I had a job interview a few weeks ago and I was asked to design a divide and conquer algorithm. I could not solve the problem, but they just called me for a second interview! Here is the question:
we are giving as input two n-element arrays A[0..n − 1] and B[0..n − 1] (which
are not necessarily sorted) of integers, and an integer value. Give an O(nlogn) divide and conquer algorithm that determines if there exist distinct values i, j (that is, i != j) such that A[i] + B[j] = value. Your algorithm should return True if i, j exists, and return False otherwise. You may assume that the elements in A are distinct, and the elements in B are distinct.
can anybody solve the problem? Thanks
My approach is..
Sort any of the array. Here we sort array A. Sort it with the Merge Sort algorithm which is a Divide and Conquer algorithm.
Then for each element of B, Search for Required Value- Element of B in array A by Binary Search. Again this is a Divide and Conquer algorithm.
If you find the element Required Value - Element of B from an Array A then Both element makes pair such that Element of A + Element of B = Required Value.
So here for Time Complexity, A has N elements so Merge Sort will take O(N log N) and We do Binary Search for each element of B(Total N elements) Which takes O(N log N). So total time complexity would be O(N log N).
As you have mentioned you require to check for i != j if A[i] + B[j] = value then here you can take 2D array of size N * 2. Each element is paired with its original index as second element of the each row. Sorting would be done according the the data stored in the first element. Then when you find the element, You can compare both elements original indexes and return the value accordingly.
The following algorithm does not use Divide and Conquer but it is one of the solutions.
You need to sort both the arrays, maintaining the indexes of the elements maybe sorting an array of pairs (elem, index). This takes O(n log n) time.
Then you can apply the merge algorithm to check if there two elements such that A[i]+B[j] = value. This would O(n)
Overall time complexity will be O(n log n)
I suggest using hashing. Even if it's not the way you are supposed to solve the problem, it's worth mentioning since hashing has a better time complexity O(n) v. O(n*log(n)) and that's why more efficient.
Turn A into a hashset (or dictionary if we want i index) - O(n)
Scan B and check if there's value - B[j] in the hashset (dictionary) - O(n)
So you have an O(n) + O(n) = O(n) algorithm (which is better that required (O n * log(n)), however the solution is NOT Divide and Conquer):
Sample C# implementation
int[] A = new int[] { 7, 9, 5, 3, 47, 89, 1 };
int[] B = new int[] { 5, 7, 3, 4, 21, 59, 0 };
int value = 106; // 47 + 59 = A[4] + B[5]
// Turn A into a dictionary: key = item's value; value = item's key
var dict = A
.Select((val, index) => new {
v = val,
i = index, })
.ToDictionary(item => item.v, item => item.i);
int i = -1;
int j = -1;
// Scan B array
for (int k = 0; k < B.Length; ++k) {
if (dict.TryGetValue(value - B[k], out i)) {
// Solution found: {i, j}
j = k;
// if you want any solution then break
break;
// scan further (comment out "break") if you want all pairs
}
}
Console.Write(j >= 0 ? $"{i} {j}" : "No solution");
Seems hard to achieve without sorting.
If you leave the arrays unsorted, checking for existence of A[i]+B[j] = Value takes time Ω(n) for fixed i, then checking for all i takes Θ(n²), unless you find a trick to put some order in B.
Balanced Divide & Conquer on the unsorted arrays doesn't seem any better: if you divide A and B in two halves, the solution can lie in one of Al/Bl, Al/Br, Ar/Bl, Ar/Br and this yields a recurrence T(n) = 4 T(n/2), which has a quadratic solution.
If sorting is allowed, the solution by Sanket Makani is a possibility but you do better in terms of time complexity for the search phase.
Indeed, assume A and B now sorted and consider the 2D function A[i]+B[j], which is monotonic in both directions i and j. Then the domain A[i]+B[j] ≤ Value is limited by a monotonic curve j = f(i) or equivalently i = g(j). But strict equality A[i]+B[j] = Value must be checked exhaustively for all points of the curve and one cannot avoid to evaluate f everywhere in the worst case.
Starting from i = 0, you obtain f(i) by dichotomic search. Then you can follow the border curve incrementally. You will perform n step in the i direction, and at most n steps in the j direction, so that the complexity remains bounded by O(n), which is optimal.
Below, an example showing the areas with a sum below and above the target value (there are two matches).
This optimal solution has little to do with Divide & Conquer. It is maybe possible to design a variant based on the evaluation of the sum at a central point, which allows to discard a whole quadrant, but that would be pretty artificial.
Related
Design an algorithm that sorts n integers where there are duplicates. The total number of different numbers is k. Your algorithm should have time complexity O(n + k*log(k)). The expected time is enough. For which values of k does the algorithm become linear?
I am not able to come up with a sorting algorithm for integers which satisfies the condition that it must be O(n + k*log(k)). I am not a very advanced programmer but I was in the problem before this one supposed to come up with an algorithm for all numbers xi in a list, 0 ≤ xi ≤ m such that the algorithm was O(n+m), where n was the number of elements in the list and m was the value of the biggest integer in the list. I solved that problem easily by using counting sort but I struggle with this problem. The condition that makes it the most difficult for me is the term k*log(k) under the ordo notation if that was n*log(n) instead I would be able to use merge sort, right? But that's not possible now so any ideas would be very helpful.
Thanks in advance!
Here is a possible solution:
Using a hash table, count the number of unique values and the number of duplicates of each value. This should have a complexity of O(n).
Enumerate the hashtable, storing the unique values into a temporary array. Complexity is O(k).
Sort this array with a standard algorithm such as mergesort: complexity is O(k.log(k)).
Create the resulting array by replicating the elements of the sorted array of unique values each the number of times stored in the hash table. complexity is O(n) + O(k).
Combined complexity is O(n + k.log(k)).
For example, if k is a small constant, sorting an array of n values converges toward linear time as n becomes larger and larger.
If during the first phase, where k is computed incrementally, it appears that k is not significantly smaller than n, drop the hash table and just sort the original array with a standard algorithm.
The runtime of O(n + k*log(k) indicates (like addition in runtimes often does) that you have 2 subroutines, one which runes in O(n) and the other that runs in O(k*log(k)).
You can first count the frequency of the elements in O(n) (for example in a Hashmap, look this up if youre not familiar with it, it's very useful).
Then you just sort the unique elements, from which there are k. This sorting runs in O(k*log(k)), use any sorting algorithm you want.
At the end replace the single unique elements by how often they actually appeared, by looking this up in the map you created in step 1.
A possible Java solution an be like this:
public List<Integer> sortArrayWithDuplicates(List<Integer> arr) {
// O(n)
Set<Integer> set = new HashSet<>(arr);
Map<Integer, Integer> freqMap = new HashMap<>();
for(Integer i: arr) {
freqMap.put(i, freqMap.getOrDefault(i, 0) + 1);
}
List<Integer> withoutDups = new ArrayList<>(set);
// Sorting => O(k(log(k)))
// as there are k different elements
Arrays.sort(withoutDups);
List<Integer> result = new ArrayList<>();
for(Integer i : withoutDups) {
int c = freqMap.get(i);
for(int j = 0; j < c; j++) {
result.add(i);
}
}
// return the result
return result;
}
The time complexity of the above code is O(n + k*log(k)) and solution is in the same line as answered above.
Given an array A with N elements I need to find pair (i,j) such that i is not equal to j and if we write the sum A[i]+A[j] for all pairs of (i,j) then it comes at the kth position.
Example : Let N=4 and arrays A=[1 2 3 4] and if K=3 then answer is 5 as we can see it clearly that sum array becomes like this : [3,4,5,5,6,7]
I can't go for all pair of i and j as N can go up to 100000. Please help how to solve this problem
I mean something like this :
int len=N*(N+1)/2;
int sum[len];
int count=0;
for(int i=0;i<N;i++){
for(int j=i+1;j<N;j++){
sum[count]=A[i]+A[j];
count++;
}
}
//Then just find kth element.
We can't go with this approach
A solution that is based on a fact that K <= 50: Let's take the first K + 1 elements of the array in a sorted order. Now we can just try all their combinations. Proof of correctness: let's assume that a pair (i, j) is the answer, where j > K + 1. But there are K pairs with the same or smaller sum: (1, 2), (1, 3), ..., (1, K + 1). Thus, it cannot be the K-th pair.
It is possible to achieve an O(N + K ^ 2) time complexity by choosing the K + 1 smallest numbers using a quickselect algorithm(it is possible to do even better, but it is not required). You can also just the array and get an O(N * log N + K ^ 2 * log K) complexity.
I assume that you got this question from http://www.careercup.com/question?id=7457663.
If k is close to 0 then the accepted answer to How to find kth largest number in pairwise sums like setA + setB? can be adapted quite easily to this problem and be quite efficient. You need O(n log(n)) to sort the array, O(n) to set up a priority queue, and then O(k log(k)) to iterate through the elements. The reversed solution is also efficient if k is near n*n - n.
If k is close to n*n/2 then that won't be very good. But you can adapt the pivot approach of http://en.wikipedia.org/wiki/Quickselect to this problem. First in time O(n log(n)) you can sort the array. In time O(n) you can set up a data structure representing the various contiguous ranges of columns. Then you'll need to select pivots O(log(n)) times. (Remember, log(n*n) = O(log(n)).) For each pivot, you can do a binary search of each column to figure out where it split it in time O(log(n)) per column, and total cost of O(n log(n)) for all columns.
The resulting algorithm will be O(n log(n) log(n)).
Update: I do not have time to do the finger exercise of supplying code. But I can outline some of the classes you might have in an implementation.
The implementation will be a bit verbose, but that is sometimes the cost of a good general-purpose algorithm.
ArrayRangeWithAddend. This represents a range of an array, summed with one value.with has an array (reference or pointer so the underlying data can be shared between objects), a start and an end to the range, and a shiftValue for the value to add to every element in the range.
It should have a constructor. A method to give the size. A method to partition(n) it into a range less than n, the count equal to n, and a range greater than n. And value(i) to give the i'th value.
ArrayRangeCollection. This is a collection of ArrayRangeWithAddend objects. It should have methods to give its size, pick a random element, and a method to partition(n) it into an ArrayRangeCollection that is below n, count of those equal to n, and an ArrayRangeCollection that is larger than n. In the partition method it will be good to not include ArrayRangeWithAddend objects that have size 0.
Now your main program can sort the array, and create an ArrayRangeCollection covering all pairs of sums that you are interested in. Then the random and partition method can be used to implement the standard quickselect algorithm that you will find in the link I provided.
Here is how to do it (in pseudo-code). I have now confirmed that it works correctly.
//A is the original array, such as A=[1,2,3,4]
//k (an integer) is the element in the 'sum' array to find
N = A.length
//first we find i
i = -1
nl = N
k2 = k
while (k2 >= 0) {
i++
nl--
k2 -= nl
}
//then we find j
j = k2 + nl + i + 1
//now compute the sum at index position k
kSum = A[i] + A[j]
EDIT:
I have now tested this works. I had to fix some parts... basically the k input argument should use 0-based indexing. (The OP seems to use 1-based indexing.)
EDIT 2:
I'll try to explain my theory then. I began with the concept that the sum array should be visualised as a 2D jagged array (diminishing in width as the height increases), with the coordinates (as mentioned in the OP) being i and j. So for an array such as [1,2,3,4,5] the sum array would be conceived as this:
3,4,5,6,
5,6,7,
7,8,
9.
The top row are all values where i would equal 0. The second row is where i equals 1. To find the value of 'j' we do the same but in the column direction.
... Sorry I cannot explain this any better!
Given n, k and n number of integers. How would you find the pairs of integers for which their difference is k?
There is a n*log n solution, but I cannot figure it out.
You can do it like this:
Sort the array
For each item data[i], determine its two target pairs, i.e. data[i]+k and data[i]-k
Run a binary search on the sorted array for these two targets; if found, add both data[i] and data[targetPos] to the output.
Sorting is done in O(n*log n). Each of the n search steps take 2 * log n time to look for the targets, for the overall time of O(n*log n)
For this problem exists the linear solution! Just ask yourself one question. If you have a what number should be in the array? Of course a+k or a-k (A special case: k = 0, required an alternative solution). So, what now?
You are creating a hash-set (for example unordered_set in C++11) with all values from the array. O(1) - Average complexity for each element, so it's O(n).
You are iterating through the array, and check for each element Is present in the array (x+k) or (x-k)?. You check it for each element, in set in O(1), You check each element once, so it's linear (O(n)).
If you found x with pair (x+k / x-k), it is what you are looking for.
So it's linear (O(n)). If you really want O(n lg n) you should use a set on tree, with checking is_exist in (lg n), then you have O(n lg n) algorithm.
Apposition: No need to check x+k and x-k, just x+k is sufficient. Cause if a and b are good pair then:
if a < b then
a + k == b
else
b + k == a
Improvement: If you know a range, you can guarantee linear complexity, by using bool table (set_tab[i] == true, when i is in table.).
Solution similar to one above:
Sort the array
set variables i = 0; j = 1;
check the difference between array[i] and array[j]
if the difference is too small, increase j
if the difference is too big, increase i
if the difference is the one you're looking for, add it to results and increase j
repeat 3 and 4 until the end of array
Sorting is O(n*lg n), the next step is, if I'm correct, O(n) (at most 2*n comparisons), so the whole algorithm is O(n*lg n)
Given two sorted arrays of numbers, we want to find the pair with the kth largest possible sum. (A pair is one element from the first array and one element from the second array). For example, with arrays
[2, 3, 5, 8, 13]
[4, 8, 12, 16]
The pairs with largest sums are
13 + 16 = 29
13 + 12 = 25
8 + 16 = 24
13 + 8 = 21
8 + 12 = 20
So the pair with the 4th largest sum is (13, 8). How to find the pair with the kth largest possible sum?
Also, what is the fastest algorithm? The arrays are already sorted and sizes M and N.
I am already aware of the O(Klogk) solution , using Max-Heap given here .
It also is one of the favorite Google interview question , and they demand a O(k) solution .
I've also read somewhere that there exists a O(k) solution, which i am unable to figure out .
Can someone explain the correct solution with a pseudocode .
P.S.
Please DON'T post this link as answer/comment.It DOESN'T contain the answer.
I start with a simple but not quite linear-time algorithm. We choose some value between array1[0]+array2[0] and array1[N-1]+array2[N-1]. Then we determine how many pair sums are greater than this value and how many of them are less. This may be done by iterating the arrays with two pointers: pointer to the first array incremented when sum is too large and pointer to the second array decremented when sum is too small. Repeating this procedure for different values and using binary search (or one-sided binary search) we could find Kth largest sum in O(N log R) time, where N is size of the largest array and R is number of possible values between array1[N-1]+array2[N-1] and array1[0]+array2[0]. This algorithm has linear time complexity only when the array elements are integers bounded by small constant.
Previous algorithm may be improved if we stop binary search as soon as number of pair sums in binary search range decreases from O(N2) to O(N). Then we fill auxiliary array with these pair sums (this may be done with slightly modified two-pointers algorithm). And then we use quickselect algorithm to find Kth largest sum in this auxiliary array. All this does not improve worst-case complexity because we still need O(log R) binary search steps. What if we keep the quickselect part of this algorithm but (to get proper value range) we use something better than binary search?
We could estimate value range with the following trick: get every second element from each array and try to find the pair sum with rank k/4 for these half-arrays (using the same algorithm recursively). Obviously this should give some approximation for needed value range. And in fact slightly improved variant of this trick gives range containing only O(N) elements. This is proven in following paper: "Selection in X + Y and matrices with sorted rows and columns" by A. Mirzaian and E. Arjomandi. This paper contains detailed explanation of the algorithm, proof, complexity analysis, and pseudo-code for all parts of the algorithm except Quickselect. If linear worst-case complexity is required, Quickselect may be augmented with Median of medians algorithm.
This algorithm has complexity O(N). If one of the arrays is shorter than other array (M < N) we could assume that this shorter array is extended to size N with some very small elements so that all calculations in the algorithm use size of the largest array. We don't actually need to extract pairs with these "added" elements and feed them to quickselect, which makes algorithm a little bit faster but does not improve asymptotic complexity.
If k < N we could ignore all the array elements with index greater than k. In this case complexity is equal to O(k). If N < k < N(N-1) we just have better complexity than requested in OP. If k > N(N-1), we'd better solve the opposite problem: k'th smallest sum.
I uploaded simple C++11 implementation to ideone. Code is not optimized and not thoroughly tested. I tried to make it as close as possible to pseudo-code in linked paper. This implementation uses std::nth_element, which allows linear complexity only on average (not worst-case).
A completely different approach to find K'th sum in linear time is based on priority queue (PQ). One variation is to insert largest pair to PQ, then repeatedly remove top of PQ and instead insert up to two pairs (one with decremented index in one array, other with decremented index in other array). And take some measures to prevent inserting duplicate pairs. Other variation is to insert all possible pairs containing largest element of first array, then repeatedly remove top of PQ and instead insert pair with decremented index in first array and same index in second array. In this case there is no need to bother about duplicates.
OP mentions O(K log K) solution where PQ is implemented as max-heap. But in some cases (when array elements are evenly distributed integers with limited range and linear complexity is needed only on average, not worst-case) we could use O(1) time priority queue, for example, as described in this paper: "A Complexity O(1) Priority Queue for Event Driven Molecular Dynamics Simulations" by Gerald Paul. This allows O(K) expected time complexity.
Advantage of this approach is a possibility to provide first K elements in sorted order. Disadvantages are limited choice of array element type, more complex and slower algorithm, worse asymptotic complexity: O(K) > O(N).
EDIT: This does not work. I leave the answer, since apparently I am not the only one who could have this kind of idea; see the discussion below.
A counter-example is x = (2, 3, 6), y = (1, 4, 5) and k=3, where the algorithm gives 7 (3+4) instead of 8 (3+5).
Let x and y be the two arrays, sorted in decreasing order; we want to construct the K-th largest sum.
The variables are: i the index in the first array (element x[i]), j the index in the second array (element y[j]), and k the "order" of the sum (k in 1..K), in the sense that S(k)=x[i]+y[j] will be the k-th greater sum satisfying your conditions (this is the loop invariant).
Start from (i, j) equal to (0, 0): clearly, S(1) = x[0]+y[0].
for k from 1 to K-1, do:
if x[i+1]+ y[j] > x[i] + y[j+1], then i := i+1 (and j does not change) ; else j:=j+1
To see that it works, consider you have S(k) = x[i] + y[j]. Then, S(k+1) is the greatest sum which is lower (or equal) to S(k), and such as at least one element (i or j) changes. It is not difficult to see that exactly one of i or j should change.
If i changes, the greater sum you can construct which is lower than S(k) is by setting i=i+1, because x is decreasing and all the x[i'] + y[j] with i' < i are greater than S(k). The same holds for j, showing that S(k+1) is either x[i+1] + y[j] or x[i] + y[j+1].
Therefore, at the end of the loop you found the K-th greater sum.
tl;dr: If you look ahead and look behind at each iteration, you can start with the end (which is highest) and work back in O(K) time.
Although the insight underlying this approach is, I believe, sound, the code below is not quite correct at present (see comments).
Let's see: first of all, the arrays are sorted. So, if the arrays are a and b with lengths M and N, and as you have arranged them, the largest items are in slots M and N respectively, the largest pair will always be a[M]+b[N].
Now, what's the second largest pair? It's going to have perhaps one of {a[M],b[N]} (it can't have both, because that's just the largest pair again), and at least one of {a[M-1],b[N-1]}. BUT, we also know that if we choose a[M-1]+b[N-1], we can make one of the operands larger by choosing the higher number from the same list, so it will have exactly one number from the last column, and one from the penultimate column.
Consider the following two arrays: a = [1, 2, 53]; b = [66, 67, 68]. Our highest pair is 53+68. If we lose the smaller of those two, our pair is 68+2; if we lose the larger, it's 53+67. So, we have to look ahead to decide what our next pair will be. The simplest lookahead strategy is simply to calculate the sum of both possible pairs. That will always cost two additions, and two comparisons for each transition (three because we need to deal with the case where the sums are equal);let's call that cost Q).
At first, I was tempted to repeat that K-1 times. BUT there's a hitch: the next largest pair might actually be the other pair we can validly make from {{a[M],b[N]}, {a[M-1],b[N-1]}. So, we also need to look behind.
So, let's code (python, should be 2/3 compatible):
def kth(a,b,k):
M = len(a)
N = len(b)
if k > M*N:
raise ValueError("There are only %s possible pairs; you asked for the %sth largest, which is impossible" % M*N,k)
(ia,ib) = M-1,N-1 #0 based arrays
# we need this for lookback
nottakenindices = (0,0) # could be any value
nottakensum = float('-inf')
for i in range(k-1):
optionone = a[ia]+b[ib-1]
optiontwo = a[ia-1]+b[ib]
biggest = max((optionone,optiontwo))
#first deal with look behind
if nottakensum > biggest:
if optionone == biggest:
newnottakenindices = (ia,ib-1)
else: newnottakenindices = (ia-1,ib)
ia,ib = nottakenindices
nottakensum = biggest
nottakenindices = newnottakenindices
#deal with case where indices hit 0
elif ia <= 0 and ib <= 0:
ia = ib = 0
elif ia <= 0:
ib-=1
ia = 0
nottakensum = float('-inf')
elif ib <= 0:
ia-=1
ib = 0
nottakensum = float('-inf')
#lookahead cases
elif optionone > optiontwo:
#then choose the first option as our next pair
nottakensum,nottakenindices = optiontwo,(ia-1,ib)
ib-=1
elif optionone < optiontwo: # choose the second
nottakensum,nottakenindices = optionone,(ia,ib-1)
ia-=1
#next two cases apply if options are equal
elif a[ia] > b[ib]:# drop the smallest
nottakensum,nottakenindices = optiontwo,(ia-1,ib)
ib-=1
else: # might be equal or not - we can choose arbitrarily if equal
nottakensum,nottakenindices = optionone,(ia,ib-1)
ia-=1
#+2 - one for zero-based, one for skipping the 1st largest
data = (i+2,a[ia],b[ib],a[ia]+b[ib],ia,ib)
narrative = "%sth largest pair is %s+%s=%s, with indices (%s,%s)" % data
print (narrative) #this will work in both versions of python
if ia <= 0 and ib <= 0:
raise ValueError("Both arrays exhausted before Kth (%sth) pair reached"%data[0])
return data, narrative
For those without python, here's an ideone: http://ideone.com/tfm2MA
At worst, we have 5 comparisons in each iteration, and K-1 iterations, which means that this is an O(K) algorithm.
Now, it might be possible to exploit information about differences between values to optimise this a little bit, but this accomplishes the goal.
Here's a reference implementation (not O(K), but will always work, unless there's a corner case with cases where pairs have equal sums):
import itertools
def refkth(a,b,k):
(rightia,righta),(rightib,rightb) = sorted(itertools.product(enumerate(a),enumerate(b)), key=lamba((ia,ea),(ib,eb):ea+eb)[k-1]
data = k,righta,rightb,righta+rightb,rightia,rightib
narrative = "%sth largest pair is %s+%s=%s, with indices (%s,%s)" % data
print (narrative) #this will work in both versions of python
return data, narrative
This calculates the cartesian product of the two arrays (i.e. all possible pairs), sorts them by sum, and takes the kth element. The enumerate function decorates each item with its index.
The max-heap algorithm in the other question is simple, fast and correct. Don't knock it. It's really well explained too. https://stackoverflow.com/a/5212618/284795
Might be there isn't any O(k) algorithm. That's okay, O(k log k) is almost as fast.
If the last two solutions were at (a1, b1), (a2, b2), then it seems to me there are only four candidate solutions (a1-1, b1) (a1, b1-1) (a2-1, b2) (a2, b2-1). This intuition could be wrong. Surely there are at most four candidates for each coordinate, and the next highest is among the 16 pairs (a in {a1,a2,a1-1,a2-1}, b in {b1,b2,b1-1,b2-1}). That's O(k).
(No it's not, still not sure whether that's possible.)
[2, 3, 5, 8, 13]
[4, 8, 12, 16]
Merge the 2 arrays and note down the indexes in the sorted array. Here is the index array looks like (starting from 1 not 0)
[1, 2, 4, 6, 8]
[3, 5, 7, 9]
Now start from end and make tuples. sum the elements in the tuple and pick the kth largest sum.
public static List<List<Integer>> optimization(int[] nums1, int[] nums2, int k) {
// 2 * O(n log(n))
Arrays.sort(nums1);
Arrays.sort(nums2);
List<List<Integer>> results = new ArrayList<>(k);
int endIndex = 0;
// Find the number whose square is the first one bigger than k
for (int i = 1; i <= k; i++) {
if (i * i >= k) {
endIndex = i;
break;
}
}
// The following Iteration provides at most endIndex^2 elements, and both arrays are in ascending order,
// so k smallest pairs must can be found in this iteration. To flatten the nested loop, refer
// 'https://stackoverflow.com/questions/7457879/algorithm-to-optimize-nested-loops'
for (int i = 0; i < endIndex * endIndex; i++) {
int m = i / endIndex;
int n = i % endIndex;
List<Integer> item = new ArrayList<>(2);
item.add(nums1[m]);
item.add(nums2[n]);
results.add(item);
}
results.sort(Comparator.comparing(pair->pair.get(0) + pair.get(1)));
return results.stream().limit(k).collect(Collectors.toList());
}
Key to eliminate O(n^2):
Avoid cartesian product(or 'cross join' like operation) of both arrays, which means flattening the nested loop.
Downsize iteration over the 2 arrays.
So:
Sort both arrays (Arrays.sort offers O(n log(n)) performance according to Java doc)
Limit the iteration range to the size which is just big enough to support k smallest pairs searching.
To find the median of an unsorted array, we can make a min-heap in O(nlogn) time for n elements, and then we can extract one by one n/2 elements to get the median. But this approach would take O(nlogn) time.
Can we do the same by some method in O(n) time? If we can, then please tell or suggest some method.
You can use the Median of Medians algorithm to find median of an unsorted array in linear time.
I have already upvoted the #dasblinkenlight answer since the Median of Medians algorithm in fact solves this problem in O(n) time. I only want to add that this problem could be solved in O(n) time by using heaps also. Building a heap could be done in O(n) time by using the bottom-up. Take a look to the following article for a detailed explanation Heap sort
Supposing that your array has N elements, you have to build two heaps: A MaxHeap that contains the first N/2 elements (or (N/2)+1 if N is odd) and a MinHeap that contains the remaining elements. If N is odd then your median is the maximum element of MaxHeap (O(1) by getting the max). If N is even, then your median is (MaxHeap.max()+MinHeap.min())/2 this takes O(1) also. Thus, the real cost of the whole operation is the heaps building operation which is O(n).
BTW this MaxHeap/MinHeap algorithm works also when you don't know the number of the array elements beforehand (if you have to resolve the same problem for a stream of integers for e.g). You can see more details about how to resolve this problem in the following article Median Of integer streams
Quickselect works in O(n), this is also used in the partition step of Quicksort.
The quick select algorithm can find the k-th smallest element of an array in linear (O(n)) running time. Here is an implementation in python:
import random
def partition(L, v):
smaller = []
bigger = []
for val in L:
if val < v: smaller += [val]
if val > v: bigger += [val]
return (smaller, [v], bigger)
def top_k(L, k):
v = L[random.randrange(len(L))]
(left, middle, right) = partition(L, v)
# middle used below (in place of [v]) for clarity
if len(left) == k: return left
if len(left)+1 == k: return left + middle
if len(left) > k: return top_k(left, k)
return left + middle + top_k(right, k - len(left) - len(middle))
def median(L):
n = len(L)
l = top_k(L, n / 2 + 1)
return max(l)
No, there is no O(n) algorithm for finding the median of an arbitrary, unsorted dataset.
At least none that I am aware of in 2022. All answers offered here are variations/combinations using heaps, Median of Medians, Quickselect, all of which are strictly O(nlogn).
See https://en.wikipedia.org/wiki/Median_of_medians and http://cs.indstate.edu/~spitla/abstract2.pdf.
The problem appears to be confusion about how algorithms are classified, which is according their limiting (worst case) behaviour. "On average" or "typically" O(n) with "worst case" O(f(n)) means (in textbook terms) "strictly O(f(n))". Quicksort for example, is often discussed as being O(nlogn) (which is how it typically performs), although it is in fact an O(n^2) algorithm because there is always some pathological ordering of inputs for which it can do no better than n^2 comparisons.
It can be done using Quickselect Algorithm in O(n), do refer to Kth order statistics (randomized algorithms).
As wikipedia says, Median-of-Medians is theoretically o(N), but it is not used in practice because the overhead of finding "good" pivots makes it too slow.
http://en.wikipedia.org/wiki/Selection_algorithm
Here is Java source for a Quickselect algorithm to find the k'th element in an array:
/**
* Returns position of k'th largest element of sub-list.
*
* #param list list to search, whose sub-list may be shuffled before
* returning
* #param lo first element of sub-list in list
* #param hi just after last element of sub-list in list
* #param k
* #return position of k'th largest element of (possibly shuffled) sub-list.
*/
static int select(double[] list, int lo, int hi, int k) {
int n = hi - lo;
if (n < 2)
return lo;
double pivot = list[lo + (k * 7919) % n]; // Pick a random pivot
// Triage list to [<pivot][=pivot][>pivot]
int nLess = 0, nSame = 0, nMore = 0;
int lo3 = lo;
int hi3 = hi;
while (lo3 < hi3) {
double e = list[lo3];
int cmp = compare(e, pivot);
if (cmp < 0) {
nLess++;
lo3++;
} else if (cmp > 0) {
swap(list, lo3, --hi3);
if (nSame > 0)
swap(list, hi3, hi3 + nSame);
nMore++;
} else {
nSame++;
swap(list, lo3, --hi3);
}
}
assert (nSame > 0);
assert (nLess + nSame + nMore == n);
assert (list[lo + nLess] == pivot);
assert (list[hi - nMore - 1] == pivot);
if (k >= n - nMore)
return select(list, hi - nMore, hi, k - nLess - nSame);
else if (k < nLess)
return select(list, lo, lo + nLess, k);
return lo + k;
}
I have not included the source of the compare and swap methods, so it's easy to change the code to work with Object[] instead of double[].
In practice, you can expect the above code to be o(N).
Let the problem be: finding the Kth largest element in an unsorted array.
Divide the array into n/5 groups where each group consisting of 5 elements.
Now a1,a2,a3....a(n/5) represent the medians of each group.
x = Median of the elements a1,a2,.....a(n/5).
Now if k<n/2 then we can remove the largets, 2nd largest and 3rd largest element of the groups whose median is greater than the x. We can now call the function again with 7n/10 elements and finding the kth largest value.
else if k>n/2 then we can remove the smallest ,2nd smallest and 3rd smallest element of the group whose median is smaller than the x. We can now call the function of again with 7n/10 elements and finding the (k-3n/10)th largest value.
Time Complexity Analysis:
T(n) time complexity to find the kth largest in an array of size n.
T(n) = T(n/5) + T(7n/10) + O(n)
if you solve this you will find out that T(n) is actually O(n)
n/5 + 7n/10 = 9n/10 < n
Notice that building a heap takes O(n) actually not O(nlogn), you can check this using amortized analysis or simply check in Youtube.
Extract-Min takes O(logn), therefore, extracting n/2 will take (nlogn/2) = O(nlogn) amortized time.
About your question, you can simply check at Median of Medians.