O(n). Checking whether a sub-block is fully sorted is O(n) as well. A fully sorted sub-block contains n·(n - 1)/2 valid sub-blocks, which you can count without further breaking this sub-block up.
Now, the entire array is obviously always valid. For a divide-and-conquer approach, you would need to break this up. There are two conceivable breaking points: the location of the highest element, and that of the lowest element. If you break the array into two at one of these points, including the extremum in the part that contains the second-to-extreme element, there cannot be a valid sub-block crossing this break-point.
By always choosing the extremum that produces a more even split, this should work quite well (average O(n log n)) for "random" arrays. However, I can see problems when your input is something like (1 5 2 6 3 7 4 8), which seems to produce O(n2) behaviour. (1 4 7 2 5 8 3 6 9) would be similar (I hope you see the pattern). I currently see no trick to catch this kind of worse case, but it seems that it requires other splitting techniques.
This question does involve a bit of a "math trick" but it's fairly straight forward once you get it. However, the rest of my solution won't fit the O(n log n) criteria.
The math portion:
For any two consecutive numbers their sum is 2k+1 where k is the smallest element. For three it is 3k+3, 4 : 4k+6 and for N such numbers it is Nk + sum(1,N-1). Hence, you need two steps which can be done simultaneously:
Create the sum of all the sub-arrays.
Determine the smallest element of a sub-array.
The dynamic programming portion
Build two tables using the results of the previous row's entries to build each successive row's entries. Unfortunately, I'm totally wrong as this would still necessitate n^2 sub-array checks. Ugh!
My proposition
STEP = 2 // amount of examed number
B [0,0,0,0,0,0,0,0]
B [1,1,0,0,0,0,0,0]
VALID(A,B) - if not valid move one
B [0,1,1,0,0,0,0,0]
VALID(A,B) - if valid move one and step
B [0,0,0,1,1,0,0,0]
VALID (A,B)
B [0,0,0,0,0,1,1,0]
STEP = 3
B [1,1,1,0,0,0,0,0] not ok
B [0,1,1,1,0,0,0,0] ok
B [0,0,0,0,1,1,1,0] not ok
STEP = 4
B [1,1,1,1,0,0,0,0] not ok
B [0,1,1,1,1,0,0,0] ok
.....
CON <- 0
STEP <- 2
i <- 0
j <- 0
WHILE(STEP <= LEN(A)) DO
j <- STEP
WHILE(STEP <= LEN(A) - j) DO
IF(VALID(A,i,j)) DO
CON <- CON + 1
i <- j + 1
j <- j + STEP
ELSE
i <- i + 1
j <- j + 1
END
END
STEP <- STEP + 1
END
The valid method check that all elements are consecutive
Never tested but, might be ok
The original array doesn't contain duplicates so must itself be a consecutive block. Lets call this block (1 ~ n). We can test to see whether block (2 ~ n) is consecutive by checking if the first element is 1 or n which is O(1). Likewise we can test block (1 ~ n-1) by checking whether the last element is 1 or n.
I can't quite mould this into a solution that works but maybe it will help someone along...
Like everybody else, I'm just throwing this out ... it works for the single example below, but YMMV!
The idea is to count the number of illegal sub-blocks, and subtract this from the total possible number. We count the illegal ones by examining each array element in turn and ruling out sub-blocks that include the element but not its predecessor or successor.
Foreach i in [1,N], compute B[A[i]] = i.
Let Count = the total number of sub-blocks with length>1, which is N-choose-2 (one for each possible combination of starting and ending index).
Foreach i, consider A[i]. Ignoring edge cases, let x=A[i]-1, and let y=A[i]+1. A[i] cannot participate in any sub-block that does not include x or y. Let iX=B[x] and iY=B[y]. There are several cases to be treated independently here. The general case is that iX<i<iY<i. In this case, we can eliminate the sub-block A[iX+1 .. iY-1] and all intervening blocks containing i. There are (i - iX + 1) * (iY - i + 1) such sub-blocks, so call this number Eliminated. (Other cases left as an exercise for the reader, as are those edge cases.) Set Count = Count - Eliminated.
Return Count.
The total cost appears to be N * (cost of step 2) = O(N).
WRINKLE: In step 2, we must be careful not to eliminate each sub-interval more than once. We can accomplish this by only eliminating sub-intervals that lie fully or partly to the right of position i.
Example:
A = [1, 3, 2, 4]
B = [1, 3, 2, 4]
Initial count = (4*3)/2 = 6
i=1: A[i]=1, so need sub-blocks with 2 in them. We can eliminate [1,3] from consideration. Eliminated = 1, Count -> 5.
i=2: A[i]=3, so need sub-blocks with 2 or 4 in them. This rules out [1,3] but we already accounted for it when looking right from i=1. Eliminated = 0.
i=3: A[i] = 2, so need sub-blocks with [1] or [3] in them. We can eliminate [2,4] from consideration. Eliminated = 1, Count -> 4.
i=4: A[i] = 4, so we need sub-blocks with [3] in them. This rules out [2,4] but we already accounted for it when looking right from i=3. Eliminated = 0.
Final Count = 4, corresponding to the sub-blocks [1,3,2,4], [1,3,2], [3,2,4] and [3,2].
(This is an attempt to do this N.log(N) worst case. Unfortunately it's wrong -- it sometimes undercounts. It incorrectly assumes you can find all the blocks by looking at only adjacent pairs of smaller valid blocks. In fact you have to look at triplets, quadruples, etc, to get all the larger blocks.)
You do it with a struct that represents a subblock and a queue for subblocks.
struct
c_subblock
{
int index ; /* index into original array, head of subblock */
int width ; /* width of subblock > 0 */
int lo_value;
c_subblock * p_above ; /* null or subblock above with same index */
};
Alloc an array of subblocks the same size as the original array, and init each subblock to have exactly one item in it. Add them to the queue as you go. If you start with array [ 7 3 4 1 2 6 5 8 ] you will end up with a queue like this:
queue: ( [7,7] [3,3] [4,4] [1,1] [2,2] [6,6] [5,5] [8,8] )
The { index, width, lo_value, p_above } values for subbblock [7,7] will be { 0, 1, 7, null }.
Now it's easy. Forgive the c-ish pseudo-code.
loop {
c_subblock * const p_left = Pop subblock from queue.
int const right_index = p_left.index + p_left.width;
if ( right_index < length original array ) {
// Find adjacent subblock on the right.
// To do this you'll need the original array of length-1 subblocks.
c_subblock const * p_right = array_basic_subblocks[ right_index ];
do {
Check the left/right subblocks to see if the two merged are also a subblock.
If they are add a new merged subblock to the end of the queue.
p_right = p_right.p_above;
}
while ( p_right );
}
}
This will find them all I think. It's usually O(N log(N)), but it'll be O(N^2) for a fully sorted or anti-sorted list. I think there's an answer to this though -- when you build the original array of subblocks you look for sorted and anti-sorted sequences and add them as the base-level subblocks. If you are keeping a count increment it by (width * (width + 1))/2 for the base-level. That'll give you the count INCLUDING all the 1-length subblocks.
After that just use the loop above, popping and pushing the queue. If you're counting you'll have to have a multiplier on both the left and right subblocks and multiply these together to calculate the increment. The multiplier is the width of the leftmost (for p_left) or rightmost (for p_right) base-level subblock.
Hope this is clear and not too buggy. I'm just banging it out, so it may even be wrong.
[Later note. This doesn't work after all. See note below.]