I am new to deep learning and I hope you guys can help me.
The following site uses CNN features for multi-class classification:
https://www.mathworks.com/help/deeplearning/examples/feature-extraction-using-alexnet.html
This example extracts features from fully connected layer and the extracted features are fed to ECOC classifier.
In this example, regarding to the whole dataset, there are total 15 samples in each category and in the training dataset, there are 11 samples in each category.
My question are related to the dataset size: If I want to use cnn features for ECOC classification as above example, it must be required to have the number of samples in each category the same?
If so, would you like to explain why?
If not, would you like to show the reference papers which have used different numbers?
Thank you.
You may want to have a balanced dataset to prevent your model from learning a wrong probability distribution. If a category represents 95% of your dataset, a model that classifies everything as part of that category, will have an accuracy of 95%.
Related
We are trying to understand the underlying model of Rasa - the forums there still didnt get us an answer - on two main questions:
we understand that Rasa model is a transformer-based architecture. Was it
pre-trained on any data set? (eg wikipedia, etc)
then, if we
understand correctly, the intent classification is a fine tuning task
on top of that transformer. How come it works with such small
training sets?
appreciate any insights!
thanks
Lior
the transformer model is not pre-trained on any dataset. We use quite a shallow stack of transformer which is not as data hungry as deeper stacks of transformers used in large pre-trained language models.
Having said that, there isn't an exact number of data points that will be sufficient for training your assistant as it varies by the domain and your problem. Usually a good estimate is 30-40 examples per intent.
I have a task of prognosing the quickness of selling goods (for example, in one category). E.g, the client inputs the price that he wants his item to be sold and the algorithm should displays that it will be sold with the inputed price for n days. And it should have 3 intervals of quick, medium and long sell. Like in the picture:
The question: how exactly should I prepare the algorithm?
My suggestion: use clustering technics for understanding this three price ranges and then solving regression task for each cluster for predicting the number of days. Is it a right concept to do?
There are two questions here, and I think the answer to each lies in a different domain:
Given an input price, predict how long will it take to sell the item. This is a well defined prediction problem, and can be tackled using ML algorithms. e.g. use your entire dataset to train and test a regression model for prediction.
Translate the prediction into a class: quick-, medium- or slow-sell. This problem is product oriented - there doesn't seem to be any concrete data allowing you to train a classifier on this translation; and I agree with #anony-mousse that using unsupervised learning might not yield easy-to-use results.
You can either consult your users or a product manager on reasonable thresholds to use (there might be considerations here like the type of item, season etc.), or try getting some additional data in order to train a supervised classifier.
E.g. you could ask your users, post-sell, if they think the sell was quick, medium or slow. Then you'll have some data to use for thresholding or for classification.
I suggest you simply define thesholds of 10 days and 31 days. Keep it simple.
Because these are the values the users will want to understand. If you use clustering, you may end up with 0.31415 days or similar nonintuitive values that you cannot explain to the user anyway.
I have got a new task(not traditional) from my client, It is something about machine learning.
As I have never been to "machine learning" except some little Data Mining stuff so I need your help.
My task is to Classify a product present on any Shopping Site, on the basis of gender(whom the product belongs to),agegroup etc, the training data we can have is the product's Title, Keywords(available in the html of the product page), and product description.
I did a lot of R&D , I found Image Recog APIs(cloudsight,vufind) that returned the details of the product image but that did not full fill the need, used google suggestqueries, searched out many machine learning algorithms and finally...
I came to know about the "Decision Tree Learning Algorithm" but cannot figure out, how it is applicable to my problem.
I tried out the "PlayingTennis" dataset but couldn't make the sense what to do.
Can you give me some direction that from where to start this journey? Should I focus on The Decision Tree Learning algorithm or Is there any other algorithm you would suggest I should focus on to categorize the products on the basis of context?
If you say , I would share in detail about what things I searched about to solve my problem.
I would suggest to do the following:
Go through items in your dataset and classify them manually (decide for which gender each item is). Store each decision so that you would be able to somehow link each item in an original dataset with a target class.
Develop an algorithm for converting each item from your dataset into a feature vector. This algorithm should be able to convert each item in your original dataset in a vector of numbers (more about how to do it later).
Convert all your dataset with appropriate classes into a dataset that would look like this:
Feature_1, Feature_2, Feature_3, ..., Gender
value_1, value_2, value_3, ... male
It would be a good decision to store it in CSV file since you would be able to load it and process in different machine learning tools (More about those later).
Load dataset you've created at step 3 in machine learning tool of your choice and try to come up with the best model that can classify items in your dataset by gender.
Store model created at step 4. It will be part of your production system.
Develop a production code that can convert an unclassified product, create feature vector out of it and pass this feature vector to the model you've saved at step 5. The result of this operation should be a predicted gender.
Details
If there too many items (say tens of thousands) in your original dataset it may be impractical to classify them yourself. What you can do is to use Amazon Mechanical Turk to simplify your task. If you are unable to use it (the last time I've checked you had to have a USA address to use it) you can just classify few hundreds of items to start working on your model and classify the rest to improve accuracy of your classification (the more training data you use the better the accuracy, but up to a certain point)
How to extract features from a dataset
If keyword has form like tag=true/false, it's a boolean feature.
If keyword has form like tag=42, it's a numerical one or ordinal. For example it can be price value or price range (0-10, 10-50, 50-100, etc.)
If keyword has form like tag=string_value you can convert it into a categorical value
A class (gender) is simply boolean value 0/1
You can experiment a bit with how you extract your features, since it may influence the result accuracy.
How to extract features from product description
There are different ways to convert a text into a feature vector. Look for TF-IDF algorithms or something similar.
Machine learning tools
You can use one of existing machine learning libraries and hack some code that loads your CSV dataset, trains a model and checks the accuracy, but at first I would suggest to use something like Weka. It has more or less intuitive UI and you can quickly start to experiment with different machine learning algorithms, convert different features in your dataset from string to categories, or from real values to ordinal values, etc. Good thing about Weka is that it has Java API, so you can automate all the process of data conversion, train models programmatically, etc.
What algorithms to choose
I would suggest to use decision tree algorithms like C4.5. It's fast and show good results on wide range of machine learning tasks. Additionally you can use ensemble of classifiers. There are various algorithms that can combine several algorithms like (google for boosting or random forest to find out more) usually they give better results, but work more slowly (since you need to run a single feature vector through several algorithms.
One another trick that you can use to make your algorithm more accurate is to use models that work on different sets of features (say one algorithm uses features extracted from tags and another algorithm uses data extracted from product description). You can then combine them using algorithms like stacking to come up with a final result.
For classification on the basis of features extracted from text, you can try to use Naive Bayes algorithm or SVM. They both show good results in text classification.
Do consider Support Vector Classifier (SVC), or for Google's sake the Support Vector Machine (SVM). If You have a large training set (which I suspect) search for implementations that are "fast" or "scalable".
I am new to sci-kit learn. I have viewed the online tutorials but they all seem to leverage existing data (e.g., digits, iris, etc). I need the information on how to process images so that they can be used by scikit learn.
Details of my Study: I have a webcam set up outside my office. It captures all of the traffic on my street that passes in the field of view. I have cropped several hundred images of sedans, trucks and SUV's. The goal is to predict whether a vehicle is one of these categories. I have applied Histogram Oriented Gradients (HOG) to these images which I have attached for your review to see the differences in the categories. This blog will not allow me to post any images but you can see them here https://stats.stackexchange.com/questions/149421/obtaining-a-hog-feature-vector-for-implementation-in-svm-in-python. I posted the same question at this site but no response. This post is the closest answer I have found. Resize HOG feature for Scikit-Learn classifier
I wish to train an SVM classifier based on these images. I understand that there are algorithms that exist in scikit-image that prepares the HOG images for use in scikit-learn. Can someone help me understand this process. I am also grateful for any thoughts based on your experience as to the probability of success of this classification study. I also understand that I need to train the model using a negative images ( ones with no vehicles. How is this done?
I know I am asking a lot but I am surprised no one that I am aware of has done a tutorial on these early steps. It seems like a fairly elementary study.
Hey, Here is my problem,
Given a set of documents I need to assign each document to a predefined category.
I was going to use the n-gram approach to represent the text-content of each document and then train an SVM classifier on the training data that I have.
Correct me if I miss understood something please.
The problem now is that the categories should be dynamic. Meaning, my classifier should handle new training data with new category.
So for example, if I trained a classifier to classify a given document as category A, category B or category C, and then I was given new training data with category D. I should be able to incrementally train my classifier by providing it with the new training data for "category D".
To summarize, I do NOT want to combine the old training data (with 3 categories) and the new training data (with the new/unseen category) and train my classifier again. I want to train my classifier on the fly
Is this possible to implement with SVM ? if not, could u recommend me several classification algorithms ? or any book/paper that can help me.
Thanks in Advance.
Naive-Bayes is relatively fast incremental calssification algorithm.
KNN is also incremental by nature, and even simpler to implement and understand.
Both algorithms are implemented in the open source project Weka as NaiveBayes and IBk for KNN.
However, from personal experience - they are both vulnerable to large number of non-informative features (which is usually the case with text classification), and thus some kind of feature selection is usually used to squeeze better performance from these algorithms, which could be problematic to implement as incremental.
This blog post by Edwin Chen describes infinite mixture models to do clustering. I think this method supports automatically determining the number of clusters, but I am still trying to wrap my head all the way around it.
The class of algorithms that matches your criteria are called "Incremental Algorithms". There are incremental versions of almost any methods. The easiest to implement is naive bayes.