I am trying to develop an algorithm that converts simple mono line images ie Maze, to a text 2d array.
For example, the image below, it would be converted to the following text array.
[|------------ |]
[| | |]
[| |]
[| |------| ---- |]
[| | | |]
[| | --- |]
[|--- | | |]
[| |--- | |]
[| | | |]
[| --------------- |]
[| |]
[| -------------------|]
and finally, like this, where 0=obstacle and 1=free passage
[0000000000000111111110]
[0111110111111111111110]
[0111111111111111111110]
[0110000000011111100000]
[0111111111011111011110]
[0111111111011111000110]
[0000111111011111111010]
[0111111111000011111010]
[0111110111111011111110]
[0111100000000000000010]
[0111111111111111111110]
[0110000000000000000000]
I am thinking to use an Image to Line Art Text like algorithms, ie
https://www.text-image.com/convert/pic2ascii.cgi
What do you think about this approach?
Interseting problem its basically vector form of Image to ASCII art conversion... I managed to do this with this algorithm:
preprocess image
You gave us JPG which has lossy compresion meaning your image contain much more than just 2 colors. So there are shades and artifacts which will screw things up. So first we must get rid of those by thresholding and recoloring. So we can have 2D BW image (no grayscales)
vectorize
Your maze is axis aligned so it contains only horizontal and vertical (h,v) lines. So simply scan each line of image find first starting wall pixel then its ending pixel and store somewhere... repeat until whole line is processed and do this for all lines. Again do the same for rows of image. As your image has thick walls ignore lines sorter than thickness threshold and remove adjacent (duplicates) line that are (almost) the same.
get list of possible grid coordinates from h,v lines
simply make a list of all x and y (separately) coordinates from lines start and end points. Then sort them and remove too close coordinates (duplicates).
Now the min and max values gives you AABB of your maze and GCD of all the coordinate-lowest coordinate will give you grid size.
align h,v lines to grid
simply round all start/end points to nearest grid position ...
create text buffer for maze
AABB along with grid size will give you resolution of your maz in cells so simply create 2D text buffer where each cell has NxN characters. I am using 6x3 cells which looks nice enough (square and with enough space inside).
renmder h,v lines into text
simply loop through all lines and render - or | instead of pixels... I am using also + if the target position does not contain ' '.
convert 2D text array into wanted text output
simply copy the lines into single text ... or if you clever enough you can have 1D and 2D at the same memory place with eol encoded between lines.
Here simple example in C++/VCL I made from the exampe in the link above:
//---------------------------------------------------------------------------
#include <vcl.h>
#include <jpeg.hpp>
#pragma hdrstop
#include "win_main.h"
#include "List.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
Graphics::TBitmap *bmp=new Graphics::TBitmap;
int txt_xs=0,txt_ys=0,txt_xf=0;
//---------------------------------------------------------------------------
template <class T> void sort_asc_bubble(T *a,int n)
{
int i,e; T a0,a1;
for (e=1;e;n--) // loop until no swap occurs
for (e=0,a0=a[0],a1=a[1],i=1;i<n;a0=a1,i++,a1=a[i])// proces unsorted part of array
if (a0>a1) // condition if swap needed
{ a[i-1]=a1; a[i]=a0; a1=a0; e=1; } // swap and allow to process array again
}
//---------------------------------------------------------------------------
AnsiString bmp2lintxt(Graphics::TBitmap *bmp)
{
bool debug=false;
const int cx=6; // cell size
const int cy=3;
const int thr_bw=400; // BW threshold
const int thr_thickness=10; // wall thikness threshold
char a;
AnsiString txt="",eol="\r\n";
int x,y,x0,y0,x1,y1,xs,ys,gx,gy,nx,ny,i,i0,i1,j;
union { BYTE db[4]; DWORD dd; } c; DWORD **pyx;
List<int> h,v; // horizontal and vertical lines (x,y,size)
List<int> tx,ty;// temp lists for grid GCD computation
// [init stuff]
bmp->HandleType=bmDIB;
bmp->PixelFormat=pf32bit;
xs=bmp->Width ;
ys=bmp->Height;
if (xs<=0) return txt;
if (ys<=0) return txt;
pyx=new DWORD*[ys];
for (y=0;y<ys;y++) pyx[y]=(DWORD*)bmp->ScanLine[y];
i=xs; if (i<ys) i=ys;
// threshold bmp to B&W
x0=xs; x1=0; y0=xs; y1=0;
for (y=0;y<ys;y++)
for (x=0;x<xs;x++)
{
c.dd=pyx[y][x];
i =c.db[0];
i+=c.db[1];
i+=c.db[2];
if (i>=thr_bw) c.dd=0x00FFFFFF;
else c.dd=0x00000000;
pyx[y][x]=c.dd;
}
if (debug) bmp->SaveToFile("out0_bw.bmp");
// [vectorize]
// get horizontal lines
i0=0; i1=0; h.num=0;
for (y0=0;y0<ys;y0++)
{
for (x0=0;x0<xs;)
{
for ( ;x0<xs;x0++) if (!pyx[y0][x0]) break;
for (x1=x0;x1<xs;x1++) if ( pyx[y0][x1]){ x1--; break; }
i=x1-x0;
if (i>thr_thickness)
{
h.add(x0);
h.add(y0);
h.add(i);
}
x0=x1+1;
}
// remove duplicate lines
for (i=i0;i<i1;i+=3)
for (j=i1;j<h.num;j+=3)
if ((abs(h[i+0]-h[j+0])<thr_thickness)&&(abs(h[i+2]-h[j+2])<thr_thickness))
{
h.del(i);
h.del(i);
h.del(i);
i1-=3; i-=3; break;
}
i0=i1; i1=h.num;
}
// get vertical lines
i0=0; i1=0; v.num=0;
for (x0=0;x0<xs;x0++)
{
for (y0=0;y0<ys;)
{
for ( ;y0<ys;y0++) if (!pyx[y0][x0]) break;
for (y1=y0;y1<ys;y1++) if ( pyx[y1][x0]){ y1--; break; }
i=y1-y0;
if (i>thr_thickness)
{
v.add(x0);
v.add(y0);
v.add(i);
}
y0=y1+1;
}
// remove duplicate lines
for (i=i0;i<i1;i+=3)
for (j=i1;j<v.num;j+=3)
if ((abs(v[i+1]-v[j+1])<thr_thickness)&&(abs(v[i+2]-v[j+2])<thr_thickness))
{
v.del(i);
v.del(i);
v.del(i);
i1-=3; i-=3; break;
}
i0=i1; i1=v.num;
}
// [compute grid]
x0=xs; y0=ys; x1=0; y1=0; // AABB
gx=10; gy=10; // grid cell size
nx=0; ny=0; // grid cells
tx.num=0; ty.num=0; // clear possible x,y coordinates
for (i=0;i<h.num;i+=3)
{
x =h[i+0];
y =h[i+1];
if (x0>x) x0=x; if (x1<x) x1=x; for (j=0;j<tx.num;j++) if (tx[j]==x){ j=-1; break; } if (j>=0) tx.add(x);
if (y0>y) y0=y; if (y1<y) y1=y; for (j=0;j<ty.num;j++) if (ty[j]==y){ j=-1; break; } if (j>=0) ty.add(y);
x+=h[i+2];
if (x0>x) x0=x; if (x1<x) x1=x; for (j=0;j<tx.num;j++) if (tx[j]==x){ j=-1; break; } if (j>=0) tx.add(x);
}
for (i=0;i<v.num;i+=3)
{
x =v[i+0];
y =v[i+1];
if (x0>x) x0=x; if (x1<x) x1=x; for (j=0;j<tx.num;j++) if (tx[j]==x){ j=-1; break; } if (j>=0) tx.add(x);
if (y0>y) y0=y; if (y1<y) y1=y; for (j=0;j<ty.num;j++) if (ty[j]==y){ j=-1; break; } if (j>=0) ty.add(y);
y+=v[i+2];
if (y0>y) y0=y; if (y1<y) y1=y; for (j=0;j<ty.num;j++) if (ty[j]==y){ j=-1; break; } if (j>=0) ty.add(y);
}
// order tx,ty
sort_asc_bubble(tx.dat,tx.num);
sort_asc_bubble(ty.dat,ty.num);
// remove too close coordinates
for (i=1;i<tx.num;i++) if (tx[i]-tx[i-1]<=thr_thickness){ tx.del(i); i--; }
for (i=1;i<ty.num;i++) if (ty[i]-ty[i-1]<=thr_thickness){ ty.del(i); i--; }
// estimate gx,gy
for (gx=x1-x0,i=1;i<tx.num;i++){ x=tx[i]-tx[i-1]; if (gx>x) gx=x; } nx=(x1-x0+1)/gx; gx=(x1-x0+1)/nx; x1=x0+nx*gx;
for (gy=y1-y0,i=1;i<ty.num;i++){ y=ty[i]-ty[i-1]; if (gy>y) gy=y; } ny=(y1-y0+1)/gy; gy=(y1-y0+1)/ny; y1=y0+ny*gy;
// align x,y to grid: multiplicate nx,ny by cx,cy to form boxes and enlarge by 1 for final border lines
nx=(cx*nx)+1;
ny=(cy*ny)+1;
// align h,v lines to grid
for (i=0;i<h.num;i+=3)
{
x=h[i+0]-x0; x=((x+(gx>>1))/gx)*gx; h[i+0]=x+x0;
y=h[i+1]-y0; y=((y+(gy>>1))/gy)*gy; h[i+1]=y+y0;
j=h[i+2]; j=((j+(gx>>1))/gx)*gx; h[i+2]=j;
}
for (i=0;i<v.num;i+=3)
{
x=v[i+0]-x0; x=((x+(gx>>1))/gx)*gx; v[i+0]=x+x0;
y=v[i+1]-y0; y=((y+(gy>>1))/gy)*gy; v[i+1]=y+y0;
j=v[i+2]; j=((j+(gy>>1))/gy)*gy; v[i+2]=j;
}
// [h,v lines -> ASCII Art]
char *text=new char[nx*ny];
char **tyx=new char*[ny];
for (y=0;y<ny;y++)
for (tyx[y]=text+(nx*y),x=0;x<nx;x++)
tyx[y][x]=' ';
// h lines
for (i=0;i<h.num;i+=3)
{
x=(h[i+0]-x0)/gx;
y=(h[i+1]-y0)/gy;
j=(h[i+2] )/gx; j+=x;
x*=cx; y*=cy; j*=cx;
for (;x<=j;x++) tyx[y][x]='-';
}
// v lines
for (i=0;i<v.num;i+=3)
{
x=(v[i+0]-x0)/gx;
y=(v[i+1]-y0)/gy;
j=(v[i+2] )/gy; j+=y;
x*=cx; y*=cy; j*=cy;
for (;y<=j;y++)
if (tyx[y][x]=='-') tyx[y][x]='+';
else tyx[y][x]='|';
}
// convert char[ny][nx] to AnsiString
for (txt="",y=0;y<ny;y++,txt+=eol)
for (x=0;x<nx;x++) txt+=tyx[y][x];
txt_xs=nx; // just remember the text size for window resize
txt_ys=ny;
delete[] text;
delete[] tyx;
// [debug draw]
// grid
bmp->Canvas->Pen->Color=TColor(0x000000FF);
for (i=1,x=x0;i;x+=gx)
{
if (x>=x1){ x=x1; i=0; }
bmp->Canvas->MoveTo(x,y0);
bmp->Canvas->LineTo(x,y1);
}
for (i=1,y=y0;i;y+=gy)
{
if (y>=y1){ y=y1; i=0; }
bmp->Canvas->MoveTo(x0,y);
bmp->Canvas->LineTo(x1,y);
}
if (debug) bmp->SaveToFile("out1_grid.bmp");
// h,v lines
bmp->Canvas->Pen->Color=TColor(0x00FF0000);
bmp->Canvas->Pen->Width=2;
for (i=0;i<h.num;)
{
x=h[i]; i++;
y=h[i]; i++;
j=h[i]; i++;
bmp->Canvas->MoveTo(x,y);
bmp->Canvas->LineTo(x+j,y);
}
for (i=0;i<v.num;)
{
x=v[i]; i++;
y=v[i]; i++;
j=v[i]; i++;
bmp->Canvas->MoveTo(x,y);
bmp->Canvas->LineTo(x,y+j);
}
bmp->Canvas->Pen->Width=1;
if (debug) bmp->SaveToFile("out2_maze.bmp");
delete[] pyx;
return txt;
}
//---------------------------------------------------------------------------
void update()
{
int x0,x1,y0,y1,i,l;
x0=bmp->Width;
y0=bmp->Height;
// Font size
Form1->mm_txt->Font->Size=Form1->cb_font->ItemIndex+4;
txt_xf=abs(Form1->mm_txt->Font->Size);
// mode
Form1->mm_txt->Text=bmp2lintxt(bmp);
// output
Form1->mm_txt->Lines->SaveToFile("pic.txt");
x1=txt_xs*txt_xf;
y1=txt_ys*abs(Form1->mm_txt->Font->Height);
if (y0<y1) y0=y1;
x0+=x1+16+Form1->flb_pic->Width;
y0+=Form1->pan_top->Height;
if (x0<340) x0=340;
if (y0<128) y0=128;
Form1->ClientWidth=x0;
Form1->ClientHeight=y0;
Form1->Caption=AnsiString().sprintf("Picture -> Text ( Font %ix%i )",abs(Form1->mm_txt->Font->Size),abs(Form1->mm_txt->Font->Height));
}
//---------------------------------------------------------------------------
void draw()
{
Form1->ptb_gfx->Canvas->Draw(0,0,bmp);
}
//---------------------------------------------------------------------------
void load(AnsiString name)
{
if (name=="") return;
AnsiString ext=ExtractFileExt(name).LowerCase();
if (ext==".bmp")
{
bmp->LoadFromFile(name);
}
if (ext==".jpg")
{
TJPEGImage *jpg=new TJPEGImage;
jpg->LoadFromFile(name);
bmp->Assign(jpg);
delete jpg;
}
bmp->HandleType=bmDIB;
bmp->PixelFormat=pf32bit;
Form1->ptb_gfx->Width=bmp->Width;
Form1->ClientHeight=bmp->Height;
Form1->ClientWidth=(bmp->Width<<1)+32;
}
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner):TForm(Owner)
{
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormDestroy(TObject *Sender)
{
delete bmp;
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormPaint(TObject *Sender)
{
draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::flb_picChange(TObject *Sender)
{
load(flb_pic->FileName);
update();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormActivate(TObject *Sender)
{
flb_pic->SetFocus();
flb_pic->Update();
if (flb_pic->ItemIndex==-1)
if (flb_pic->Items->Count>0)
{
flb_pic->ItemIndex=0;
flb_picChange(this);
}
}
//---------------------------------------------------------------------------
Just ignore the VCL stuff and convert the resulting text into whatever you have at disposal. I also use mine dynamic list template so:
List<double> xxx; is the same as double xxx[];
xxx.add(5); adds 5 to end of the list
xxx[7] access array element (safe)
xxx.dat[7] access array element (unsafe but fast direct access)
xxx.num is the actual used size of the array
xxx.reset() clears the array and set xxx.num=0
xxx.allocate(100) preallocate space for 100 items
So use whatever list you got or recode or use std::vector instead...
I edited out the texts from your image:
And this is the result using that as input:
+-----------+------------------ |
| | |
| | |
| | | | +-----------+
| | | | |
| | | | |
| +-----------+ +-----+ |
| | | |
| | | |
+------ | +-----+ | |
| | | |
| | | |
| ------+-----------+------ |
| |
| |
| ------------------------------+
And here the saved debug bitmaps (from left to right: BW,Grid,Maze):
The only important stuff from the code is function:
AnsiString bmp2lintxt(Graphics::TBitmap *bmp);
Which returns text from VCL (GDI based) bitmap.
I have data like (1,2,3,4,5,6,7,8) .I want to arrange them in a way like (1,3,5,7,2,4,6,8) in n/2-2 swap without using any array and loop must be use 1 or less.
Note that i have to do the swap in existing array of number.If there is other way like without swap and without extra array use,
Please give me some advice.
maintain two pointers: p1,p2. p1 goes from start to end, p2 goes from end to start, and swap non matching elements.
pseudo code:
specialSort(array):
p1 <- array.start()
p2 <- array.end()
while (p1 != p2):
if (*p1 %2 == 0):
p1 <- p1 + 1;
continue;
if (*p2 %2 == 1):
p2 <- p2 -1;
continue;
//when here, both p1 and p2 need a swap
swap(p1,p2);
Note that complexity is O(n), at least one of p1 or p2 changes in every second iteration, so the loop cannot repeat more the 2*n=O(n) times. [we can find better bound, but it is not needed]. space complexity is trivially O(1), we allocate a constant amount of space: 2 pointers only.
Note2: if your language does not support pointers [i.e. java,ml,...], it can be replaced with indexes: i1 going from start to end, i2 going from end to start, with the same algorithm principle.
#include <stdio.h>
#include <string.h>
char array[26] = "ABcdEfGiHjklMNOPqrsTUVWxyZ" ;
#define COUNTOF(a_) (sizeof(a_)/sizeof(a_)[0])
#define IS_ODD(e) ((e)&0x20)
#define IS_EVEN(e) (!IS_ODD(e))
void doswap (char *ptr, unsigned sizl, unsigned sizr);
int main(void)
{
unsigned bot,limit,cut,top,size;
size = COUNTOF(array);
printf("Before:%26.26s\n", array);
/* pass 1 count the number of EVEN chars */
for (limit=top=0; top < size; top++) {
if ( IS_EVEN( array[top] ) ) limit++;
}
/* skip initial segment of EVEN */
for (bot=0; bot < limit;bot++ ) {
if ( IS_ODD(array[bot])) break;
}
/* Find leading strech of misplaced ODD + trailing stretch of EVEN */
for (cut=bot;bot < limit; cut = top) {
/* count misplaced items */
for ( ;cut < size && IS_ODD(array[cut]); cut++) {;}
/* count shiftable items */
for (top=cut;top < size && IS_EVEN(array[top]); top++) {;}
/* Now, [bot...cut) and [cut...top) are two blocks
** that need to be swapped: swap them */
doswap(array+bot, cut-bot, top-cut);
bot += top-cut;
}
printf("Result:%26.26s\n", array);
return 0;
}
void doswap (char *ptr, unsigned sizl, unsigned sizr)
{
if (!sizl || !sizr) return;
if (sizl >= sizr) {
char tmp[sizr];
memcpy(tmp, ptr+sizl, sizr);
memmove(ptr+sizr, ptr, sizl);
memcpy(ptr, tmp, sizr);
}
else {
char tmp[sizr];
memcpy(tmp, ptr, sizl);
memmove(ptr, ptr+sizl, sizr);
memcpy(ptr+sizl, tmp, sizl);
}
}
This is an interview question.
Given a string such as: 123456abcdef consisting of n/2 integers followed by n/2 characters. Reorder the string to contain as 1a2b3c4d5e6f . The algortithm should be in-place.
The solution I gave was trivial - O(n^2). Just shift the characters by n/2 places to the left.
I tried using recursion as -
a. Swap later half of the first half with the previous half of the 2nd part - eg
123 456 abc def
123 abc 456 def
b. Recurse on the two halves.
The pbm I am stuck is that the swapping varies with the number of elements - for eg.
What to do next?
123 abc
12ab 3c
And what to do for : 12345 abcde
123abc 45ab
This is a pretty old question and may be a duplicate. Please let me know.. :)
Another example:
Input: 38726zfgsa
Output: 3z8f7g2s6a
Here's how I would approach the problem:
1) Divide the string into two partitions, number part and letter part
2) Divide each of those partitions into two more (equal sized)
3) Swap the second the third partition (inner number and inner letter)
4) Recurse on the original two partitions (with their newly swapped bits)
5) Stop when the partition has a size of 2
For example:
123456abcdef -> 123456 abcdef -> 123 456 abc def -> 123 abc 456 def
123abc -> 123 abc -> 12 3 ab c -> 12 ab 3 c
12 ab -> 1 2 a b -> 1 a 2 b
... etc
And the same for the other half of the recursion..
All can be done in place with the only gotcha being swapping partitions that aren't the same size (but it'll be off by one, so not difficult to handle).
It is easy to permute an array in place by chasing elements round cycles if you have a bit-map to mark which elements have been moved. We don't have a separate bit-map, but IF your characters are letters (or at least have the high order bit clear) then we can use the top bit of each character to mark this. This produces the following program, which is not recursive and so does not use stack space.
class XX
{
/** new position given old position */
static int newFromOld(int x, int n)
{
if (x < n / 2)
{
return x * 2;
}
return (x - n / 2) * 2 + 1;
}
private static int HIGH_ORDER_BIT = 1 << 15; // 16-bit chars
public static void main(String[] s)
{
// input data - create an array so we can modify
// characters in place
char[] x = s[0].toCharArray();
if ((x.length & 1) != 0)
{
System.err.println("Only works with even length strings");
return;
}
// Character we have read but not yet written, if any
char holding = 0;
// where character in hand was read from
int holdingPos = 0;
// whether picked up a character in our hand
boolean isHolding = false;
int rpos = 0;
while (rpos < x.length)
{ // Here => moved out everything up to rpos
// and put in place with top bit set to mark new occupant
if (!isHolding)
{ // advance read pointer to read new character
char here = x[rpos];
holdingPos = rpos++;
if ((here & HIGH_ORDER_BIT) != 0)
{
// already dealt with
continue;
}
int targetPos = newFromOld(holdingPos, x.length);
// pick up char at target position
holding = x[targetPos];
// place new character, and mark as new
x[targetPos] = (char)(here | HIGH_ORDER_BIT);
// Now holding a character that needs to be put in its
// correct place
isHolding = true;
holdingPos = targetPos;
}
int targetPos = newFromOld(holdingPos, x.length);
char here = x[targetPos];
if ((here & HIGH_ORDER_BIT) != 0)
{ // back to where we picked up a character to hold
isHolding = false;
continue;
}
x[targetPos] = (char)(holding | HIGH_ORDER_BIT);
holding = here;
holdingPos = targetPos;
}
for (int i = 0; i < x.length; i++)
{
x[i] ^= HIGH_ORDER_BIT;
}
System.out.println("Result is " + new String(x));
}
}
These days, if I asked someone that question, what I'm looking for them to write on the whiteboard first is:
assertEquals("1a2b3c4d5e6f",funnySort("123456abcdef"));
...
and then maybe ask for more examples.
(And then, depending, if the task is to interleave numbers & letters, I think you can do it with two walking-pointers, indexLetter and indexDigit, and advance them across swapping as needed til you reach the end.)
In your recursive solution why don't you just make a test if n/2 % 2 == 0 (n%4 ==0 ) and treat the 2 situations differently
As templatetypedef commented your recursion cannot be in-place.
But here is a solution (not in place) using the way you wanted to make your recursion :
def f(s):
n=len(s)
if n==2: #initialisation
return s
elif n%4 == 0 : #if n%4 == 0 it's easy
return f(s[:n/4]+s[n/2:3*n/4])+f(s[n/4:n/2]+s[3*n/4:])
else: #otherwise, n-2 %4 == 0
return s[0]+s[n/2]+f(s[1:n/2]+s[n/2+1:])
Here we go. Recursive, cuts it in half each time, and in-place. Uses the approach outlined by #Chris Mennie. Getting the splitting right was tricky. A lot longer than Python, innit?
/* In-place, divide-and-conquer, recursive riffle-shuffle of strings;
* even length only. No wide characters or Unicode; old school. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void testrif(const char *s);
void riffle(char *s);
void rif_recur(char *s, size_t len);
void swap(char *s, size_t midpt, size_t len);
void flip(char *s, size_t len);
void if_odd_quit(const char *s);
int main(void)
{
testrif("");
testrif("a1");
testrif("ab12");
testrif("abc123");
testrif("abcd1234");
testrif("abcde12345");
testrif("abcdef123456");
return 0;
}
void testrif(const char *s)
{
char mutable[20];
strcpy(mutable, s);
printf("'%s'\n", mutable);
riffle(mutable);
printf("'%s'\n\n", mutable);
}
void riffle(char *s)
{
if_odd_quit(s);
rif_recur(s, strlen(s));
}
void rif_recur(char *s, size_t len)
{
/* Turn, e.g., "abcde12345" into "abc123de45", then recurse. */
size_t pivot = len / 2;
size_t half = (pivot + 1) / 2;
size_t twice = half * 2;
if (len < 4)
return;
swap(s + half, pivot - half, pivot);
rif_recur(s, twice);
rif_recur(s + twice, len - twice);
}
void swap(char *s, size_t midpt, size_t len)
{
/* Swap s[0..midpt] with s[midpt..len], in place. Algorithm from
* Programming Pearls, Chapter 2. */
flip(s, midpt);
flip(s + midpt, len - midpt);
flip(s, len);
}
void flip(char *s, size_t len)
{
/* Reverse order of characters in s, in place. */
char *p, *q, tmp;
if (len < 2)
return;
for (p = s, q = s + len - 1; p < q; p++, q--) {
tmp = *p;
*p = *q;
*q = tmp;
}
}
void if_odd_quit(const char *s)
{
if (strlen(s) % 2) {
fputs("String length is odd; aborting.\n", stderr);
exit(1);
}
}
By comparing 123456abcdef and 1a2b3c4d5e6f we can note that only the first and the last characters are in their correct position. We can also note that for each remaining n-2 characters we can compute their correct position directly from their original position. They will get there, and the element that was there surely was not in the correct position, so it will have to replace another one. By doing n-2 such steps all the elements will get to the correct positions:
void funny_sort(char* arr, int n){
int pos = 1; // first unordered element
char aux = arr[pos];
for (int iter = 0; iter < n-2; iter++) { // n-2 unordered elements
pos = (pos < n/2) ? pos*2 : (pos-n/2)*2+1;// correct pos for aux
swap(&aux, arr + pos);
}
}
Score each digit as its numerical value. Score each letter as a = 1.5, b = 2.5 c = 3.5 etc. Run an insertion sort of the string based on the score of each character.
[ETA] Simple scoring won't work so use two pointers and reverse the piece of the string between the two pointers. One pointer starts at the front of the string and advances one step each cycle. The other pointer starts in the middle of the string and advances every second cycle.
123456abcdef
^ ^
1a65432bcdef
^ ^
1a23456bcdef
^ ^
1a2b6543cdef
^ ^
My situation
Input: a set of rectangles
each rect is comprised of 4 doubles like this: (x0,y0,x1,y1)
they are not "rotated" at any angle, all they are "normal" rectangles that go "up/down" and "left/right" with respect to the screen
they are randomly placed - they may be touching at the edges, overlapping , or not have any contact
I will have several hundred rectangles
this is implemented in C#
I need to find
The area that is formed by their overlap - all the area in the canvas that more than one rectangle "covers" (for example with two rectangles, it would be the intersection)
I don't need the geometry of the overlap - just the area (example: 4 sq inches)
Overlaps shouldn't be counted multiple times - so for example imagine 3 rects that have the same size and position - they are right on top of each other - this area should be counted once (not three times)
Example
The image below contains thre rectangles: A,B,C
A and B overlap (as indicated by dashes)
B and C overlap (as indicated by dashes)
What I am looking for is the area where the dashes are shown
-
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA--------------BBB
AAAAAAAAAAAAAAAA--------------BBB
AAAAAAAAAAAAAAAA--------------BBB
AAAAAAAAAAAAAAAA--------------BBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBB-----------CCCCCCCC
BBBBBB-----------CCCCCCCC
BBBBBB-----------CCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
An efficient way of computing this area is to use a sweep algorithm. Let us assume that we sweep a vertical line L(x) through the union of rectangles U:
first of all, you need to build an event queue Q, which is, in this case, the ordered list of all x-coordinates (left and right) of the rectangles.
during the sweep, you should maintain a 1D datastructure, which should give you the total length of the intersection of L(x) and U. The important thing is that this length is constant between two consecutive events q and q' of Q. So, if l(q) denotes the total length of L(q+) (i.e. L just on the rightside of q) intersected with U, the area swept by L between events q and q' is exactly l(q)*(q' - q).
you just have to sum up all these swept areas to get the total one.
We still have to solve the 1D problem. You want a 1D structure, which computes dynamically a union of (vertical) segments. By dynamically, I mean that you sometimes add a new segment, and sometimes remove one.
I already detailed in my answer to this collapsing ranges question how to do it in a static way (which is in fact a 1D sweep). So if you want something simple, you can directly apply that (by recomputing the union for each event). If you want something more efficient, you just need to adapt it a bit:
assuming that you know the union of segments S1...Sn consists of disjoints segments D1...Dk. Adding Sn+1 is very easy, you just have to locate both ends of Sn+1 amongs the ends of D1...Dk.
assuming that you know the union of segments S1...Sn consists of disjoints segments D1...Dk, removing segment Si (assuming that Si was included in Dj) means recomputing the union of segments that Dj consisted of, except Si (using the static algorithm).
This is your dynamic algorithm. Assuming that you will use sorted sets with log-time location queries to represent D1...Dk, this is probably the most efficient non-specialized method you can get.
One way-out approach is to plot it to a canvas! Draw each rectangle using a semi-transparent colour. The .NET runtime will be doing the drawing in optimised, native code - or even using a hardware accelerator.
Then, you have to read-back the pixels. Is each pixel the background colour, the rectangle colour, or another colour? The only way it can be another colour is if two or more rectangles overlapped...
If this is too much of a cheat, I'd recommend the quad-tree as another answerer did, or the r-tree.
The simplest solution
import numpy as np
A = np.zeros((100, 100))
B = np.zeros((100, 100))
A[rect1.top : rect1.bottom, rect1.left : rect1.right] = 1
B[rect2.top : rect2.bottom, rect2.left : rect2.right] = 1
area_of_union = np.sum((A + B) > 0)
area_of_intersect = np.sum((A + B) > 1)
In this example, we create two zero-matrices that are the size of the canvas. For each rectangle, fill one of these matrices with ones where the rectangle takes up space. Then sum the matrices. Now sum(A+B > 0) is the area of the union, and sum(A+B > 1) is the area of the overlap. This example can easily generalize to multiple rectangles.
This is some quick and dirty code that I used in the TopCoder SRM 160 Div 2.
t = top
b = botttom
l = left
r = right
public class Rect
{
public int t, b, l, r;
public Rect(int _l, int _b, int _r, int _t)
{
t = _t;
b = _b;
l = _l;
r = _r;
}
public bool Intersects(Rect R)
{
return !(l > R.r || R.l > r || R.b > t || b > R.t);
}
public Rect Intersection(Rect R)
{
if(!this.Intersects(R))
return new Rect(0,0,0,0);
int [] horiz = {l, r, R.l, R.r};
Array.Sort(horiz);
int [] vert = {b, t, R.b, R.t};
Array.Sort(vert);
return new Rect(horiz[1], vert[1], horiz[2], vert[2]);
}
public int Area()
{
return (t - b)*(r-l);
}
public override string ToString()
{
return l + " " + b + " " + r + " " + t;
}
}
Here's something that off the top of my head sounds like it might work:
Create a dictionary with a double key, and a list of rectangle+boolean values, like this:
Dictionary< Double, List< KeyValuePair< Rectangle, Boolean>>> rectangles;
For each rectangle in your set, find the corresponding list for the x0 and the x1 values, and add the rectangle to that list, with a boolean value of true for x0, and false for x1. This way you now have a complete list of all the x-coordinates that each rectangle either enters (true) or leaves (false) the x-direction
Grab all the keys from that dictionary (all the distinct x-coordinates), sort them, and loop through them in order, make sure you can get at both the current x-value, and the next one as well (you need them both). This gives you individual strips of rectangles
Maintain a set of rectangles you're currently looking at, which starts out empty. For each x-value you iterate over in point 3, if the rectangle is registered with a true value, add it to the set, otherwise remove it.
For a strip, sort the rectangles by their y-coordinate
Loop through the rectangles in the strip, counting overlapping distances (unclear to me as of yet how to do this efficiently)
Calculate width of strip times height of overlapping distances to get areas
Example, 5 rectangles, draw on top of each other, from a to e:
aaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb
aaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb
aaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb
aaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb
aaaaaaaadddddddddddddddddddddddddddddbbbbbb
aaaaaaaadddddddddddddddddddddddddddddbbbbbb
ddddddddddddddddddddddddddddd
ddddddddddddddddddddddddddddd
ddddddddddddddeeeeeeeeeeeeeeeeee
ddddddddddddddeeeeeeeeeeeeeeeeee
ddddddddddddddeeeeeeeeeeeeeeeeee
ccccccccddddddddddddddeeeeeeeeeeeeeeeeee
ccccccccddddddddddddddeeeeeeeeeeeeeeeeee
cccccccccccc eeeeeeeeeeeeeeeeee
cccccccccccc eeeeeeeeeeeeeeeeee
cccccccccccc
cccccccccccc
Here's the list of x-coordinates:
v v v v v v v v v
|aaaaaaa|aa|aaaa | bbbbbbbbbb|bb|bbb
|aaaaaaa|aa|aaaa | bbbbbbbbbb|bb|bbb
|aaaaaaa|aa|aaaa | bbbbbbbbbb|bb|bbb
|aaaaaaa|aa|aaaa | bbbbbbbbbb|bb|bbb
|aaaaaaaddd|dddddddddd|ddddddddddddddbb|bbb
|aaaaaaaddd|dddddddddd|ddddddddddddddbb|bbb
| ddd|dddddddddd|dddddddddddddd |
| ddd|dddddddddd|dddddddddddddd |
| ddd|ddddddddddeeeeeeeeeeeeeeeeee
| ddd|ddddddddddeeeeeeeeeeeeeeeeee
| ddd|ddddddddddeeeeeeeeeeeeeeeeee
ccccccccddd|ddddddddddeeeeeeeeeeeeeeeeee
ccccccccddd|ddddddddddeeeeeeeeeeeeeeeeee
cccccccccccc eeeeeeeeeeeeeeeeee
cccccccccccc eeeeeeeeeeeeeeeeee
cccccccccccc
cccccccccccc
The list would be (where each v is simply given a coordinate starting at 0 and going up):
0: +a, +c
1: +d
2: -c
3: -a
4: +e
5: +b
6: -d
7: -e
8: -b
Each strip would thus be (rectangles sorted from top to bottom):
0-1: a, c
1-2: a, d, c
2-3: a, d
3-4: d
4-5: d, e
5-6: b, d, e
6-7: b, e
7-8: b
for each strip, the overlap would be:
0-1: none
1-2: a/d, d/c
2-3: a/d
3-4: none
4-5: d/e
5-6: b/d, d/e
6-7: none
7-8: none
I'd imagine that a variation of the sort + enter/leave algorithm for the top-bottom check would be doable as well:
sort the rectangles we're currently analyzing in the strip, top to bottom, for rectangles with the same top-coordinate, sort them by bottom coordinate as well
iterate through the y-coordinates, and when you enter a rectangle, add it to the set, when you leave a rectangle, remove it from the set
whenever the set has more than one rectangle, you have overlap (and if you make sure to add/remove all rectangles that have the same top/bottom coordinate you're currently looking at, multiple overlapping rectangles would not be a problem
For the 1-2 strip above, you would iterate like this:
0. empty set, zero sum
1. enter a, add a to set (1 rectangle in set)
2. enter d, add d to set (>1 rectangles in set = overlap, store this y-coordinate)
3. leave a, remove a from set (now back from >1 rectangles in set, add to sum: y - stored_y
4. enter c, add c to set (>1 rectangles in set = overlap, store this y-coordinate)
5. leave d, remove d from set (now back from >1 rectangles in set, add to sum: y - stored_y)
6. multiply sum with width of strip to get overlapping areas
You would not actually have to maintain an actual set here either, just the count of the rectangles you're inside, whenever this goes from 1 to 2, store the y, and whenever it goes from 2 down to 1, calculate current y - stored y, and sum this difference.
Hope this was understandable, and as I said, this is off the top of my head, not tested in any way.
Using the example:
1 2 3 4 5 6
1 +---+---+
| |
2 + A +---+---+
| | B |
3 + + +---+---+
| | | | |
4 +---+---+---+---+ +
| |
5 + C +
| |
6 +---+---+
1) collect all the x coordinates (both left and right) into a list, then sort it and remove duplicates
1 3 4 5 6
2) collect all the y coordinates (both top and bottom) into a list, then sort it and remove duplicates
1 2 3 4 6
3) create a 2D array by number of gaps between the unique x coordinates * number of gaps between the unique y coordinates.
4 * 4
4) paint all the rectangles into this grid, incrementing the count of each cell it occurs over:
1 3 4 5 6
1 +---+
| 1 | 0 0 0
2 +---+---+---+
| 1 | 1 | 1 | 0
3 +---+---+---+---+
| 1 | 1 | 2 | 1 |
4 +---+---+---+---+
0 0 | 1 | 1 |
6 +---+---+
5) the sum total of the areas of the cells in the grid that have a count greater than one is the area of overlap. For better efficiency in sparse use-cases, you can actually keep a running total of the area as you paint the rectangles, each time you move a cell from 1 to 2.
In the question, the rectangles are described as being four doubles. Doubles typically contain rounding errors, and error might creep into your computed area of overlap. If the legal coordinates are at finite points, consider using an integer representation.
PS using the hardware accelerator as in my other answer is not such a shabby idea, if the resolution is acceptable. Its also easy to implement in a lot less code than the approach I outline above. Horses for courses.
Here's the code I wrote for the area sweep algorithm:
#include <iostream>
#include <vector>
using namespace std;
class Rectangle {
public:
int x[2], y[2];
Rectangle(int x1, int y1, int x2, int y2) {
x[0] = x1;
y[0] = y1;
x[1] = x2;
y[1] = y2;
};
void print(void) {
cout << "Rect: " << x[0] << " " << y[0] << " " << x[1] << " " << y[1] << " " <<endl;
};
};
// return the iterator of rec in list
vector<Rectangle *>::iterator bin_search(vector<Rectangle *> &list, int begin, int end, Rectangle *rec) {
cout << begin << " " <<end <<endl;
int mid = (begin+end)/2;
if (list[mid]->y[0] == rec->y[0]) {
if (list[mid]->y[1] == rec->y[1])
return list.begin() + mid;
else if (list[mid]->y[1] < rec->y[1]) {
if (mid == end)
return list.begin() + mid+1;
return bin_search(list,mid+1,mid,rec);
}
else {
if (mid == begin)
return list.begin()+mid;
return bin_search(list,begin,mid-1,rec);
}
}
else if (list[mid]->y[0] < rec->y[0]) {
if (mid == end) {
return list.begin() + mid+1;
}
return bin_search(list, mid+1, end, rec);
}
else {
if (mid == begin) {
return list.begin() + mid;
}
return bin_search(list, begin, mid-1, rec);
}
}
// add rect to rects
void add_rec(Rectangle *rect, vector<Rectangle *> &rects) {
if (rects.size() == 0) {
rects.push_back(rect);
}
else {
vector<Rectangle *>::iterator it = bin_search(rects, 0, rects.size()-1, rect);
rects.insert(it, rect);
}
}
// remove rec from rets
void remove_rec(Rectangle *rect, vector<Rectangle *> &rects) {
vector<Rectangle *>::iterator it = bin_search(rects, 0, rects.size()-1, rect);
rects.erase(it);
}
// calculate the total vertical length covered by rectangles in the active set
int vert_dist(vector<Rectangle *> as) {
int n = as.size();
int totallength = 0;
int start, end;
int i = 0;
while (i < n) {
start = as[i]->y[0];
end = as[i]->y[1];
while (i < n && as[i]->y[0] <= end) {
if (as[i]->y[1] > end) {
end = as[i]->y[1];
}
i++;
}
totallength += end-start;
}
return totallength;
}
bool mycomp1(Rectangle* a, Rectangle* b) {
return (a->x[0] < b->x[0]);
}
bool mycomp2(Rectangle* a, Rectangle* b) {
return (a->x[1] < b->x[1]);
}
int findarea(vector<Rectangle *> rects) {
vector<Rectangle *> start = rects;
vector<Rectangle *> end = rects;
sort(start.begin(), start.end(), mycomp1);
sort(end.begin(), end.end(), mycomp2);
// active set
vector<Rectangle *> as;
int n = rects.size();
int totalarea = 0;
int current = start[0]->x[0];
int next;
int i = 0, j = 0;
// big loop
while (j < n) {
cout << "loop---------------"<<endl;
// add all recs that start at current
while (i < n && start[i]->x[0] == current) {
cout << "add" <<endl;
// add start[i] to AS
add_rec(start[i], as);
cout << "after" <<endl;
i++;
}
// remove all recs that end at current
while (j < n && end[j]->x[1] == current) {
cout << "remove" <<endl;
// remove end[j] from AS
remove_rec(end[j], as);
cout << "after" <<endl;
j++;
}
// find next event x
if (i < n && j < n) {
if (start[i]->x[0] <= end[j]->x[1]) {
next = start[i]->x[0];
}
else {
next = end[j]->x[1];
}
}
else if (j < n) {
next = end[j]->x[1];
}
// distance to next event
int horiz = next - current;
cout << "horiz: " << horiz <<endl;
// figure out vertical dist
int vert = vert_dist(as);
cout << "vert: " << vert <<endl;
totalarea += vert * horiz;
current = next;
}
return totalarea;
}
int main() {
vector<Rectangle *> rects;
rects.push_back(new Rectangle(0,0,1,1));
rects.push_back(new Rectangle(1,0,2,3));
rects.push_back(new Rectangle(0,0,3,3));
rects.push_back(new Rectangle(1,0,5,1));
cout << findarea(rects) <<endl;
}
You can simplify this problem quite a bit if you split each rectangle into smaller rectangles. Collect all of the X and Y coordinates of all the rectangles, and these become your split points - if a rectangle crosses the line, split it in two. When you're done, you have a list of rectangles that overlap either 0% or 100%, if you sort them it should be easy to find the identical ones.
There is a solution listed at the link http://codercareer.blogspot.com/2011/12/no-27-area-of-rectangles.html for finding the total area of multiple rectangles such that the overlapped area is counted only once.
The above solution can be extended to compute only the overlapped area(and that too only once even if the overlapped area is covered by multiple rectangles) with horizontal sweep lines for every pair of consecutive vertical sweep lines.
If aim is just to find out the total area covered by the all the rectangles, then horizontal sweep lines are not needed and just a merge of all the rectangles between two vertical sweep lines would give the area.
On the other hand, if you want to compute the overlapped area only, the horizontal sweep lines are needed to find out how many rectangles are overlapping in between vertical (y1, y2) sweep lines.
Here is the working code for the solution I implemented in Java.
import java.io.*;
import java.util.*;
class Solution {
static class Rectangle{
int x;
int y;
int dx;
int dy;
Rectangle(int x, int y, int dx, int dy){
this.x = x;
this.y = y;
this.dx = dx;
this.dy = dy;
}
Range getBottomLeft(){
return new Range(x, y);
}
Range getTopRight(){
return new Range(x + dx, y + dy);
}
#Override
public int hashCode(){
return (x+y+dx+dy)/4;
}
#Override
public boolean equals(Object other){
Rectangle o = (Rectangle) other;
return o.x == this.x && o.y == this.y && o.dx == this.dx && o.dy == this.dy;
}
#Override
public String toString(){
return String.format("X = %d, Y = %d, dx : %d, dy : %d", x, y, dx, dy);
}
}
static class RW{
Rectangle r;
boolean start;
RW (Rectangle r, boolean start){
this.r = r;
this.start = start;
}
#Override
public int hashCode(){
return r.hashCode() + (start ? 1 : 0);
}
#Override
public boolean equals(Object other){
RW o = (RW)other;
return o.start == this.start && o.r.equals(this.r);
}
#Override
public String toString(){
return "Rectangle : " + r.toString() + ", start = " + this.start;
}
}
static class Range{
int l;
int u;
public Range(int l, int u){
this.l = l;
this.u = u;
}
#Override
public int hashCode(){
return (l+u)/2;
}
#Override
public boolean equals(Object other){
Range o = (Range) other;
return o.l == this.l && o.u == this.u;
}
#Override
public String toString(){
return String.format("L = %d, U = %d", l, u);
}
}
static class XComp implements Comparator<RW>{
#Override
public int compare(RW rw1, RW rw2){
//TODO : revisit these values.
Integer x1 = -1;
Integer x2 = -1;
if(rw1.start){
x1 = rw1.r.x;
}else{
x1 = rw1.r.x + rw1.r.dx;
}
if(rw2.start){
x2 = rw2.r.x;
}else{
x2 = rw2.r.x + rw2.r.dx;
}
return x1.compareTo(x2);
}
}
static class YComp implements Comparator<RW>{
#Override
public int compare(RW rw1, RW rw2){
//TODO : revisit these values.
Integer y1 = -1;
Integer y2 = -1;
if(rw1.start){
y1 = rw1.r.y;
}else{
y1 = rw1.r.y + rw1.r.dy;
}
if(rw2.start){
y2 = rw2.r.y;
}else{
y2 = rw2.r.y + rw2.r.dy;
}
return y1.compareTo(y2);
}
}
public static void main(String []args){
Rectangle [] rects = new Rectangle[4];
rects[0] = new Rectangle(10, 10, 10, 10);
rects[1] = new Rectangle(15, 10, 10, 10);
rects[2] = new Rectangle(20, 10, 10, 10);
rects[3] = new Rectangle(25, 10, 10, 10);
int totalArea = getArea(rects, false);
System.out.println("Total Area : " + totalArea);
int overlapArea = getArea(rects, true);
System.out.println("Overlap Area : " + overlapArea);
}
static int getArea(Rectangle []rects, boolean overlapOrTotal){
printArr(rects);
// step 1: create two wrappers for every rectangle
RW []rws = getWrappers(rects);
printArr(rws);
// steps 2 : sort rectangles by their x-coordinates
Arrays.sort(rws, new XComp());
printArr(rws);
// step 3 : group the rectangles in every range.
Map<Range, List<Rectangle>> rangeGroups = groupRects(rws, true);
for(Range xrange : rangeGroups.keySet()){
List<Rectangle> xRangeRects = rangeGroups.get(xrange);
System.out.println("Range : " + xrange);
System.out.println("Rectangles : ");
for(Rectangle rectx : xRangeRects){
System.out.println("\t" + rectx);
}
}
// step 4 : iterate through each of the pairs and their rectangles
int sum = 0;
for(Range range : rangeGroups.keySet()){
List<Rectangle> rangeRects = rangeGroups.get(range);
sum += getOverlapOrTotalArea(rangeRects, range, overlapOrTotal);
}
return sum;
}
static Map<Range, List<Rectangle>> groupRects(RW []rws, boolean isX){
//group the rws with either x or y coordinates.
Map<Range, List<Rectangle>> rangeGroups = new HashMap<Range, List<Rectangle>>();
List<Rectangle> rangeRects = new ArrayList<Rectangle>();
int i=0;
int prev = Integer.MAX_VALUE;
while(i < rws.length){
int curr = isX ? (rws[i].start ? rws[i].r.x : rws[i].r.x + rws[i].r.dx): (rws[i].start ? rws[i].r.y : rws[i].r.y + rws[i].r.dy);
if(prev < curr){
Range nRange = new Range(prev, curr);
rangeGroups.put(nRange, rangeRects);
rangeRects = new ArrayList<Rectangle>(rangeRects);
}
prev = curr;
if(rws[i].start){
rangeRects.add(rws[i].r);
}else{
rangeRects.remove(rws[i].r);
}
i++;
}
return rangeGroups;
}
static int getOverlapOrTotalArea(List<Rectangle> rangeRects, Range range, boolean isOverlap){
//create horizontal sweep lines similar to vertical ones created above
// Step 1 : create wrappers again
RW []rws = getWrappers(rangeRects);
// steps 2 : sort rectangles by their y-coordinates
Arrays.sort(rws, new YComp());
// step 3 : group the rectangles in every range.
Map<Range, List<Rectangle>> yRangeGroups = groupRects(rws, false);
//step 4 : for every range if there are more than one rectangles then computer their area only once.
int sum = 0;
for(Range yRange : yRangeGroups.keySet()){
List<Rectangle> yRangeRects = yRangeGroups.get(yRange);
if(isOverlap){
if(yRangeRects.size() > 1){
sum += getArea(range, yRange);
}
}else{
if(yRangeRects.size() > 0){
sum += getArea(range, yRange);
}
}
}
return sum;
}
static int getArea(Range r1, Range r2){
return (r2.u-r2.l)*(r1.u-r1.l);
}
static RW[] getWrappers(Rectangle []rects){
RW[] wrappers = new RW[rects.length * 2];
for(int i=0,j=0;i<rects.length;i++, j+=2){
wrappers[j] = new RW(rects[i], true);
wrappers[j+1] = new RW(rects[i], false);
}
return wrappers;
}
static RW[] getWrappers(List<Rectangle> rects){
RW[] wrappers = new RW[rects.size() * 2];
for(int i=0,j=0;i<rects.size();i++, j+=2){
wrappers[j] = new RW(rects.get(i), true);
wrappers[j+1] = new RW(rects.get(i), false);
}
return wrappers;
}
static void printArr(Object []a){
for(int i=0; i < a.length;i++){
System.out.println(a[i]);
}
System.out.println();
}
The following answer should give the total Area only once.
it comes previous answers, but implemented now in C#.
It works also with floats (or double, if you need[it doesn't itterate over the VALUES).
Credits:
http://codercareer.blogspot.co.il/2011/12/no-27-area-of-rectangles.html
EDIT:
The OP asked for the overlapping area - thats obviously very simple:
var totArea = rects.Sum(x => x.Width * x.Height);
and then the answer is:
var overlappingArea =totArea-GetArea(rects)
Here is the code:
#region rectangle overlapping
/// <summary>
/// see algorithm for detecting overlapping areas here: https://stackoverflow.com/a/245245/3225391
/// or easier here:
/// http://codercareer.blogspot.co.il/2011/12/no-27-area-of-rectangles.html
/// </summary>
/// <param name="dim"></param>
/// <returns></returns>
public static float GetArea(RectangleF[] rects)
{
List<float> xs = new List<float>();
foreach (var item in rects)
{
xs.Add(item.X);
xs.Add(item.Right);
}
xs = xs.OrderBy(x => x).Cast<float>().ToList();
rects = rects.OrderBy(rec => rec.X).Cast<RectangleF>().ToArray();
float area = 0f;
for (int i = 0; i < xs.Count - 1; i++)
{
if (xs[i] == xs[i + 1])//not duplicate
continue;
int j = 0;
while (rects[j].Right < xs[i])
j++;
List<Range> rangesOfY = new List<Range>();
var rangeX = new Range(xs[i], xs[i + 1]);
GetRangesOfY(rects, j, rangeX, out rangesOfY);
area += GetRectArea(rangeX, rangesOfY);
}
return area;
}
private static void GetRangesOfY(RectangleF[] rects, int rectIdx, Range rangeX, out List<Range> rangesOfY)
{
rangesOfY = new List<Range>();
for (int j = rectIdx; j < rects.Length; j++)
{
if (rangeX.less < rects[j].Right && rangeX.greater > rects[j].Left)
{
rangesOfY = Range.AddRange(rangesOfY, new Range(rects[j].Top, rects[j].Bottom));
#if DEBUG
Range rectXRange = new Range(rects[j].Left, rects[j].Right);
#endif
}
}
}
static float GetRectArea(Range rangeX, List<Range> rangesOfY)
{
float width = rangeX.greater - rangeX.less,
area = 0;
foreach (var item in rangesOfY)
{
float height = item.greater - item.less;
area += width * height;
}
return area;
}
internal class Range
{
internal static List<Range> AddRange(List<Range> lst, Range rng2add)
{
if (lst.isNullOrEmpty())
{
return new List<Range>() { rng2add };
}
for (int i = lst.Count - 1; i >= 0; i--)
{
var item = lst[i];
if (item.IsOverlapping(rng2add))
{
rng2add.Merge(item);
lst.Remove(item);
}
}
lst.Add(rng2add);
return lst;
}
internal float greater, less;
public override string ToString()
{
return $"ln{less} gtn{greater}";
}
internal Range(float less, float greater)
{
this.less = less;
this.greater = greater;
}
private void Merge(Range rng2add)
{
this.less = Math.Min(rng2add.less, this.less);
this.greater = Math.Max(rng2add.greater, this.greater);
}
private bool IsOverlapping(Range rng2add)
{
return !(less > rng2add.greater || rng2add.less > greater);
//return
// this.greater < rng2add.greater && this.greater > rng2add.less
// || this.less > rng2add.less && this.less < rng2add.greater
// || rng2add.greater < this.greater && rng2add.greater > this.less
// || rng2add.less > this.less && rng2add.less < this.greater;
}
}
#endregion rectangle overlapping
If your rectangles are going to be sparse (mostly not intersecting) then it might be worth a look at recursive dimensional clustering. Otherwise a quad-tree seems to be the way to go (as has been mentioned by other posters.
This is a common problem in collision detection in computer games, so there is no shortage of resources suggesting ways to solve it.
Here is a nice blog post summarizing RCD.
Here is a Dr.Dobbs article summarizing various collision detection algorithms, which would be suitable.
This type of collision detection is often called AABB (Axis Aligned Bounding Boxes), that's a good starting point for a google search.
You can find the overlap on the x and on the y axis and multiply those.
int LineOverlap(int line1a, line1b, line2a, line2b)
{
// assume line1a <= line1b and line2a <= line2b
if (line1a < line2a)
{
if (line1b > line2b)
return line2b-line2a;
else if (line1b > line2a)
return line1b-line2a;
else
return 0;
}
else if (line2a < line1b)
return line2b-line1a;
else
return 0;
}
int RectangleOverlap(Rect rectA, rectB)
{
return LineOverlap(rectA.x1, rectA.x2, rectB.x1, rectB.x2) *
LineOverlap(rectA.y1, rectA.y2, rectB.y1, rectB.y2);
}
I found a different solution than the sweep algorithm.
Since your rectangles are all rectangular placed, the horizontal and vertical lines of the rectangles will form a rectangular irregular grid. You can 'paint' the rectangles on this grid; which means, you can determine which fields of the grid will be filled out. Since the grid lines are formed from the boundaries of the given rectangles, a field in this grid will always either completely empty or completely filled by an rectangle.
I had to solve the problem in Java, so here's my solution: http://pastebin.com/03mss8yf
This function calculates of the complete area occupied by the rectangles. If you are interested only in the 'overlapping' part, you must extend the code block between lines 70 and 72. Maybe you can use a second set to store which grid fields are used more than once. Your code between line 70 and 72 should be replaced with a block like:
GridLocation gl = new GridLocation(curX, curY);
if(usedLocations.contains(gl) && usedLocations2.add(gl)) {
ret += width*height;
} else {
usedLocations.add(gl);
}
The variable usedLocations2 here is of the same type as usedLocations; it will be constructed
at the same point.
I'm not really familiar with complexity calculations; so I don't know which of the two solutions (sweep or my grid solution) will perform/scale better.
Considering we have two rectangles (A and B) and we have their bottom left (x1,y1) and top right (x2,y2) coordination. The Using following piece of code you can calculate the overlapped area in C++.
#include <iostream>
using namespace std;
int rectoverlap (int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2)
{
int width, heigh, area;
if (ax2<bx1 || ay2<by1 || ax1>bx2 || ay1>by2) {
cout << "Rectangles are not overlapped" << endl;
return 0;
}
if (ax2>=bx2 && bx1>=ax1){
width=bx2-bx1;
heigh=by2-by1;
} else if (bx2>=ax2 && ax1>=bx1) {
width=ax2-ax1;
heigh=ay2-ay1;
} else {
if (ax2>bx2){
width=bx2-ax1;
} else {
width=ax2-bx1;
}
if (ay2>by2){
heigh=by2-ay1;
} else {
heigh=ay2-by1;
}
}
area= heigh*width;
return (area);
}
int main()
{
int ax1,ay1,ax2,ay2,bx1,by1,bx2,by2;
cout << "Inter the x value for bottom left for rectangle A" << endl;
cin >> ax1;
cout << "Inter the y value for bottom left for rectangle A" << endl;
cin >> ay1;
cout << "Inter the x value for top right for rectangle A" << endl;
cin >> ax2;
cout << "Inter the y value for top right for rectangle A" << endl;
cin >> ay2;
cout << "Inter the x value for bottom left for rectangle B" << endl;
cin >> bx1;
cout << "Inter the y value for bottom left for rectangle B" << endl;
cin >> by1;
cout << "Inter the x value for top right for rectangle B" << endl;
cin >> bx2;
cout << "Inter the y value for top right for rectangle B" << endl;
cin >> by2;
cout << "The overlapped area is " << rectoverlap (ax1, ay1, ax2, ay2, bx1, by1, bx2, by2) << endl;
}
The post by user3048546 contains an error in the logic on lines 12-17. Here is a working implementation:
int rectoverlap (int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2)
{
int width, height, area;
if (ax2<bx1 || ay2<by1 || ax1>bx2 || ay1>by2) {
cout << "Rectangles are not overlapped" << endl;
return 0;
}
if (ax2>=bx2 && bx1>=ax1){
width=bx2-bx1;
} else if (bx2>=ax2 && ax1>=bx1) {
width=ax2-ax1;
} else if (ax2>bx2) {
width=bx2-ax1;
} else {
width=ax2-bx1;
}
if (ay2>=by2 && by1>=ay1){
height=by2-by1;
} else if (by2>=ay2 && ay1>=by1) {
height=ay2-ay1;
} else if (ay2>by2) {
height=by2-ay1;
} else {
height=ay2-by1;
}
area = heigh*width;
return (area);
}