Parameters to decrease the retrieval of key-value pairs in Vault - consul

I have a cluster which consists of three Vaults and another cluster of three Consuls which serves as the storage back-end. The nodes are configured with the basic configuration to form a cluster and each node is hosted on one VM.
I have performed some fail-over tests and when Vault active is down, to retrieve the key-value pair is taking around 35 seconds, which is quite a lot.
I have tried to add in the Consul configuration "session_ttl_min: 2s" to decrease the time of retrieving the password, but I couldn't notice any change.
It's any other parameters which can be set to retrieve faster the key-value pairs and to decrease the fail-over timeout?
I am using Vault v1.1.1 and Consul v1.4.4 versions.

Related

Can consul support large key/value store

We are planning to put our dynamic configuration in hierarchical Consul KV store.
Data is approx 10,000 items and will grow to several thousands as we scale.
we need several nodes (dozens) to wait for updates on the hierarchy root.
Is that a scale that consul is designed to handle ?
thank you
Consul cluster can hold a lot of K/V's. After running several Consul clusters in production we found some things you really want to get correct.
Make sure you use at least 5 Consul servers in each DC, especially in AWS across availability zones.
Make sure you set GOMAXPROCS > 1 or you will see poor performance.
Make sure clients like consul-template are configure to query any server and not just the leader.
Aggregate documents where you can. If you don't need an individual K/V for each setting in some collection then put them in a document at a single path. It will keep the complexity much lower.
Right now we are running 10, 5 node Consul DCs in production and dev environments.

How does Redis Cluster handle replication for sorted sets ZSET (and others)?

Redis Cluster supports sorted sets. How is the replication login implemented if used with a replication factor > 1? Is the master node forwarding all actions applied against the sorted set to the replica nodes or is there some other mechanism (e.g. copying the whole set over the wire everytime something changes)?
Subquestions: how reliable is this replication? How does it scales with both frequently accessed and huge sorted sets?
Redis' replication is operation-based, meaning that the slaves get the stream of write commands from the master. The replication mechanism isn't related to the clustering functionality and works the same whether used in a cluster or by a standalone Redis server.
The replication is extremely reliable but note that it is asynchronous.

Cache huge data in-memory

I am looking for an in-memory cache solution which can handle big data (<5GB). For a user inputted search term, the database (elasticsearch) will return a large amount of data which the tool will analyze and show via different webpages of the tool. Now my problem is that I want to cache this big data temporarily till the user session gets over so that I don't have to fetch it again from elasticsearch every time the user opens a new page. It will have to be in-memory because disk based will take over a minute which would be very slow.
I initially thought memcached but it has a max limit of 128MB. After reading quite a bit, Redis seems suitable but it is unclear to me whether a bunch of Redis nodes can work in tandem or not. Is it possible to set up a pool of many Redis nodes so that a suitable node will be automatically chosen on SET and the data returned upon GET without me having to specify the node?
TL;DR
Problem: Cache big data (<5GB) in an in-memory cache
Possible solution: Redis
Question: Can I pool a bunch of Redis nodes so that I can fetch a key stored in any of them without specifying a particular node. I don't need to distribute my data since data for a single user will fit into the RAM of a single node.
A Redis Cluster sounds like a good fit for your usecase!
Redis cluster provides a mechanism for data sharding by means of hash slots. These slots are equally distributed over the nodes in your cluster when setting it up.
Whenever you store a value in the cluser, the corresponding hash slot for the given key is calculated and the data is forwarded to the responsible node. And the same way you can afterwards query your data again. So the answer to your question is certainly yes.
However, the max value size per key is 512MB. I'm not sure if I got your storage requirement correctly. I assume 5GB is the estimated total amount over all users.
Checkout the redis cluster tutorial.
You can also look into NCache(.net) / Tayzgrid(java) by Alachisoft,
Both of these solutions provide distributed caching with dynamic clustering which allows to add or remove nodes in cluster at runtime with out losing any data. Also intelligent client makes sure to refer to appropriate node to fetch/store a record against any key.

Redis failover and Partitioning?

I am using client side partitioning on a 4 node redis setup. The writes and reads are distributed among the nodes. Redis is used as a persistence layer for volatile data as well as a cache by different parts of application. We also have a cassandra deployment for persisting non-volatile data.
On redis we peak at nearly 1k ops/sec (instantaneous_ops_per_sec). The load is expected to increase with time. There are many operations where we query for a non-existent key to check whether data is present for that key.
I want to achieve following things:
Writes should failover to something when a redis node goes down.
There should be a backup for reading the data lost when the redis node went down.
If we add more redis nodes in the future (or a dead node comes back up), reads and writes should be re-distributed consistently.
I am trying to figure out suitable design to handle the above scenario. I have thought of the following options:
Create hot slaves for the existing nodes and swap them as and when a master goes down. This will not address the third point.
Write a Application layer to persist data in both redis and cassandra allowing a lazy load path for reads when a redis node goes down. This approach will have an overhead of writing to two stores.
Which is a better approach? Is there a suitable alternative to the above approaches?
A load of 1k ops/s is far below the capabilities of Redis. You would need to increase by up to two or more orders of magnitude before you come close to overloading it. If you aren't expecting to exceed 50-70,000 ops/second and are not exceeding your available single/0-node memory I really wouldn't bother with sharding your data as it is more effort than it is worth.
That said, I wouldn't do sharding for this client-side. I'd look at something like Twemproxy/Nutcracker to do it do you. This provides a path to a Redis Cluster as well as the ability to scale out connections and proved transparent client-side support for failover scenarios.
To handle failover in the client you would want to set up two instances per slot (in your description a write node) with one shaved to the other. Then you would run a Sentinel Constellation to manage the failover.
Then you would need to have your client code connect to sentinel to get the current master connectivity for each slot. This also means client code which can reconnect to the newly promoted master when a failover occurs. If you have load Balancers available you can place your Redis nodes behind one or more (preferably two with failover) and eliminated client reconnection requirements, but you would then need to implement a sentinel script or monitor to update the load balancer configuration on failover.
For the Sentinel Constellation a standard 3 node setup will work fine. If you do your load balancing with software in nodes you control it would be best to have at least two sentinel nodes on the load Balancers to provide natural connectivity tests.
Given your description I would test out running a single master with multiple read slaves, and instead of hashing in client code, distribute reads to slaves and writes to master. This will provide a much simpler setup and likely less complex code on the client side. Scaling read slaves is easier and simpler, and as you describe it the vast majority if ops will be read requests so it fits your described usage pattern precisely.
You would still need to use Sentinel to manage failover, but that complexity will still exist, resulting in a net decrease in code and code complexity. For a single master, sentinel is almost trivial so setup; the caveats being code to either manage a load balancer or Virtual IP or to handle sentinel discovery in the client code.
You are opening the distributed database Pandora's box here.
My best suggestion is; don't do it, don't implement your own Redis Cluster unless you can afford loosing data and / or you can take some downtime.
If you can afford running on not-yet-production-ready software, my suggestion is to have a look at the official Redis Cluster implementation; if your requirements are low enough for you to kick your own cluster implementation, chances are that you can afford using Redis Cluster directly which has a community behind.
Have you considered looking at different software than Redis? Cassandra,Riak,DynamoDB,Hadoop are great examples of mature distributes databases that would do what you asked out of the box.

How to setup ElasticSearch cluster with auto-scaling on Amazon EC2?

There is a great tutorial elasticsearch on ec2 about configuring ES on Amazon EC2. I studied it and applied all recommendations.
Now I have AMI and can run any number of nodes in the cluster from this AMI. Auto-discovery is configured and the nodes join the cluster as they really should.
The question is How to configure cluster in way that I can automatically launch/terminate nodes depending on cluster load?
For example I want to have only 1 node running when we don't have any load and 12 nodes running on peak load. But wait, if I terminate 11 nodes in cluster what would happen with shards and replicas? How to make sure I don't lose any data in cluster if I terminate 11 nodes out of 12 nodes?
I might want to configure S3 Gateway for this. But all the gateways except for local are deprecated.
There is an article in the manual about shards allocation. May be I'm missing something very basic but I should admit I failed to figure out if it is possible to configure one node to always hold all the shards copies. My goal is to make sure that if this would be the only node running in the cluster we still don't lose any data.
The only solution I can imagine now is to configure index to have 12 shards and 12 replicas. Then when up to 12 nodes are launched every node would have copy of every shard. But I don't like this solution cause I would have to reconfigure cluster if I might want to have more then 12 nodes on peak load.
Auto scaling doesn't make a lot of sense with ElasticSearch.
Shard moving and re-allocation is not a light process, especially if you have a lot of data. It stresses IO and network, and can degrade the performance of ElasticSearch badly. (If you want to limit the effect you should throttle cluster recovery using settings like cluster.routing.allocation.cluster_concurrent_rebalance, indices.recovery.concurrent_streams, indices.recovery.max_size_per_sec . This will limit the impact but will also slow the re-balancing and recovery).
Also, if you care about your data you don't want to have only 1 node ever. You need your data to be replicated, so you will need at least 2 nodes (or more if you feel safer with a higher replication level).
Another thing to remember is that while you can change the number of replicas, you can't change the number of shards. This is configured when you create your index and cannot be changed (if you want more shards you need to create another index and reindex all your data). So your number of shards should take into account the data size and the cluster size, considering the higher number of nodes you want but also your minimal setup (can fewer nodes hold all the shards and serve the estimated traffic?).
So theoretically, if you want to have 2 nodes at low time and 12 nodes on peak, you can set your index to have 6 shards with 1 replica. So on low times you have 2 nodes that hold 6 shards each, and on peak you have 12 nodes that hold 1 shard each.
But again, I strongly suggest rethinking this and testing the impact of shard moving on your cluster performance.
In cases where the elasticity of your application is driven by a variable query load you could setup ES nodes configured to not store any data (node.data = false, http.enabled = true) and then put them in for auto scaling. These nodes could offload all the HTTP and result conflation processing from your main data nodes (freeing them up for more indexing and searching).
Since these nodes wouldn't have shards allocated to them bringing them up and down dynamically shouldn't be a problem and the auto-discovery should allow them to join the cluster.
I think this is a concern in general when it comes to employing auto-scalable architecture to meet temporary demands, but data still needs to be saved. I think there is a solution that leverages EBS
map shards to specific EBS volumes. Lets say we need 15 shards. We will need 15 EBS Volumes
amazon allows you to mount multiple volumes, so when we start we can start with few instances that have multiple volumes attached to them
as load increase, we can spin up additional instance - upto 15.
The above solution is only advised if you know your max capacity requirements.
I can give you an alternative approach using aws elastic search service(it will cost little bit more than normal ec2 elasticsearch).Write a simple script which continuously monitor the load (through api/cli)on the service and if the load goes beyond the threshold, programatically increase the nodes of your aws elasticsearch-service cluster.Here the advantage is aws will take care of the scaling(As per the documentation they are taking a snaphost and launching a completely new cluster).This will work for scale down also.
Regarding Auto-scaling approach there is some challenges like shard movement has an impact on the existing cluster, also we need to more vigilant while scaling down.You can find a good article on scaling down here which I have tested.If you can do some kind of intelligent automation of the steps in the above link through some scripting(python, shell) or through automation tools like Ansible, then the scaling in/out is achievable.But again you need to start the scaling up well before the normal limits since the scale up activities can have an impact on existing cluster.
Question: is possible to configure one node to always hold all the shards copies?
Answer: Yes,its possible by explicit shard routing.More details here
I would be tempted to suggest solving this a different way in AWS. I dont know what ES data this is or how its updated etc... Making a lot of assumptions I would put the ES instance behind a ALB (app load balancer) I would have a scheduled process that creates updated AMI's regularly (if you do it often then it will be quick to do), then based on load of your single server I would trigger more instances to be created from the latest instance you have available. Add the new instances to the ALB to share some of the load. As this quiet down I would trigger the termination of the temp instances. If you go this route here are a couple more things to consider
Use spot instances since they are cheaper and if it fits your use case
The "T" instances dont fit well here since they need time to build up credits
Use lambdas for the task of turning things on and off, if you want to be fancy you can trigger it based on a webhook to the aws gateway
Making more assumptions about your use case, consider putting a Varnish server in front of your ES machine so that you can more cheaply provide scale based on a cache strategy (lots of assumptions here) based on the stress you can dial in the right TTL for cache eviction. Check out the soft-purge feature for our ES stuff we have gotten a lot of good value from this.
if you do any of what i suggest here make sure to make your spawned ES instances report any logs back to a central addressable place on the persistent ES machine so you don't lose logs when the machines die

Resources