I want to find the connected components in an undirected graph. However, I don't have an adjacency matrix. Instead I have a set of vertices as well as a function telling me whether two vertices are adjacent. What is the most efficient way to find all connected components?
I know I could just calculate the entire adjacency matrix and use depth-first search to find all components. But that would not be very efficient as I'd need to check every pair of vertices.
What I'm currently doing is the following procedure:
Pick any unassigned vertex which is now its own component
Find all neighbors of that vertex and add them to the component
Find all neighbors of the just added vertices (amongst those vertices not yet assigned to any component) and add them too
Repeat previous step until no new neighbors can be found
The component is now complete, repeat from the first step to find other components until all vertices are assigned
This is the pseudocode:
connected_components(vertices):
// vertices belonging to the current component and whose neighbors have not yet been added
vertices_to_check= [vertices.pop()]
// vertices belonging to the current component
current_component = []
components = []
while (vertices.notEmpty() or vertices_to_check.notEmpty()):
if (vertices_to_check.isEmpty()): // All vertices in the current component have been found
components.add(current_component)
current_component = []
vertices_to_check= [vertices.pop()]
next_vertex = vertices_to_check.pop()
current_component.add(next_vertex)
for vertex in vertices: // Find all neighbors of next_vertex
if (vertices_adjacent(vertex, next_vertex)):
vertices.remove(vertex)
vertices_to_check.add(vertex)
components.add(current_component)
return components
I understand that this method is faster than calculating the adjacency matrix in most cases, as I don't need to check whether two vertices are adjacent, if it is already known they belong to the same component. But is there a way to improve this algorithm?
Ultimately, any algorithm will have to call vertices_adjacent for every single pair of vertices that turn out to belong to separate components, because otherwise it will never be able to verify that there's no link between those components.
Now, if a majority of vertices all belong to a single component, then there may not be too many such pairs; but unless you expect a majority of vertices all belong to a single component, there's little point optimizing specifically for that case. So, discarding that case, the very best-case scenario is:
There turn out to be exactly two components, each with the same number of vertices (½|V| each). So there are ¼|V|2 pairs of vertices that belong to separate components, and you need to call vertices_adjacent for each of those pairs.
These two components turn out to be complete, or you turn out to be exceptionally lucky in your choice of edges to check for first, such that you can detect the connected parts by checking just |V| − 2 pairs.
. . . which still involves making ¼|V|2 + |V| − 2 calls to vertices_adjacent. By comparison, the build-an-adjacency-list approach makes ½|V|2 − ½|V| calls — which is more than the best-case scenario, but by a factor of less than 2. (And the worst-case scenario is simply equivalent to the build-an-adjacency-list approach. That would happen if no component contains more than two vertices, or if the graph is acyclic and you get unlikely in your choice of edges to check for first. Most graphs will be somewhere in between.)
So it's probably not worth trying to optimize too closely for the exact minimum number of calls to vertices_adjacent.
That said, your approach seems pretty reasonable to me; it doesn't make any calls to vertices_adjacent that are clearly unnecessary, so the only improvement would be a probabilistic one, if it could do a better job guessing which calls will turn out to be useful for eliminating later calls.
One possibility: in many graphs, there are some vertices that have a lot of neighbors and some vertices that have relatively few, according to a power-law distribution. So if you prioritize vertices based on how many neighbors they're already known to have, you may be able to take advantage of that pattern. (I think this is especially likely to be useful if the majority of vertices really do all belong to a single component, which is the only case where a better-than-factor-of-2 improvement is even conceivable.) But, you'll have to test to see if it actually makes a difference for the graphs you're interested in.
Related
Let G be a directed weighted graph with nodes colored black or white, and all weights non-negative. No other information is specified--no start or terminal vertex.
I need to find a path (not necessarily simple) of minimal weight which alternates colors at least n times. My first thought is to run Kosaraju's algorithm to get the component graph, then find a minimal path between the components. Then you could select nodes with in-degree equal to zero since those will have at least as many color alternations as paths which start at components with in-degree positive. However, that also means that you may have an unnecessarily long path.
I've thought about maybe trying to modify the graph somehow, by perhaps making copies of the graph that black-to-white edges or white-to-black edges point into, or copying or deleting edges, but nothing that I'm brain-storming seems to work.
The comments mention using Dijkstra's algorithm, and in fact there is a way to make this work. If we create an new "root" vertex in the graph, and connect every other vertex to it with a directed edge, we can run a modified Dijkstra's algorithm from the root outwards, terminating when a given path's inversions exceeds n. It is important to note that we must allow revisiting each vertex in the implementation, so the key of each vertex in our priority queue will not be merely node_id, but a tuple (node_id, inversion_count), representing that vertex on its ith visit. In doing so, we implicitly make n copies of each vertex, one per potential visit. Visually, we are effectively making n copies of our graph, and translating the edges between each (black_vertex, white_vertex) pair to connect between the i and i+1th inversion graphs. We run the algorithm until we reach a path with n inversions. Alternatively, we can connect each vertex on the nth inversion graph to a "sink" vertex, and run any conventional path finding algorithm on this graph, unmodified. This will run in O(n(E + Vlog(nV))) time. You could optimize this quite heavily, and also consider using A* instead, with the smallest_inversion_weight * (n - inversion_count) as a heuristic.
Furthermore, another idea hit me regarding using knowledge of the inversion requirement to speedup the search, but I was unable to find a way to implement it without exceeding O(V^2) time. The idea is that you can use an addition-chain (like binary exponentiation) to decompose the shortest n-inversion path into two smaller paths, and rinse and repeat in a divide and conquer fashion. The issue is you would need to construct tables for the shortest i-inversion path from any two vertices, which would be O(V^2) entries per i, and O(V^2logn) overall. To construct each table, for every entry in the preceding table you'd need to append V other paths, so it'd be O(V^3logn) time overall. Maybe someone else will see a way to merge these two ideas into a O((logn)(E + Vlog(Vlogn))) time algorithm or something.
Or will I need to develop an algorithm for every unique graph? The user is given a type of graph, and they are then supposed to use the interface to add nodes and edges to an initial graph. Then they submit the graph and the algorithm is supposed to confirm whether the user's graph matches the given graph.
The algorithm needs to confirm not only the neighbours of each node, but also that each node and each edge has the correct value. The initial graphs will always have a root node, which is where the algorithm can start from.
I am wondering if I can develop the logic for such an algorithm in the general sense, or will I need to actually code a unique algorithm for each unique graph. It isn't a big deal if it's the latter case, since I only have about 20 unique graphs.
Thanks. I hope I was clear.
Graph isomorphism problem might not be hard. But it's very hard to prove this problem is not hard.
There are three possibilities for this problem.
1. Graph isomorphism problem is NP-hard.
2. Graph isomorphism problem has a polynomial time solution.
3. Graph isomorphism problem is neither NP-hard or P.
If two graphs are isomorphic, then there exist a permutation for this isomorphism. Take this permutation as a certificate, we could prove this two graphs are isomorphic to each other in polynomial time. Thus, graph isomorphism lies in the territory of NP set. However, it has been more than 30 years that no one could prove whether this problem is NP-hard or P. Thus, this problem is intrinsically hard despite its simple problem description.
If I understand the question properly, you can have ONE single algorithm, which will work by accepting one of several reference graphs as its input (in addition to the input of the unknown graph which isomorphism with the reference graph is to be asserted).
It appears that you seek to assert whether a given graph is exactly identical to another graph rather than asserting if the graphs are isomorph relative to a particular set of operations or characteristics. This implies that the algorithm be supplied some specific reference graph, rather than working off some set of "abstract" rules such as whether neither graphs have loops, or both graphs are fully connected etc. even though the graphs may differ in some other fashion.
Edit, following confirmation that:
Yeah, the algorithm would be supplied a reference graph (which is the answer), and will then check the user's graph to see if it is isomorphic (including the values of edges and nodes) to the reference
In that case, yes, it is quite possible to develop a relatively simple algorithm which would assert isomorphism of these two graphs. Note that the considerations mentioned in other remarks and answers and relative to the fact that the problem may be NP-Hard are merely indicative that a simple algorithm [or any algorithm for that matter] may not be sufficient to solve the problem in a reasonable amount of time for graphs which size and complexity are too big. However, assuming relatively small graphs and taking advantage (!) of the requirement that the weights of edges and nodes also need to match, the following algorithm should generally be applicable.
General idea:
For each sub-graph that is disconnected from the rest of the graph, identify one (or possibly several) node(s) in the user graph which must match a particular node of the reference graph. By following the paths from this node [in an orderly fashion, more on this below], assert the identity of other nodes and/or determine that there are some nodes which cannot be matched (and hence that the two structures are not isomorphic).
Rough pseudo code:
1. For both the reference and the user supplied graph, make the the list of their Connected Components i.e. the list of sub-graphs therein which are disconnected from the rest of the graph. Finding these connected components is done by following either a breadth-first or a depth-first path from starting at a given node and "marking" all nodes on that path with an arbitrary [typically incremental] element ID number. Once a given path has been fully visited, repeat the operation from any other non-marked node, and do so until there are no more non-marked nodes.
2. Build a "database" of the characteristics of each graph.
This will be useful to identify matching candidates and also to determine, early on, instances of non-isomorphism.
Each "database" would have two kinds of "records" : node and edge, with the following fields, respectively:
- node_id, Connected_element_Id, node weight, number of outgoing edges, number of incoming edges, sum of outgoing edges weights, sum of incoming edges weight.
node
- edge_id, Connected_element_Id, edge weight, node_id_of_start, node_id_of_end, weight_of_start_node, weight_of_end_node
3. Build a database of the Connected elements of each graph
Each record should have the following fields: Connected_element_id, number of nodes, number of edges, sum of node weights, sum of edge weights.
4. [optionally] Dispatch the easy cases of non-isomorphism:
4.a mismatch of the number of connected elements
4.b mismatch of of number of connected elements, grouped-by all fields but the id (number of nodes, number of edges, sum of nodes weights, sum of edges weights)
5. For each connected element in the reference graph
5.1 Identify candidates for the matching connected element in the user-supplied graph. The candidates must have the same connected element characteristics (number of nodes, number of edges, sum of nodes weights, sum of edges weights) and contain the same list of nodes and edges, again, counted by grouping by all characteristics but the id.
5.2 For each candidate, finalize its confirmation as an isomorph graph relative to the corresponding connected element in the reference graph. This is done by starting at a candidate node-match, i.e. a node, hopefully unique which has the exact same characteristics on both graphs. In case there is not such a node, one needs to disqualify each possible candidate until isomorphism can be confirmed (or all candidates are exhausted). For the candidate node match, walk the graph, in, say, breadth first, and by finding matches for the other nodes, on the basis of the direction and weight of the edges and weight of the nodes.
The main tricks with this algorithm is are to keep proper accounting of the candidates (whether candidate connected element at higher level or candidate node, at lower level), and to also remember and mark other identified items as such (and un-mark them if somehow the hypothetical candidate eventually proves to not be feasible.)
I realize the above falls short of a formal algorithm description, but that should give you an idea of what is required and possibly a starting point, would you decide to implement it.
You can remark that the requirement of matching nodes and edges weights may appear to be an added difficulty for asserting isomorphism, effectively simplify the algorithm because the underlying node/edge characteristics render these more unique and hence make it more likely that the algorithm will a) find unique node candidates and b) either quickly find other candidates on the path and/or quickly assert non-isomorphism.
Here is the problem:
assuming two persons are registered in a social networking website, how to decide whether they are connected or not?
my analysis (after reading more): actually, the question is looking for - the shortest path from A to B in a graph. I think both BFS and Dijkstra's Algorithms works here and time complexity is exactly the same (O(V+E)) because it is an unweighted graph, so we can't take advantage of the priority queue. So, a simple queue could resolve the problem. But, both of them doesnt resolve the problem that: find the path between them.
Bidrectrol should be a better solution at this point.
To find a path between the two, you should begin with a breadth first search. First find all neighbors of A, then find all neighbors of all neighbors of A, etc. Once B is hit, not only do you have a path from A to B, but you also have a shortest such path.
Dijkstra's algorithm rocks, and you may be able to speed this up by working from both end, i.e. find neighbors of A and neighbors of B, and compare.
If you do a depth first search, then you're following one path at a time. This will be much much slower.
If you do dfs for finding whether two people are connected on a social network, then it will take too long!
You already know the two persons, so you should use Bidirectional Search.. But, simple bidirectional search won't be enough for a graph as big as a social networking site. You will have to use some heuristics. Wikipedia page has some links to it.
You may also be able to use A* search. From wikipedia : "A* uses a best-first search and finds the least-cost path from a given initial node to one goal node (out of one or more possible goals)."
Edit: I suggest A* because "The additional complexity of performing a bidirectional search means that the A* search algorithm is often a better choice if we have a reasonable heuristic." So, if you can't form a reasonable heuristic, then use Bidirectional search. (Forming a good heuristic is never easy ;).)
One way is to use Union Find, add all links union(from,to), and if find(A) is find(B) is True then A and B are connected. This avoids the recursive search but it actually computes the connectivity of all pairs and doesn't give you the paths that connects A and B.
I think that the true criteria is: there are at least N paths between A and B shorter then K, or A and B are connected diectly. I would go with K = 3 and N near 5, i.e. have 5 common friends.
Note: answer edited.
Any method might end up being very slow. If you need to do this repeatedly, it's best to find the connected components of the graph, after which the task becomes a trivial O(1) operation: if two people are in the same component, they are connected.
Note that finding connected components for the first time might be slow, but keeping them updated as new edges/nodes are added to the graph is fast.
There are several methods for finding connected components.
One method is to construct the Laplacian of the graph, and look at its eigenvalues / eigenvectors. The number of zero eigenvalues gives you the number of connected components. The non-zero elements of the corresponding eigenvectors gives the nodes belonging to the respective components.
Another way is along the following lines:
Create a transformation table of nodes. Element n of the array contains the index of the node that node n transforms to.
Loop through all edges (i,j) in the graph (denoting a connection between i and j):
Compute recursively which node do i and j transform to based on the current table. Let us denote the results by k and l. Update entry k to make it transform to l. Update entries i and j to point to l as well.
Loop through the table again, and update each entry to point directly to the node it recursively transforms to.
Now nodes in the same connected component will have the same entry in the transformation table. So to check if two nodes are connected, just check if they transform to the same value.
Every time a new node or edge is added to the graph, the transformation table needs to be updated, but this update will be much faster than the original calculation of the table.
Is there an algorithm that can check, in a directed graph, if a vertex, let's say V2, is reachable from a vertex V1, without traversing all the vertices?
You might find a route to that node without traversing all the edges, and if so you can give a yes answer as soon as you do. Nothing short of traversing all the edges can confirm that the node isn't reachable (unless there's some other constraint you haven't stated that could be used to eliminate the possibility earlier).
Edit: I should add that it depends on how often you need to do queries versus how large (and dense) your graph is. If you need to do a huge number of queries on a relatively small graph, it may make sense to pre-process the data in the graph to produce a matrix with a bit at the intersection of any V1 and V2 to indicate whether there's a connection from V1 to V2. This doesn't avoid traversing the graph, but it can avoid traversing the graph at the time of the query. I.e., it's basically a greedy algorithm that assumes you're going to eventually use enough of the combinations that it's easiest to just traverse them all and store the result. Depending on the size of the graph, the pre-processing step may be slow, but once it's done executing a query becomes quite fast (constant time, and usually a pretty small constant at that).
Depth first search or breadth first search. Stop when you find one. But there's no way to tell there's none without going through every one, no. You can improve the performance sometimes with some heuristics, like if you have additional information about the graph. For example, if the graph represents a coordinate space like a real map, and most of the time you know that there's going to be a mostly direct path, then you can attempt to have the depth-first search look along lines that "aim towards the target". However, imagine the case where the start and end points are right next to each other, but with no vector inbetween, and to find it, you have to go way out of the way. You have to check every case in order to be exhaustive.
I doubt it has a name, but a breadth-first search might go like this:
Add V1 to a queue of nodes to be visited
While there are nodes in the queue:
If the node is V2, return true
Mark the node as visited
For every node at the end of an outgoing edge which is not yet visited:
Add this node to the queue
End for
End while
Return false
Create an adjacency matrix when the graph is created. At the same time you do this, create matrices consisting of the powers of the adjacency matrix up to the number of nodes in the graph. To find if there is a path from node u to node v, check the matrices (starting from M^1 and going to M^n) and examine the value at (u, v) in each matrix. If, for any of the matrices checked, that value is greater than zero, you can stop the check because there is indeed a connection. (This gives you even more information as well: the power tells you the number of steps between nodes, and the value tells you how many paths there are between nodes for that step number.)
(Note that if you know the number of steps in the longest path in your graph, for whatever reason, you only need to create a number of matrices up to that power. As well, if you want to save memory, you could just store the base adjacency matrix and create the others as you go along, but for large matrices that may take a fair amount of time if you aren't using an efficient method of doing the multiplications, whether from a library or written on your own.)
It would probably be easiest to just do a depth- or breadth-first search, though, as others have suggested, not only because they're comparatively easy to implement but also because you can generate the path between nodes as you go along. (Technically you'd be generating multiple paths and discarding loops/dead-end ones along the way, but whatever.)
In principle, you can't determine that a path exists without traversing some part of the graph, because the failure case (a path does not exist) cannot be determined without traversing the entire graph.
You MAY be able to improve your performance by searching backwards (search from destination to starting point), or by alternating between forward and backward search steps.
Any good AI textbook will talk at length about search techniques. Elaine Rich's book was good in this area. Amazon is your FRIEND.
You mentioned here that the graph represents a road network. If the graph is planar, you could use Thorup's Algorithm which creates an O(nlogn) space data structure that takes O(nlogn) time to build and answers queries in O(1) time.
Another approach to this problem would allow you to ignore all of the vertices. If you were to only look at the edges, you can produce a transitive closure array that will show you each vertex that is reachable from any other vertex.
Start with your list of edges:
Va -> Vc
Va -> Vd
....
Create an array with start location as the rows and end location as the columns. Fill the arrays with 0. For each edge in the list of edges, place a one in the start,end coordinate of the edge.
Now you iterate a few times until either V1,V2 is 1 or there are no changes.
For each row:
NextRowN = RowN
For each column that is true for RowN
Use boolean OR to OR in the results of that row of that number with the current NextRowN.
Set RowN to NextRowN
If you run this algorithm until the end, you will quickly have a complete list of all reachable vertices without looking at any of them. The runtime is proportional to the number of edges. This would work well with a reasonable implementation and a reasonable number of edges.
A slightly more complex version of this algorithm would be to only calculate the vertices reachable by V1. To do this, you would focus your scope on the ones that are currently reachable at any given time. You can also limit adding rows to only one time, since the other rows are never changing.
In order to be sure, you either have to find a path, or traverse all vertices that are reachable from V1 once.
I would recommend an implementation of depth first or breadth first search that stops when it encounters a vertex that it has already seen. The vertex will be processed on the first occurrence only. You need to make sure that the search starts at V1 and stops when it runs out of vertices or encounters V2.
I have an graph with the following attributes:
Undirected
Not weighted
Each vertex has a minimum of 2 and maximum of 6 edges connected to it.
Vertex count will be < 100
Graph is static and no vertices/edges can be added/removed or edited.
I'm looking for paths between a random subset of the vertices (at least 2). The paths should simple paths that only go through any vertex once.
My end goal is to have a set of routes so that you can start at one of the subset vertices and reach any of the other subset vertices. Its not necessary to pass through all the subset nodes when following a route.
All of the algorithms I've found (Dijkstra,Depth first search etc.) seem to be dealing with paths between two vertices and shortest paths.
Is there a known algorithm that will give me all the paths (I suppose these are subgraphs) that connect these subset of vertices?
edit:
I've created a (warning! programmer art) animated gif to illustrate what i'm trying to achieve: http://imgur.com/mGVlX.gif
There are two stages pre-process and runtime.
pre-process
I have a graph and a subset of the vertices (blue nodes)
I generate all the possible routes that connect all the blue nodes
runtime
I can start at any blue node select any of the generated routes and travel along it to reach my destination blue node.
So my task is more about creating all of the subgraphs (routes) that connect all blue nodes, rather than creating a path from A->B.
There are so many ways to approach this and in order not confuse things, here's a separate answer that's addressing the description of your core problem:
Finding ALL possible subgraphs that connect your blue vertices is probably overkill if you're only going to use one at a time anyway. I would rather use an algorithm that finds a single one, but randomly (so not any shortest path algorithm or such, since it will always be the same).
If you want to save one of these subgraphs, you simply have to save the seed you used for the random number generator and you'll be able to produce the same subgraph again.
Also, if you really want to find a bunch of subgraphs, a randomized algorithm is still a good choice since you can run it several times with different seeds.
The only real downside is that you will never know if you've found every single one of the possible subgraphs, but it doesn't really sound like that's a requirement for your application.
So, on to the algorithm: Depending on the properties of your graph(s), the optimal algorithm might vary, but you could always start of with a simple random walk, starting from one blue node, walking to another blue one (while making sure you're not walking in your own old footsteps). Then choose a random node on that path and start walking to the next blue from there, and so on.
For certain graphs, this has very bad worst-case complexity but might suffice for your case. There are of course more intelligent ways to find random paths, but I'd start out easy and see if it's good enough. As they say, premature optimization is evil ;)
A simple breadth-first search will give you the shortest paths from one source vertex to all other vertices. So you can perform a BFS starting from each vertex in the subset you're interested in, to get the distances to all other vertices.
Note that in some places, BFS will be described as giving the path between a pair of vertices, but this is not necessary: You can keep running it until it has visited all nodes in the graph.
This algorithm is similar to Johnson's algorithm, but greatly simplified thanks to the fact that your graph is unweighted.
Time complexity: Since there is a constant number of edges per vertex, each BFS will take O(n), and the total will take O(kn), where n is the number of vertices and k is the size of the subset. As a comparison, the Floyd-Warshall algorithm will take O(n^3).
What you're searching for is (if I understand it correctly) not really all paths, but rather all spanning trees. Read the wikipedia article about spanning trees here to determine if those are what you're looking for. If it is, there is a paper you would probably want to read:
Gabow, Harold N.; Myers, Eugene W. (1978). "Finding All Spanning Trees of Directed and Undirected Graphs". SIAM J. Comput. 7 (280).