Subset with smallest sum greater or equal to k - algorithm

I am trying to write a python algorithm to do the following.
Given a set of positive integers S, find the subset with the smallest sum, greater or equal to k.
For example:
S = [50, 103, 85, 21, 30]
k = 140
subset = [85, 50, 21] (with sum = 146)
The numbers in the initial set are all integers, and k can be arbitrarily large. Usually there will be about 100 numbers in the set.
Of course there's the brute force solution of going through all possible subsets, but that runs in O(2^n) which is unfeasable. I have been told that this problem is NP-Complete, but that there should be a Dynamic Programing approach that allows it to run in pseudo-polynomial time, like the knapsack problem, but so far, attempting to use DP still leads me to solutions that are O(2^n).
Is there such a way to appy DP to this problem? If so, how? I find DP hard to understand so I might have missed something.
Any help is much appreciated.

Well seeing that numbers are not integers but reals, best I can think of is O(2^(n/2) log (2^(n/2)).
It might look worse at first glance but notice that 2^(n/2) == sqrt(2^n)
So to achieve such complexity we will use technique known as meet in the middle:
Split set into 2 parts of sizes n/2 and n-n/2
Use brute force to generate all subsets (including empty one) and store them in arrays, let's call them A and B
Let's sort array B
Now for each element a in A, if B[-1] + a >=k we can use binary search to find smallest element b in B that satisfies a + b >= k
out of all such a + b pairs we found choose the smallest
OP changed question a little now its integers so here goes dynamic solution:
well not much to say, classical knapsack.
for each i in [1,n] we have 2 options for set item i:
1. Include in subset, state changes from (i, w) to (i+1, w + S[i])
2. Skip it, state changes from (i, w) to (i+1, w)
Every time we reach some w that`s >= k, we update answer
Pseudo-code:
visited = Set() //some set/hashtable object to store visited states
S = [...]//set of integers from input
int ats = -1;
void solve(int i, int w) //theres atmost n*k different states so complexity is O(n*k)
{
if(w >= k)
{
if(ats==-1)ats=w;
else ats=min(ats,w);
return;
}
if(i>n)return;
if(visited.count(i,w))return; //we already visited this state, can skip
visited.insert(i,w)=1;
solve(i+1, w + S[i]); //take item
solve(i+1, w); //skip item
}
solve(1,0);
print(ats);

Related

Divide and conquer algorithm

I had a job interview a few weeks ago and I was asked to design a divide and conquer algorithm. I could not solve the problem, but they just called me for a second interview! Here is the question:
we are giving as input two n-element arrays A[0..n − 1] and B[0..n − 1] (which
are not necessarily sorted) of integers, and an integer value. Give an O(nlogn) divide and conquer algorithm that determines if there exist distinct values i, j (that is, i != j) such that A[i] + B[j] = value. Your algorithm should return True if i, j exists, and return False otherwise. You may assume that the elements in A are distinct, and the elements in B are distinct.
can anybody solve the problem? Thanks
My approach is..
Sort any of the array. Here we sort array A. Sort it with the Merge Sort algorithm which is a Divide and Conquer algorithm.
Then for each element of B, Search for Required Value- Element of B in array A by Binary Search. Again this is a Divide and Conquer algorithm.
If you find the element Required Value - Element of B from an Array A then Both element makes pair such that Element of A + Element of B = Required Value.
So here for Time Complexity, A has N elements so Merge Sort will take O(N log N) and We do Binary Search for each element of B(Total N elements) Which takes O(N log N). So total time complexity would be O(N log N).
As you have mentioned you require to check for i != j if A[i] + B[j] = value then here you can take 2D array of size N * 2. Each element is paired with its original index as second element of the each row. Sorting would be done according the the data stored in the first element. Then when you find the element, You can compare both elements original indexes and return the value accordingly.
The following algorithm does not use Divide and Conquer but it is one of the solutions.
You need to sort both the arrays, maintaining the indexes of the elements maybe sorting an array of pairs (elem, index). This takes O(n log n) time.
Then you can apply the merge algorithm to check if there two elements such that A[i]+B[j] = value. This would O(n)
Overall time complexity will be O(n log n)
I suggest using hashing. Even if it's not the way you are supposed to solve the problem, it's worth mentioning since hashing has a better time complexity O(n) v. O(n*log(n)) and that's why more efficient.
Turn A into a hashset (or dictionary if we want i index) - O(n)
Scan B and check if there's value - B[j] in the hashset (dictionary) - O(n)
So you have an O(n) + O(n) = O(n) algorithm (which is better that required (O n * log(n)), however the solution is NOT Divide and Conquer):
Sample C# implementation
int[] A = new int[] { 7, 9, 5, 3, 47, 89, 1 };
int[] B = new int[] { 5, 7, 3, 4, 21, 59, 0 };
int value = 106; // 47 + 59 = A[4] + B[5]
// Turn A into a dictionary: key = item's value; value = item's key
var dict = A
.Select((val, index) => new {
v = val,
i = index, })
.ToDictionary(item => item.v, item => item.i);
int i = -1;
int j = -1;
// Scan B array
for (int k = 0; k < B.Length; ++k) {
if (dict.TryGetValue(value - B[k], out i)) {
// Solution found: {i, j}
j = k;
// if you want any solution then break
break;
// scan further (comment out "break") if you want all pairs
}
}
Console.Write(j >= 0 ? $"{i} {j}" : "No solution");
Seems hard to achieve without sorting.
If you leave the arrays unsorted, checking for existence of A[i]+B[j] = Value takes time Ω(n) for fixed i, then checking for all i takes Θ(n²), unless you find a trick to put some order in B.
Balanced Divide & Conquer on the unsorted arrays doesn't seem any better: if you divide A and B in two halves, the solution can lie in one of Al/Bl, Al/Br, Ar/Bl, Ar/Br and this yields a recurrence T(n) = 4 T(n/2), which has a quadratic solution.
If sorting is allowed, the solution by Sanket Makani is a possibility but you do better in terms of time complexity for the search phase.
Indeed, assume A and B now sorted and consider the 2D function A[i]+B[j], which is monotonic in both directions i and j. Then the domain A[i]+B[j] ≤ Value is limited by a monotonic curve j = f(i) or equivalently i = g(j). But strict equality A[i]+B[j] = Value must be checked exhaustively for all points of the curve and one cannot avoid to evaluate f everywhere in the worst case.
Starting from i = 0, you obtain f(i) by dichotomic search. Then you can follow the border curve incrementally. You will perform n step in the i direction, and at most n steps in the j direction, so that the complexity remains bounded by O(n), which is optimal.
Below, an example showing the areas with a sum below and above the target value (there are two matches).
This optimal solution has little to do with Divide & Conquer. It is maybe possible to design a variant based on the evaluation of the sum at a central point, which allows to discard a whole quadrant, but that would be pretty artificial.

How to find pair with kth largest sum?

Given two sorted arrays of numbers, we want to find the pair with the kth largest possible sum. (A pair is one element from the first array and one element from the second array). For example, with arrays
[2, 3, 5, 8, 13]
[4, 8, 12, 16]
The pairs with largest sums are
13 + 16 = 29
13 + 12 = 25
8 + 16 = 24
13 + 8 = 21
8 + 12 = 20
So the pair with the 4th largest sum is (13, 8). How to find the pair with the kth largest possible sum?
Also, what is the fastest algorithm? The arrays are already sorted and sizes M and N.
I am already aware of the O(Klogk) solution , using Max-Heap given here .
It also is one of the favorite Google interview question , and they demand a O(k) solution .
I've also read somewhere that there exists a O(k) solution, which i am unable to figure out .
Can someone explain the correct solution with a pseudocode .
P.S.
Please DON'T post this link as answer/comment.It DOESN'T contain the answer.
I start with a simple but not quite linear-time algorithm. We choose some value between array1[0]+array2[0] and array1[N-1]+array2[N-1]. Then we determine how many pair sums are greater than this value and how many of them are less. This may be done by iterating the arrays with two pointers: pointer to the first array incremented when sum is too large and pointer to the second array decremented when sum is too small. Repeating this procedure for different values and using binary search (or one-sided binary search) we could find Kth largest sum in O(N log R) time, where N is size of the largest array and R is number of possible values between array1[N-1]+array2[N-1] and array1[0]+array2[0]. This algorithm has linear time complexity only when the array elements are integers bounded by small constant.
Previous algorithm may be improved if we stop binary search as soon as number of pair sums in binary search range decreases from O(N2) to O(N). Then we fill auxiliary array with these pair sums (this may be done with slightly modified two-pointers algorithm). And then we use quickselect algorithm to find Kth largest sum in this auxiliary array. All this does not improve worst-case complexity because we still need O(log R) binary search steps. What if we keep the quickselect part of this algorithm but (to get proper value range) we use something better than binary search?
We could estimate value range with the following trick: get every second element from each array and try to find the pair sum with rank k/4 for these half-arrays (using the same algorithm recursively). Obviously this should give some approximation for needed value range. And in fact slightly improved variant of this trick gives range containing only O(N) elements. This is proven in following paper: "Selection in X + Y and matrices with sorted rows and columns" by A. Mirzaian and E. Arjomandi. This paper contains detailed explanation of the algorithm, proof, complexity analysis, and pseudo-code for all parts of the algorithm except Quickselect. If linear worst-case complexity is required, Quickselect may be augmented with Median of medians algorithm.
This algorithm has complexity O(N). If one of the arrays is shorter than other array (M < N) we could assume that this shorter array is extended to size N with some very small elements so that all calculations in the algorithm use size of the largest array. We don't actually need to extract pairs with these "added" elements and feed them to quickselect, which makes algorithm a little bit faster but does not improve asymptotic complexity.
If k < N we could ignore all the array elements with index greater than k. In this case complexity is equal to O(k). If N < k < N(N-1) we just have better complexity than requested in OP. If k > N(N-1), we'd better solve the opposite problem: k'th smallest sum.
I uploaded simple C++11 implementation to ideone. Code is not optimized and not thoroughly tested. I tried to make it as close as possible to pseudo-code in linked paper. This implementation uses std::nth_element, which allows linear complexity only on average (not worst-case).
A completely different approach to find K'th sum in linear time is based on priority queue (PQ). One variation is to insert largest pair to PQ, then repeatedly remove top of PQ and instead insert up to two pairs (one with decremented index in one array, other with decremented index in other array). And take some measures to prevent inserting duplicate pairs. Other variation is to insert all possible pairs containing largest element of first array, then repeatedly remove top of PQ and instead insert pair with decremented index in first array and same index in second array. In this case there is no need to bother about duplicates.
OP mentions O(K log K) solution where PQ is implemented as max-heap. But in some cases (when array elements are evenly distributed integers with limited range and linear complexity is needed only on average, not worst-case) we could use O(1) time priority queue, for example, as described in this paper: "A Complexity O(1) Priority Queue for Event Driven Molecular Dynamics Simulations" by Gerald Paul. This allows O(K) expected time complexity.
Advantage of this approach is a possibility to provide first K elements in sorted order. Disadvantages are limited choice of array element type, more complex and slower algorithm, worse asymptotic complexity: O(K) > O(N).
EDIT: This does not work. I leave the answer, since apparently I am not the only one who could have this kind of idea; see the discussion below.
A counter-example is x = (2, 3, 6), y = (1, 4, 5) and k=3, where the algorithm gives 7 (3+4) instead of 8 (3+5).
Let x and y be the two arrays, sorted in decreasing order; we want to construct the K-th largest sum.
The variables are: i the index in the first array (element x[i]), j the index in the second array (element y[j]), and k the "order" of the sum (k in 1..K), in the sense that S(k)=x[i]+y[j] will be the k-th greater sum satisfying your conditions (this is the loop invariant).
Start from (i, j) equal to (0, 0): clearly, S(1) = x[0]+y[0].
for k from 1 to K-1, do:
if x[i+1]+ y[j] > x[i] + y[j+1], then i := i+1 (and j does not change) ; else j:=j+1
To see that it works, consider you have S(k) = x[i] + y[j]. Then, S(k+1) is the greatest sum which is lower (or equal) to S(k), and such as at least one element (i or j) changes. It is not difficult to see that exactly one of i or j should change.
If i changes, the greater sum you can construct which is lower than S(k) is by setting i=i+1, because x is decreasing and all the x[i'] + y[j] with i' < i are greater than S(k). The same holds for j, showing that S(k+1) is either x[i+1] + y[j] or x[i] + y[j+1].
Therefore, at the end of the loop you found the K-th greater sum.
tl;dr: If you look ahead and look behind at each iteration, you can start with the end (which is highest) and work back in O(K) time.
Although the insight underlying this approach is, I believe, sound, the code below is not quite correct at present (see comments).
Let's see: first of all, the arrays are sorted. So, if the arrays are a and b with lengths M and N, and as you have arranged them, the largest items are in slots M and N respectively, the largest pair will always be a[M]+b[N].
Now, what's the second largest pair? It's going to have perhaps one of {a[M],b[N]} (it can't have both, because that's just the largest pair again), and at least one of {a[M-1],b[N-1]}. BUT, we also know that if we choose a[M-1]+b[N-1], we can make one of the operands larger by choosing the higher number from the same list, so it will have exactly one number from the last column, and one from the penultimate column.
Consider the following two arrays: a = [1, 2, 53]; b = [66, 67, 68]. Our highest pair is 53+68. If we lose the smaller of those two, our pair is 68+2; if we lose the larger, it's 53+67. So, we have to look ahead to decide what our next pair will be. The simplest lookahead strategy is simply to calculate the sum of both possible pairs. That will always cost two additions, and two comparisons for each transition (three because we need to deal with the case where the sums are equal);let's call that cost Q).
At first, I was tempted to repeat that K-1 times. BUT there's a hitch: the next largest pair might actually be the other pair we can validly make from {{a[M],b[N]}, {a[M-1],b[N-1]}. So, we also need to look behind.
So, let's code (python, should be 2/3 compatible):
def kth(a,b,k):
M = len(a)
N = len(b)
if k > M*N:
raise ValueError("There are only %s possible pairs; you asked for the %sth largest, which is impossible" % M*N,k)
(ia,ib) = M-1,N-1 #0 based arrays
# we need this for lookback
nottakenindices = (0,0) # could be any value
nottakensum = float('-inf')
for i in range(k-1):
optionone = a[ia]+b[ib-1]
optiontwo = a[ia-1]+b[ib]
biggest = max((optionone,optiontwo))
#first deal with look behind
if nottakensum > biggest:
if optionone == biggest:
newnottakenindices = (ia,ib-1)
else: newnottakenindices = (ia-1,ib)
ia,ib = nottakenindices
nottakensum = biggest
nottakenindices = newnottakenindices
#deal with case where indices hit 0
elif ia <= 0 and ib <= 0:
ia = ib = 0
elif ia <= 0:
ib-=1
ia = 0
nottakensum = float('-inf')
elif ib <= 0:
ia-=1
ib = 0
nottakensum = float('-inf')
#lookahead cases
elif optionone > optiontwo:
#then choose the first option as our next pair
nottakensum,nottakenindices = optiontwo,(ia-1,ib)
ib-=1
elif optionone < optiontwo: # choose the second
nottakensum,nottakenindices = optionone,(ia,ib-1)
ia-=1
#next two cases apply if options are equal
elif a[ia] > b[ib]:# drop the smallest
nottakensum,nottakenindices = optiontwo,(ia-1,ib)
ib-=1
else: # might be equal or not - we can choose arbitrarily if equal
nottakensum,nottakenindices = optionone,(ia,ib-1)
ia-=1
#+2 - one for zero-based, one for skipping the 1st largest
data = (i+2,a[ia],b[ib],a[ia]+b[ib],ia,ib)
narrative = "%sth largest pair is %s+%s=%s, with indices (%s,%s)" % data
print (narrative) #this will work in both versions of python
if ia <= 0 and ib <= 0:
raise ValueError("Both arrays exhausted before Kth (%sth) pair reached"%data[0])
return data, narrative
For those without python, here's an ideone: http://ideone.com/tfm2MA
At worst, we have 5 comparisons in each iteration, and K-1 iterations, which means that this is an O(K) algorithm.
Now, it might be possible to exploit information about differences between values to optimise this a little bit, but this accomplishes the goal.
Here's a reference implementation (not O(K), but will always work, unless there's a corner case with cases where pairs have equal sums):
import itertools
def refkth(a,b,k):
(rightia,righta),(rightib,rightb) = sorted(itertools.product(enumerate(a),enumerate(b)), key=lamba((ia,ea),(ib,eb):ea+eb)[k-1]
data = k,righta,rightb,righta+rightb,rightia,rightib
narrative = "%sth largest pair is %s+%s=%s, with indices (%s,%s)" % data
print (narrative) #this will work in both versions of python
return data, narrative
This calculates the cartesian product of the two arrays (i.e. all possible pairs), sorts them by sum, and takes the kth element. The enumerate function decorates each item with its index.
The max-heap algorithm in the other question is simple, fast and correct. Don't knock it. It's really well explained too. https://stackoverflow.com/a/5212618/284795
Might be there isn't any O(k) algorithm. That's okay, O(k log k) is almost as fast.
If the last two solutions were at (a1, b1), (a2, b2), then it seems to me there are only four candidate solutions (a1-1, b1) (a1, b1-1) (a2-1, b2) (a2, b2-1). This intuition could be wrong. Surely there are at most four candidates for each coordinate, and the next highest is among the 16 pairs (a in {a1,a2,a1-1,a2-1}, b in {b1,b2,b1-1,b2-1}). That's O(k).
(No it's not, still not sure whether that's possible.)
[2, 3, 5, 8, 13]
[4, 8, 12, 16]
Merge the 2 arrays and note down the indexes in the sorted array. Here is the index array looks like (starting from 1 not 0)
[1, 2, 4, 6, 8]
[3, 5, 7, 9]
Now start from end and make tuples. sum the elements in the tuple and pick the kth largest sum.
public static List<List<Integer>> optimization(int[] nums1, int[] nums2, int k) {
// 2 * O(n log(n))
Arrays.sort(nums1);
Arrays.sort(nums2);
List<List<Integer>> results = new ArrayList<>(k);
int endIndex = 0;
// Find the number whose square is the first one bigger than k
for (int i = 1; i <= k; i++) {
if (i * i >= k) {
endIndex = i;
break;
}
}
// The following Iteration provides at most endIndex^2 elements, and both arrays are in ascending order,
// so k smallest pairs must can be found in this iteration. To flatten the nested loop, refer
// 'https://stackoverflow.com/questions/7457879/algorithm-to-optimize-nested-loops'
for (int i = 0; i < endIndex * endIndex; i++) {
int m = i / endIndex;
int n = i % endIndex;
List<Integer> item = new ArrayList<>(2);
item.add(nums1[m]);
item.add(nums2[n]);
results.add(item);
}
results.sort(Comparator.comparing(pair->pair.get(0) + pair.get(1)));
return results.stream().limit(k).collect(Collectors.toList());
}
Key to eliminate O(n^2):
Avoid cartesian product(or 'cross join' like operation) of both arrays, which means flattening the nested loop.
Downsize iteration over the 2 arrays.
So:
Sort both arrays (Arrays.sort offers O(n log(n)) performance according to Java doc)
Limit the iteration range to the size which is just big enough to support k smallest pairs searching.

Algorithm on interview

Recently I was asked the following interview question:
You have two sets of numbers of the same length N, for example A = [3, 5, 9] and B = [7, 5, 1]. Next, for each position i in range 0..N-1, you can pick either number A[i] or B[i], so at the end you will have another array C of length N which consists in elements from A and B. If sum of all elements in C is less than or equal to K, then such array is good. Please write an algorithm to figure out the total number of good arrays by given arrays A, B and number K.
The only solution I've come up is Dynamic Programming approach, when we have a matrix of size NxK and M[i][j] represents how many combinations could we have for number X[i] if current sum is equal to j. But looks like they expected me to come up with a formula. Could you please help me with that? At least what direction should I look for? Will appreciate any help. Thanks.
After some consideration, I believe this is an NP-complete problem. Consider:
A = [0, 0, 0, ..., 0]
B = [b1, b2, b3, ..., bn]
Note that every construction of the third set C = ( A[i] or B[i] for i = 0..n ) is is just the union of some subset of A and some subset of B. In this case, since every subset of A sums to 0, the sum of C is the same as the sum of some subset of B.
Now your question "How many ways can we construct C with a sum less than K?" can be restated as "How many subsets of B sum to less than K?". Solving this problem for K = 1 and K = 0 yields the solution to the subset sum problem for B (the difference between the two solutions is the number of subsets that sum to 0).
By similar argument, even in the general case where A contains nonzero elements, we can construct an array S = [b1-a1, b2-a2, b3-a3, ..., bn-an], and the question becomes "How many subsets of S sum to less than K - sum(A)?"
Since the subset sum problem is NP-complete, this problem must be also. So with that in mind, I would venture that the dynamic programming solution you proposed is the best you can do, and certainly no magic formula exists.
" Please write an algorithm to figure out the total number of good
arrays by given arrays A, B and number K."
Is it not the goal?
int A[];
int B[];
int N;
int K;
int Solutions = 0;
void FindSolutons(int Depth, int theSumSoFar) {
if (theSumSoFar > K) return;
if (Depth >= N) {
Solutions++;
return;
}
FindSolutions(Depth+1,theSumSoFar+A[Depth]);
FindSolutions(Depth+1,theSumSoFar+B[Depth]);
}
Invoke FindSolutions with both arguments set to zero. On return the Solutions will be equal to the number of good arrays;
this is how i would try to solve the problem
(Sorry if its stupid)
think of arrays
A=[3,5,9,8,2]
B=[7,5,1,8,2]
if
elements
0..N-1
number of choices
2^N
C1=0,C2=0
for all A[i]=B[i]
{
C1++
C2+=A[i]+B[i]
}
then create new two arrays like
A1=[3,5,9]
B1=[7,5,1]
also now C2 is 10
now number of all choices are reduced to 2^(N-C1)
now calculate all good numbers
using 'K' as K=K-C2
unfortunately
no matter what method you use, you have
to calculate sum 2^(N-C1) times
So there's 2^N choices, since at each point you either pick from A or from B. In the specific example you give where N happens to be 3 there are 8. For discussion you can characterise each set of decisions as a bit pattern.
So as a brute-force approach would try every single bit pattern.
But what should be obvious is that if the first few bits produce a number too large then every subsequent possible group of tail bits will also produce a number that is too large. So probably a better way to model it is a tree where you don't bother walking down the limbs that have already grown beyond your limit.
You can also compute the maximum totals that can be reached from each bit to the end of the table. If at any point your running total plus the maximum that you can obtain from here on down is less than K then every subtree from where you are is acceptable without any need for traversal. The case, as discussed in the comments, where every single combination is acceptable is a special case of this observation.
As pointed out by Serge below, a related observation is to us minimums and use the converse logic to cancel whole subtrees without traversal.
A potential further optimisation rests behind the observation that, as long as we shuffle each in the same way, changing the order of A and B has no effect because addition is commutative. You can therefore make an effort to ensure either that the maximums grow as quickly as possible or the minimums grow as slowly as possible, to try to get the earliest possible exit from traversal. In practice you'd probably want to apply a heuristic comparing the absolute maximum and minimum (both of which you've computed anyway) to K.
That being the case, a recursive implementation is easiest, e.g. (in C)
/* assume A, B and N are known globals */
unsigned int numberOfGoodArraysFromBit(
unsigned int bit,
unsigned int runningTotal,
unsigned int limit)
{
// have we ended up in an unacceptable subtree?
if(runningTotal > limit) return 0;
// have we reached the leaf node without at any
// point finding this subtree to be unacceptable?
if(bit >= N) return 1;
// maybe every subtree is acceptable?
if(runningTotal + MAXV[bit] <= limit)
{
return 1 << (N - bit);
}
// maybe no subtrees are acceptable?
if(runningTotal + MINV[bit] > limit)
{
return 0;
}
// if we can't prima facie judge the subtreees,
// we'll need specifically to evaluate them
return
numberOfGoodArraysFromBit(bit+1, runningTotal+A[bit], limit) +
numberOfGoodArraysFromBit(bit+1, runningTotal+B[bit], limit);
}
// work out the minimum and maximum values at each position
for(int i = 0; i < N; i++)
{
MAXV[i] = MAX(A[i], B[i]);
MINV[i] = MIN(A[i], B[i]);
}
// hence work out the cumulative totals from right to left
for(int i = N-2; i >= 0; i--)
{
MAXV[i] += MAXV[i+1];
MINV[i] += MINV[i+1];
}
// to kick it off
printf("Total valid combinations is %u", numberOfGoodArraysFromBit(0, 0, K));
I'm just thinking extemporaneously; it's likely better solutions exist.

Sum-subset with a fixed subset size

The sum-subset problem states:
Given a set of integers, is there a non-empty subset whose sum is zero?
This problem is NP-complete in general. I'm curious if the complexity of this slight variant is known:
Given a set of integers, is there a subset of size k whose sum is zero?
For example, if k = 1, you can do a binary search to find the answer in O(log n). If k = 2, then you can get it down to O(n log n) (e.g. see Find a pair of elements from an array whose sum equals a given number). If k = 3, then you can do O(n^2) (e.g. see Finding three elements in an array whose sum is closest to a given number).
Is there a known bound that can be placed on this problem as a function of k?
As motivation, I was thinking about this question How do you partition an array into 2 parts such that the two parts have equal average? and trying to determine if it is actually NP-complete. The answer lies in whether or not there is a formula as described above.
Barring a general solution, I'd be very interested in knowing an optimal bound for k=4.
For k=4, space complexity O(n), time complexity O(n2 * log(n))
Sort the array. Starting from 2 smallest and 2 largest elements, calculate all lesser sums of 2 elements (a[i] + a[j]) in the non-decreasing order and all greater sums of 2 elements (a[k] + a[l]) in the non-increasing order. Increase lesser sum if total sum is less than zero, decrease greater one if total sum is greater than zero, stop when total sum is zero (success) or a[i] + a[j] > a[k] + a[l] (failure).
The trick is to iterate through all the indexes i and j in such a way, that (a[i] + a[j]) will never decrease. And for k and l, (a[k] + a[l]) should never increase. A priority queue helps to do this:
Put key=(a[i] + a[j]), value=(i = 0, j = 1) to priority queue.
Pop (sum, i, j) from priority queue.
Use sum in the above algorithm.
Put (a[i+1] + a[j]), i+1, j and (a[i] + a[j+1]), i, j+1 to priority queue only if these elements were not already used. To keep track of used elements, maintain an array of maximal used 'j' for each 'i'. It is enough to use only values for 'j', that are greater, than 'i'.
Continue from step 2.
For k>4
If space complexity is limited to O(n), I cannot find anything better, than use brute force for k-4 values and the above algorithm for the remaining 4 values. Time complexity O(n(k-2) * log(n)).
For very large k integer linear programming may give some improvement.
Update
If n is very large (on the same order as maximum integer value), it is possible to implement O(1) priority queue, improving complexities to O(n2) and O(n(k-2)).
If n >= k * INT_MAX, different algorithm with O(n) space complexity is possible. Precalculate a bitset for all possible sums of k/2 values. And use it to check sums of other k/2 values. Time complexity is O(n(ceil(k/2))).
The problem of determining whether 0 in W + X + Y + Z = {w + x + y + z | w in W, x in X, y in Y, z in Z} is basically the same except for not having annoying degenerate cases (i.e., the problems are inter-reducible with minimal resources).
This problem (and thus the original for k = 4) has an O(n^2 log n)-time, O(n)-space algorithm. The O(n log n)-time algorithm for k = 2 (to determine whether 0 in A + B) accesses A in sorted order and B in reverse sorted order. Thus all we need is an O(n)-space iterator for A = W + X, which can be reused symmetrically for B = Y + Z. Let W = {w1, ..., wn} in sorted order. For all x in X, insert a key-value item (w1 + x, (1, x)) into a priority queue. Repeatedly remove the min element (wi + x, (i, x)) and insert (wi+1 + x, (i+1, x)).
Question that is very similar:
Is this variant of the subset sum problem easier to solve?
It's still NP-complete.
If it were not, the subset-sum would also be in P, as it could be represented as F(1) | F(2) | ... F(n) where F is your function. This would have O(O(F(1)) + O(F(2)) + O(F(n))) which would still be polynomial, which is incorrect as we know it's NP-complete.
Note that if you have certain bounds on the inputs you can achieve polynomial time.
Also note that the brute-force runtime can be calculated with binomial coefficients.
The solution for k=4 in O(n^2log(n))
Step 1: Calculate the pairwise sum and sort the list. There are n(n-1)/2 sums. So the complexity is O(n^2log(n)). Keep the identities of the individuals which make the sum.
Step 2: For each element in the above list search for the complement and make sure they don't share "the individuals). There are n^2 searches, each with complexity O(log(n))
EDIT: The space complexity of the original algorithm is O(n^2). The space complexity can be reduced to O(1) by simulating a virtual 2D matrix (O(n), if you consider space to store sorted version of the array).
First about 2D matrix: sort the numbers and create a matrix X using pairwise sums. Now the matrix is ins such a way that all the rows and columns are sorted. To search for a value in this matrix, search the numbers on the diagonal. If the number is in between X[i,i] and X[i+1,i+1], you can basically halve the search space by to matrices X[i:N, 0:i] and X[0:i, i:N]. The resulting search algorithm is O(log^2n) (I AM NOT VERY SURE. CAN SOMEBODY CHECK IT?).
Now, instead of using a real matrix, use a virtual matrix where X[i,j] are calculated as needed instead of pre-computing them.
Resulting time complexity: O( (nlogn)^2 ).
PS: In the following link, it says the complexity of 2D sorted matrix search is O(n) complexity. If that is true (i.e. O(log^2n) is incorrect), then the finally complexity is O(n^3).
To build on awesomo's answer... if we can assume that numbers are sorted, we can do better than O(n^k) for given k; simply take all O(n^(k-1)) subsets of size (k-1), then do a binary search in what remains for a number that, when added to the first (k-1), gives the target. This is O(n^(k-1) log n). This means the complexity is certainly less than that.
In fact, if we know that the complexity is O(n^2) for k=3, we can do even better for k > 3: choose all (k-3)-subsets, of which there are O(n^(k-3)), and then solve the problem in O(n^2) on the remaining elements. This is O(n^(k-1)) for k >= 3.
However, maybe you can do even better? I'll think about this one.
EDIT: I was initially going to add a lot proposing a different take on this problem, but I've decided to post an abridged version. I encourage other posters to see whether they believe this idea has any merit. The analysis is tough, but it might just be crazy enough to work.
We can use the fact that we have a fixed k, and that sums of odd and even numbers behave in certain ways, to define a recursive algorithm to solve this problem.
First, modify the problem so that you have both even and odd numbers in the list (this can be accomplished by dividing by two if all are even, or by subtracting 1 from numbers and k from the target sum if all are odd, and repeating as necessary).
Next, use the fact that even target sums can be reached only by using an even number of odd numbers, and odd target sums can be reached using only an odd number of odd numbers. Generate appropriate subsets of the odd numbers, and call the algorithm recursively using the even numbers, the sum minus the sum of the subset of odd numbers being examined, and k minus the size of the subset of odd numbers. When k = 1, do binary search. If ever k > n (not sure this can happen), return false.
If you have very few odd numbers, this could allow you to very quickly pick up terms that must be part of a winning subset, or discard ones that cannot. You can transform problems with lots of even numbers to equivalent problems with lots of odd numbers by using the subtraction trick. The worst case must therefore be when the numbers of even and odd numbers are very similar... and that's where I am right now. A uselessly loose upper bound on this is many orders of magnitudes worse than brute-force, but I feel like this is probably at least as good as brute-force. Thoughts are welcome!
EDIT2: An example of the above, for illustration.
{1, 2, 2, 6, 7, 7, 20}, k = 3, sum = 20.
Subset {}:
{2, 2, 6, 20}, k = 3, sum = 20
= {1, 1, 3, 10}, k = 3, sum = 10
Subset {}:
{10}, k = 3, sum = 10
Failure
Subset {1, 1}:
{10}, k = 1, sum = 8
Failure
Subset {1, 3}:
{10}, k = 1, sum = 6
Failure
Subset {1, 7}:
{2, 2, 6, 20}, k = 1, sum = 12
Failure
Subset {7, 7}:
{2, 2, 6, 20}, k = 1, sum = 6
Success
The time complexity is trivially O(n^k) (number of k-sized subsets from n elements).
Since k is a given constant, a (possibly quite high-order) polynomial upper bounds the complexity as a function of n.

Algorithm to determine indices i..j of array A containing all the elements of another array B

I came across this question on an interview questions thread. Here is the question:
Given two integer arrays A [1..n] and
B[1..m], find the smallest window
in A that contains all elements of
B. In other words, find a pair < i , j >
such that A[i..j] contains B[1..m].
If A doesn't contain all the elements of
B, then i,j can be returned as -1.
The integers in A need not be in the same order as they are in B. If there are more than one smallest window (different, but have the same size), then its enough to return one of them.
Example: A[1,2,5,11,2,6,8,24,101,17,8] and B[5,2,11,8,17]. The algorithm should return i = 2 (index of 5 in A) and j = 9 (index of 17 in A).
Now I can think of two variations.
Let's suppose that B has duplicates.
This variation doesn't consider the number of times each element occurs in B. It just checks for all the unique elements that occur in B and finds the smallest corresponding window in A that satisfies the above problem. For example, if A[1,2,4,5,7] and B[2,2,5], this variation doesn't bother about there being two 2's in B and just checks A for the unique integers in B namely 2 and 5 and hence returns i=1, j=3.
This variation accounts for duplicates in B. If there are two 2's in B, then it expects to see at least two 2's in A as well. If not, it returns -1,-1.
When you answer, please do let me know which variation you are answering. Pseudocode should do. Please mention space and time complexity if it is tricky to calculate it. Mention if your solution assumes array indices to start at 1 or 0 too.
Thanks in advance.
Complexity
Time: O((m+n)log m)
Space: O(m)
The following is provably optimal up to a logarithmic factor. (I believe the log factor cannot be got rid of, and so it's optimal.)
Variant 1 is just a special case of variant 2 with all the multiplicities being 1, after removing duplicates from B. So it's enough to handle the latter variant; if you want variant 1, just remove duplicates in O(m log m) time. In the following, let m denote the number of distinct elements in B. We assume m < n, because otherwise we can just return -1, in constant time.
For each index i in A, we will find the smallest index s[i] such that A[i..s[i]] contains B[1..m], with the right multiplicities. The crucial observation is that s[i] is non-decreasing, and this is what allows us to do it in amortised linear time.
Start with i=j=1. We will keep a tuple (c[1], c[2], ... c[m]) of the number of times each element of B occurs, in the current window A[i..j]. We will also keep a set S of indices (a subset of 1..m) for which the count is "right" (i.e., k for which c[k]=1 in variant 1, or c[k] = <the right number> in variant 2).
So, for i=1, starting with j=1, increment each c[A[j]] (if A[j] was an element of B), check if c[A[j]] is now "right", and add or remove j from S accordingly. Stop when S has size m. You've now found s[1], in at most O(n log m) time. (There are O(n) j's, and each set operation took O(log m) time.)
Now for computing successive s[i]s, do the following. Increment i, decrement c[A[i]], update S accordingly, and, if necessary, increment j until S has size m again. That gives you s[i] for each i. At the end, report the (i,s[i]) for which s[i]-i was smallest.
Note that although it seems that you might be performing up to O(n) steps (incrementing j) for each i, the second pointer j only moves to the right: so the total number of times you can increment j is at most n. (This is amortised analysis.) Each time you increment j, you might perform a set operation that takes O(log m) time, so the total time is O(n log m). The space required was for keeping the tuple of counts, the set of elements of B, the set S, and some constant number of other variables, so O(m) in all.
There is an obvious O(m+n) lower bound, because you need to examine all the elements. So the only question is whether we can prove the log factor is necessary; I believe it is.
Here is the solution I thought of (but it's not very neat).
I am going to illustrate it using the example in the question.
Let A[1,2,5,11,2,6,8,24,101,17,8] and B[5,2,11,8,17]
Sort B. (So B = [2,5,8,11,17]). This step takes O(log m).
Allocate an array C of size A. Iterate through elements of A, binary search for it in the sorted B, if it is found enter it's "index in sorted B + 1" in C. If its not found, enter -1. After this step,
A = [1 , 2, 5, 11, 2, 6, 8, 24, 101, 17, 8] (no changes, quoting for ease).
C = [-1, 1, 2, 4 , 1, -1, 3, -1, -1, 5, 3]
Time: (n log m), Space O(n).
Find the smallest window in C that has all the numbers from 1 to m. For finding the window, I can think of two general directions:
a. A bit oriented approach where in I set the bit corresponding to each position and finally check by some kind of ANDing.
b. Create another array D of size m, go through C and when I encounter p in C, increment D[p]. Use this for finding the window.
Please leave comments regarding the general approach as such, as well as for 3a and 3b.
My solution:
a. Create a hash table with m keys, one for each value in B. Each key in H maps to a dynamic array of sorted indices containing indices in A that are equal to B[i]. This takes O(n) time. We go through each index j in A. If key A[i] exists in H (O(1) time) then add an value containing the index j of A to the list of indices that H[A[i]] maps to.
At this point we have 'binned' n elements into m bins. However, total storage is just O(n).
b. The 2nd part of the algorithm involves maintaining a ‘left’ index and a ‘right’ index for each list in H. Lets create two arrays of size m called L and R that contain these values. Initially in our example,
We also keep track of the “best” minimum window.
We then iterate over the following actions on L and R which are inherently greedy:
i. In each iteration, we compute the minimum and maximum values in L and R.
For L, Lmax - Lmin is the window and for R, Rmax - Rmin is the window. We update the best window if one of these windows is better than the current best window. We use a min heap to keep track of the minimum element in L and a max heap to keep track of the largest element in R. These take O(m*log(m)) time to build.
ii. From a ‘greedy’ perspective, we want to take the action that will minimize the window size in each L and R. For L it intuitively makes sense to increment the minimum index, and for R, it makes sense to decrement the maximum index.
We want to increment the array position for the minimum value until it is larger than the 2nd smallest element in L, and similarly, we want to decrement the array position for the largest value in R until it is smaller than the 2nd largest element in R.
Next, we make a key observation:
If L[i] is the minimum value in L and R[i] is less than the 2nd smallest element in L, ie, if R[i] were to still be the minimum value in L if L[i] were replaced with R[i], then we are done. We now have the “best” index in list i that can contribute to the minimum window. Also, all the other elements in R cannot contribute to the best window since their L values are all larger than L[i]. Similarly if R[j] is the maximum element in R and L[j] is greater than the 2nd largest value in R, we are also done by setting R[j] = L[j]. Any other index in array i to the left of L[j] has already been accounted for as have all indices to the right of R[j], and all indices between L[j] and R[j] will perform poorer than L[j].
Otherwise, we simply increment the array position L[i] until it is larger than the 2nd smallest element in L and decrement array position R[j] (where R[j] is the max in R) until it is smaller than the 2nd largest element in R. We compute the windows and update the best window if one of the L or R windows is smaller than the best window. We can do a Fibonacci search to optimally do the increment / decrement. We keep incrementing L[i] using Fibonacci increments until we are larger than the 2nd largest element in L. We can then perform binary search to get the smallest element L[i] that is larger than the 2nd largest element in L, similar for the set R. After the increment / decrement, we pop the largest element from the max heap for R and the minimum element for the min heap for L and insert the new values of L[i] and R[j] into the heaps. This is an O(log(m)) operation.
Step ii. would terminate when Lmin can’t move any more to the right or Rmax can’t move any more to the left (as the R/L values are the same). Note that we can have scenarios in which L[i] = R[i] but if it is not the minimum element in L or the maximum element in R, the algorithm would still continue.
Runtime analysis:
a. Creation of the hash table takes O(n) time and O(n) space.
b. Creation of heaps: O(m*log(m)) time and O(m) space.
c. The greedy iterative algorithm is a little harder to analyze. Its runtime is really bounded by the distribution of elements. Worst case, we cover all the elements in each array in the hash table. For each element, we perform an O(log(m)) heap update.
Worst case runtime is hence O(n*log(m)) for the iterative greedy algorithm. In the best case, we discover very fast that L[i] = R[i] for the minimum element in L or the maximum element in R…run time is O(1)*log(m) for the greedy algorithm!
Average case seems really hard to analyze. What is the average “convergence” of this algorithm to the minimum window. If we were to assume that the Fibonacci increments / binary search were to help, we could say we only look at m*log(n/m) elements (every list has n/m elements) in the average case. In that case, the running time of the greedy algorithm would be m*log(n/m)*log(m).
Total running time
Best case: O(n + m*log(m) + log(m)) time = O(n) assuming m << n
Average case: O(n + m*log(m) + m*log(n/m)*log(m)) time = O(n) assuming m << n.
Worst case: O(n + n*log(m) + m*log(m)) = O(n*log(m)) assuming m << n.
Space: O(n + m) (hashtable and heaps) always.
Edit: Here is a worked out example:
A[5, 1, 1, 5, 6, 1, 1, 5]
B[5, 6]
H:
{
5 => {1, 4, 8}
6 => {5}
}
Greedy Algorithm:
L => {1, 1}
R => {3, 1}
Iteration 1:
a. Lmin = 1 (since H{5}[1] < H{6}[1]), Lmax = 5. Window: 5 - 1 + 1= 5
Increment Lmin pointer, it now becomes 2.
L => {2, 1}
Rmin = H{6}[1] = 5, Rmax = H{5}[3] = 8. Window = 8 - 5 + 1 = 4. Best window so far = 4 (less than 5 computed above).
We also note the indices in A (5, 8) for the best window.
Decrement Rmax, it now becomes 2 and the value is 4.
R => {2, 1}
b. Now, Lmin = 4 (H{5}[2]) and the index i in L is 1. Lmax = 5 (H{6}[1]) and the index in L is 2.
We can't increment Lmin since L[1] = R[1] = 2. Thus we just compute the window now.
The window = Lmax - Lmin + 1 = 2 which is the best window so far.
Thus, the best window in A = (4, 5).
struct Pair {
int i;
int j;
};
Pair
find_smallest_subarray_window(int *A, size_t n, int *B, size_t m)
{
Pair p;
p.i = -1;
p.j = -1;
// key is array value, value is array index
std::map<int, int> map;
size_t count = 0;
int i;
int j;
for(i = 0; i < n, ++i) {
for(j = 0; j < m; ++j) {
if(A[i] == B[j]) {
if(map.find(A[i]) == map.end()) {
map.insert(std::pair<int, int>(A[i], i));
} else {
int start = findSmallestVal(map);
int end = findLargestVal(map);
int oldLength = end-start;
int oldIndex = map[A[i]];
map[A[i]] = i;
int _start = findSmallestVal(map);
int _end = findLargestVal(map);
int newLength = _end - _start;
if(newLength > oldLength) {
// revert back
map[A[i]] = oldIndex;
}
}
}
}
if(count == m) {
break;
}
}
p.i = findSmallestVal(map);
p.j = findLargestVal(map);
return p;
}

Resources