Replacing MSVC CRT function with private implementation - windows

I have an embedded IoT project that I like to first develop in part by using PC tools such as VisualStudio. My embedded project has only a flash memory for a file system, and I'd like to redirect fopen fread etc. to my own private implementation on Windows. But what I'm encountering is an inability to have my private CRT library take precedence over the built-in CRT (e.g., built-in behavior driven by /MD compiler switch).
I have a simple three project solution.
Project 1 is a test executable. It has a one line main:
int main()
{
test();
}
Project 2 and 3 are static libraries. Project 2 has:
#include <string.h>
#include <stdio.h>
void test()
{
printf("%s\n", strchr("x", 'x'));
}
Project 3 has:
char * strchr(const char * s, int c) // exact signature of MSVC
{
return "overridden";
}
I expect output to be overridden but instead it is
x
But if I add this to Project 1:
printf("%s\n", strchr("y", 'y'));
The output will be
overridden
overridden
First one from test() in library, second from executable main() directly.
Any suggestions?

The linker resolves symbols on a first match basis - priority to separately linked .obj files, then .lib files in the order presented to the linker of the command line. So you can normally override a library symbol just be linking your own replacement. I have never tried it with MSVC, and it is a somewhat brutal approach.
An alternative solution that does not rely on specific linker behaviour is to use the pre-processor to replace standard symbols with your own alternatives. For example:
#if defined _WIN32
#define fopen test_fopen
FILE* test_fopen( const char * filename, const char * mode ) ;
#endif
add the other macros and declarations you need in a header file called testlib.h for example then use a "forced include" (/FI testlib.h in MSVC) to invisibly include the test interface everywhere. Then when built on Windows, all fopen calls will be replaced with test_fopen calling your replacement functions instead.

If the problem is caused by CRT usage in a static library only, and linker is finding MSVCRT DLL export lib before it finds private CRT static lib, a workaround might be to force a reference to the private CRT in the executable source files.
Example matching code above, placed in main as a global:
static char * (*p_strchr)(const char *, int) = strchr;
It is less than ideal but it alters linker search order in a reliable way.
More findings
There may be combinations (that I don't totally understand) where the linker will emit a LNK1169 "one or more multiply defined symbols" (more than one definition) linker error. For example, it might say fopen is defined more than once, and if you reverse the order of the private and MS libraries on the command line, then it might say fread is defined more than once. Perhaps it is caused by MSVC lib having DLL export signature, and the private lib being an import symbol. The behavior is hard to determine as it doesn't error on all of the functions that are being overridden.
If it is possible to switch all private libraries to /MT compiler switch (use static CRT), then the LNK1169 problem is resolved.

Related

How to specify a "clean" name of DLL exports?

I have defined a DLL-export as follows:
__declspec(dllexport)
DWORD WINAPI DllBootstrap(LPVOID addr) {
return 0;
}
Now, using DUMPBIN, the symbol is displayed as follows:
1 0 0001100A ?DllBootstrap##YGKPAX#Z = #ILT+5(?DllBootstrap##YGKPAX#Z)
And this is how the memory looks in Visual Studio:
ยก}....ReflectDLL.dll.?DllBootstrap##YGKPAX#Z..........................................
when inspecting PIMAGE_EXPORT_DIRECTORY.AddressOfNames.
What I need is a clean symbol, i.e., DUMPBIN should output something like:
1 0 0001100A DllBootstrap
and PIMAGE_EXPORT_DIRECTORY.AddressOfNames should point to:
DllBootstrap..........................................
How can I achieve this?
WIN32 BUILDS:
As #RbMm indicated, to retain your function name as-is and get no name decoration, you must use a .DEF file (and remove the __declspec(dllexport) specifier). Then create a DEF file with the line below and either specify it with the /DEF linker option or add it to your Visual Studio project and it will be picked up automatically by the linker:
EXPORTS DllBootstrap
If you don't want to deal with an external .DEF file and you will be using the Visual C++ compiler, the simplest way to limit decoration using just code is to declare your function with 'extern "C"'. This results in decoration including a preceding underscore and appends an "#" along with the argument's byte count in decimal. The following code for example:
extern "C" __declspec(dllexport)
DWORD WINAPI DllBootstrap(LPVOID addr) {
return 0;
}
produces an exported name of:
_DllBootstrap#4
This is how stdcall functions are decorated when C++ name-mangling is disabled with 'extern "C"'. NOTE: WINAPI maps to __stdcall. Retaining 'extern "C"' and changing the convention to __cdecl, you won't get any decoration whatsoever, but module entrypoints should generally remain stdcall as you have it listed in your sample.
If you still want to avoid a .DEF file, there is one last hack you can employ. Add the following line to your code:
#pragma comment(linker,"/EXPORT:DllBootstrap=_DllBootstrap#4")
This will pass an argument to the linker creating a new undecorated name symbol which maps to the decorated name. This isn't very clean as the original name will still exist in your DLL, but you will get your clean exported name.
WIN64 BUILDS (UPDATE):
As Hans Passant commented, for anyone using the Visual C++ 64-bit compiler, there is only the 64-bit calling convention (stdcall, cdecl, etc. keywords are ignored). While C++ mangling will still occur under this compiler, no additional decoration is made to the exported names. In this case, 'extern "C"' would be enough when the sample is compiled as C++ code; if compiled as C, no modifications would be necessary.

Error: functions that differ only in their return type cannot be overloaded

I'm using mac os 10.9, I have a C++ program that uses freeglut library. When I try to make the project. It gives an error which I don't know if it's my fault or not. This is the message:
In file included from /usr/X11/include/GL/freeglut.h:18:
/usr/X11/include/GL/freeglut_ext.h:177:27: error: functions that differ only in their return type cannot be overloaded
FGAPI GLUTproc FGAPIENTRY glutGetProcAddress( const char *procName );
More information: I used CMake (version 2.8.12) to generate the Makefile, and installed the latest version of Xcode and XQuartz.
Any help is appreciated. Thank you.
In glut.h and freeglut_ext.h files:
In glut.h:
#if (GLUT_API_VERSION >= 5)
extern void * APIENTRY glutGetProcAddress(const char *procName) OPENGL_DEPRECATED(10_3, 10_9);
#endif
In freeglut_ext.h:
/*
* Extension functions, see freeglut_ext.c
*/
typedef void (*GLUTproc)();
FGAPI GLUTproc FGAPIENTRY glutGetProcAddress( const char *procName );
One of the declarations returns a function type GLUTproc (specifying a function that takes no arguments), and the other declaration returns a pointer (void*). Both functions take the same arguments (a single const char*). What the compiler says is true.
You're only seeing a complaint about "overloading" because it's C++. In C++, if a compiler thinks it's seen two different functions with the same name then each one needs to have different arguments (e.g. a different number of arguments, or distinct types).
In this case, I doubt the functions are meant to be different; they're meant to be the same, and at some point the API evolved and changed the declaration.
You need to find some way to prevent the compiler from seeing both declarations at the same time (perhaps by setting GLUT_API_VERSION). If you have to, you can #include just one of the files and see if you really need the other file (and if you did, you may have to manually declare some things to avoid a 2nd #include).

VC++ / Dev-C++: How to include an DLL?

I have written an DLL in Delphi which exports functions. I would like to use these functions in a C++ program without using dynamic Linking (LoadLibrary() API-Call).
The "import" declaration would be
extern "C" int __stdcall getVersionNumber();
I mainly use Bloodshed Dev-C++ which creates Windows Executables. But I do not know how to tell the compiler that it should import the function "getVersionNumber" from "STATMONDLL32.dll".
After I spent many hours by googling the problem, without any result (there was only weird stuff written about .a files and .lib files, which I do not have compiled by Delphi...) I have also installed VC++, but even there, I could not find a way to tell the compiler to use a specific DLL.
I have created a DEF file for this DLL - how can I tell Dev-C++ and/or VC++ to use it? (Dev-C++ prefered)
// Edit: Delphi is creating UNDECORATED symbols. The symbol is exactly "getVersionNumber".
I have created following DEF file with an alias for decoration:
LIBRARY STATMONDLL32
EXPORTS
getVersionNumberA = _getVersionNumberA#0
I have created a *.lib file with VC++ "lib.exe":
lib.exe /DEF:StatMonDll32.def /OUT:StatMonDll32.lib
I have included the lib in VC++ linker settings.
But VC++ tells me that it cannot resolve the external symbol _getVersionNumberA#0 ! Please help!
// Edit: I have uploaded the DLL here: http://www.viathinksoft.de/temp/StatMonDll32.dll . Can you access the symbol getVersionNumberA with VC++ ? I am searching for a solution since 6 days now :'-(
Best regards
Daniel Marschall
You can use dynamic linking, it should work something along the lines of:
extern "C" typedef int (__stdcall *pfnadd)(int a, int b);
extern "C" typedef int (__stdcall *pfngetversion)(void);
HMODULE mod = LoadLibraryA("mydll.dll");
pfnadd add = (pfnadd)GetProcAddress(mod, "Add");
pfngetversion getVersionNumberA =
(pfngetversion)GetProcAddress(mod, "getVersionNumberA");
and then you can just call using the function pointer:
add(1, 2);
std::cout << getVersionNumberA();
Although, it seems like your question has bits and pieces of two different functions!

Creating a DLL, confusion with __declspec(dllexport)

Visual Studio C++ 2005
Windows XP
I am creating this DLL library. The DLL actually links with another LIB. I have included the headers and lib path. Everything compiles ok.
Actually, this code I wrote for running on linux, which runs ok. Now I am porting it to run on windows.
However, I have noticed that some DLL from some code samples use this in there header file:
static __declspec(dllexport) float some_function(int num1, int num2);
However, I have done the following, sample code below for the header *.h file. However, not sure if I still need the above or not?
#ifdef __cplusplus
extern "C" {
#endif
media_t* get_media(media_description_t* obj);
void* get_item(media_description_list_t *obj, int num);
int get_number_format(media_t *obj);
const char* get_media_value(media_t *obj);
#ifdef __cplusplus
}
#endif
Sample code for for implementation *.cpp file
int get_number_format(media_t *obj)
{
Media *med = (Media*)obj;
return med->getNumFormat();
}
So, do I need this static __declspec(dllexport)?
Many thanks for any advice,
The linker needs to be told which of your functions should be exported, making them usable by other code that uses your DLL. __declspec(dllexport) does this. But you can also do it by providing the linker with a .def file, a list of exported function names. Somewhat painful because it now is up to you to keep that file in sync with your code. Docs are here.
__declspec(dllexport) adds the function to the DLL's export table. This table is a convention that allows a process wishing to use the DLL to correctly call the function.
There are other ways to export functions from DLLs, but this one is probably the more modern and easier to use.
yes it is needed, if you don't have the dllexport the function will not be accessible in any other application where you are calling that function.
If you put the implementation of a method in the h file, you don't need to use the __declspec(dllexport) declaration.

How do I control which symbols a Windows DLL imports from the application?

I'm trying to build a shared library (DLL) on Windows, using MSVC 6 (retro!) and I have a peculiar link issue I need to resolve. My shared library must access some global state, controlled by the loading application.
Broadly, what I have is this:
application.c:
static int g_private_value;
int use_private_value() {
/* do something with g_private_value */
}
int main (...) {
return shared_library_method ();
}
shared_library.c:
__declspec(dllexport) int __stdcall shared_library_method() {
use_private_value();
}
(Updated - I forgot the __declspec(dllexport) int __stdcall portion, but it's there in the real code)
How do I set up shared_library.dll so that it exports shared_library_method and imports use_private_value?
Please remember that A) I'm a unix programmer, generally, and B) that I'm doing this without Visual Studio; our automated build infrastructure drives MSVC with makefiles. If I'm omitting something that will make it easier to answer the question, please comment and I'll update it ASAP.
This is actually going to be pretty difficult to get working. On Unix/Linux you can have shared objects and applications import symbols from each other, but on Windows you can't have a DLL import symbols from the application that loads it: the Windows PE executable format just doesn't support that idiom.
I know that the Cygwin project have some sort of work-around to address this problem, but I don't believe that it's trivial. Unless you want to do lots of PE-related hacking you probably don't want to go there.
An easier solution might be to just have some sort of initializer method exported from the DLL:
typedef int (*func_ptr)();
void init_library(func_ptr func);
The application must call this at start-up, passing in the address of the function you want to share. Not exactly elegant, but it should work okay.
I'll start with half of the answer.
In shared_library.c:
__declspec(dllexport) int __stdcall shared_library_method(void)
{
}
The MSDN article about exporting function from DLL:s.
For the second half you need to export the functions from your application.c.
You can do this in the linker with:
/export:use_private_value#0
This should get you a lib-file that you build with your DLL.
The option to link the lib-file is to use GetProcAddress().
As DavidK noted if you only have a few functions it is probably easier to pass the function pointers in an init function. It is however possible to do what you are asking for.

Resources