Convert a simple mono drawing image to a 2d text array - algorithm

I am trying to develop an algorithm that converts simple mono line images ie Maze, to a text 2d array.
For example, the image below, it would be converted to the following text array.
[|------------ |]
[| | |]
[| |]
[| |------| ---- |]
[| | | |]
[| | --- |]
[|--- | | |]
[| |--- | |]
[| | | |]
[| --------------- |]
[| |]
[| -------------------|]
and finally, like this, where 0=obstacle and 1=free passage
[0000000000000111111110]
[0111110111111111111110]
[0111111111111111111110]
[0110000000011111100000]
[0111111111011111011110]
[0111111111011111000110]
[0000111111011111111010]
[0111111111000011111010]
[0111110111111011111110]
[0111100000000000000010]
[0111111111111111111110]
[0110000000000000000000]
I am thinking to use an Image to Line Art Text like algorithms, ie
https://www.text-image.com/convert/pic2ascii.cgi
What do you think about this approach?

Interseting problem its basically vector form of Image to ASCII art conversion... I managed to do this with this algorithm:
preprocess image
You gave us JPG which has lossy compresion meaning your image contain much more than just 2 colors. So there are shades and artifacts which will screw things up. So first we must get rid of those by thresholding and recoloring. So we can have 2D BW image (no grayscales)
vectorize
Your maze is axis aligned so it contains only horizontal and vertical (h,v) lines. So simply scan each line of image find first starting wall pixel then its ending pixel and store somewhere... repeat until whole line is processed and do this for all lines. Again do the same for rows of image. As your image has thick walls ignore lines sorter than thickness threshold and remove adjacent (duplicates) line that are (almost) the same.
get list of possible grid coordinates from h,v lines
simply make a list of all x and y (separately) coordinates from lines start and end points. Then sort them and remove too close coordinates (duplicates).
Now the min and max values gives you AABB of your maze and GCD of all the coordinate-lowest coordinate will give you grid size.
align h,v lines to grid
simply round all start/end points to nearest grid position ...
create text buffer for maze
AABB along with grid size will give you resolution of your maz in cells so simply create 2D text buffer where each cell has NxN characters. I am using 6x3 cells which looks nice enough (square and with enough space inside).
renmder h,v lines into text
simply loop through all lines and render - or | instead of pixels... I am using also + if the target position does not contain ' '.
convert 2D text array into wanted text output
simply copy the lines into single text ... or if you clever enough you can have 1D and 2D at the same memory place with eol encoded between lines.
Here simple example in C++/VCL I made from the exampe in the link above:
//---------------------------------------------------------------------------
#include <vcl.h>
#include <jpeg.hpp>
#pragma hdrstop
#include "win_main.h"
#include "List.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
Graphics::TBitmap *bmp=new Graphics::TBitmap;
int txt_xs=0,txt_ys=0,txt_xf=0;
//---------------------------------------------------------------------------
template <class T> void sort_asc_bubble(T *a,int n)
{
int i,e; T a0,a1;
for (e=1;e;n--) // loop until no swap occurs
for (e=0,a0=a[0],a1=a[1],i=1;i<n;a0=a1,i++,a1=a[i])// proces unsorted part of array
if (a0>a1) // condition if swap needed
{ a[i-1]=a1; a[i]=a0; a1=a0; e=1; } // swap and allow to process array again
}
//---------------------------------------------------------------------------
AnsiString bmp2lintxt(Graphics::TBitmap *bmp)
{
bool debug=false;
const int cx=6; // cell size
const int cy=3;
const int thr_bw=400; // BW threshold
const int thr_thickness=10; // wall thikness threshold
char a;
AnsiString txt="",eol="\r\n";
int x,y,x0,y0,x1,y1,xs,ys,gx,gy,nx,ny,i,i0,i1,j;
union { BYTE db[4]; DWORD dd; } c; DWORD **pyx;
List<int> h,v; // horizontal and vertical lines (x,y,size)
List<int> tx,ty;// temp lists for grid GCD computation
// [init stuff]
bmp->HandleType=bmDIB;
bmp->PixelFormat=pf32bit;
xs=bmp->Width ;
ys=bmp->Height;
if (xs<=0) return txt;
if (ys<=0) return txt;
pyx=new DWORD*[ys];
for (y=0;y<ys;y++) pyx[y]=(DWORD*)bmp->ScanLine[y];
i=xs; if (i<ys) i=ys;
// threshold bmp to B&W
x0=xs; x1=0; y0=xs; y1=0;
for (y=0;y<ys;y++)
for (x=0;x<xs;x++)
{
c.dd=pyx[y][x];
i =c.db[0];
i+=c.db[1];
i+=c.db[2];
if (i>=thr_bw) c.dd=0x00FFFFFF;
else c.dd=0x00000000;
pyx[y][x]=c.dd;
}
if (debug) bmp->SaveToFile("out0_bw.bmp");
// [vectorize]
// get horizontal lines
i0=0; i1=0; h.num=0;
for (y0=0;y0<ys;y0++)
{
for (x0=0;x0<xs;)
{
for ( ;x0<xs;x0++) if (!pyx[y0][x0]) break;
for (x1=x0;x1<xs;x1++) if ( pyx[y0][x1]){ x1--; break; }
i=x1-x0;
if (i>thr_thickness)
{
h.add(x0);
h.add(y0);
h.add(i);
}
x0=x1+1;
}
// remove duplicate lines
for (i=i0;i<i1;i+=3)
for (j=i1;j<h.num;j+=3)
if ((abs(h[i+0]-h[j+0])<thr_thickness)&&(abs(h[i+2]-h[j+2])<thr_thickness))
{
h.del(i);
h.del(i);
h.del(i);
i1-=3; i-=3; break;
}
i0=i1; i1=h.num;
}
// get vertical lines
i0=0; i1=0; v.num=0;
for (x0=0;x0<xs;x0++)
{
for (y0=0;y0<ys;)
{
for ( ;y0<ys;y0++) if (!pyx[y0][x0]) break;
for (y1=y0;y1<ys;y1++) if ( pyx[y1][x0]){ y1--; break; }
i=y1-y0;
if (i>thr_thickness)
{
v.add(x0);
v.add(y0);
v.add(i);
}
y0=y1+1;
}
// remove duplicate lines
for (i=i0;i<i1;i+=3)
for (j=i1;j<v.num;j+=3)
if ((abs(v[i+1]-v[j+1])<thr_thickness)&&(abs(v[i+2]-v[j+2])<thr_thickness))
{
v.del(i);
v.del(i);
v.del(i);
i1-=3; i-=3; break;
}
i0=i1; i1=v.num;
}
// [compute grid]
x0=xs; y0=ys; x1=0; y1=0; // AABB
gx=10; gy=10; // grid cell size
nx=0; ny=0; // grid cells
tx.num=0; ty.num=0; // clear possible x,y coordinates
for (i=0;i<h.num;i+=3)
{
x =h[i+0];
y =h[i+1];
if (x0>x) x0=x; if (x1<x) x1=x; for (j=0;j<tx.num;j++) if (tx[j]==x){ j=-1; break; } if (j>=0) tx.add(x);
if (y0>y) y0=y; if (y1<y) y1=y; for (j=0;j<ty.num;j++) if (ty[j]==y){ j=-1; break; } if (j>=0) ty.add(y);
x+=h[i+2];
if (x0>x) x0=x; if (x1<x) x1=x; for (j=0;j<tx.num;j++) if (tx[j]==x){ j=-1; break; } if (j>=0) tx.add(x);
}
for (i=0;i<v.num;i+=3)
{
x =v[i+0];
y =v[i+1];
if (x0>x) x0=x; if (x1<x) x1=x; for (j=0;j<tx.num;j++) if (tx[j]==x){ j=-1; break; } if (j>=0) tx.add(x);
if (y0>y) y0=y; if (y1<y) y1=y; for (j=0;j<ty.num;j++) if (ty[j]==y){ j=-1; break; } if (j>=0) ty.add(y);
y+=v[i+2];
if (y0>y) y0=y; if (y1<y) y1=y; for (j=0;j<ty.num;j++) if (ty[j]==y){ j=-1; break; } if (j>=0) ty.add(y);
}
// order tx,ty
sort_asc_bubble(tx.dat,tx.num);
sort_asc_bubble(ty.dat,ty.num);
// remove too close coordinates
for (i=1;i<tx.num;i++) if (tx[i]-tx[i-1]<=thr_thickness){ tx.del(i); i--; }
for (i=1;i<ty.num;i++) if (ty[i]-ty[i-1]<=thr_thickness){ ty.del(i); i--; }
// estimate gx,gy
for (gx=x1-x0,i=1;i<tx.num;i++){ x=tx[i]-tx[i-1]; if (gx>x) gx=x; } nx=(x1-x0+1)/gx; gx=(x1-x0+1)/nx; x1=x0+nx*gx;
for (gy=y1-y0,i=1;i<ty.num;i++){ y=ty[i]-ty[i-1]; if (gy>y) gy=y; } ny=(y1-y0+1)/gy; gy=(y1-y0+1)/ny; y1=y0+ny*gy;
// align x,y to grid: multiplicate nx,ny by cx,cy to form boxes and enlarge by 1 for final border lines
nx=(cx*nx)+1;
ny=(cy*ny)+1;
// align h,v lines to grid
for (i=0;i<h.num;i+=3)
{
x=h[i+0]-x0; x=((x+(gx>>1))/gx)*gx; h[i+0]=x+x0;
y=h[i+1]-y0; y=((y+(gy>>1))/gy)*gy; h[i+1]=y+y0;
j=h[i+2]; j=((j+(gx>>1))/gx)*gx; h[i+2]=j;
}
for (i=0;i<v.num;i+=3)
{
x=v[i+0]-x0; x=((x+(gx>>1))/gx)*gx; v[i+0]=x+x0;
y=v[i+1]-y0; y=((y+(gy>>1))/gy)*gy; v[i+1]=y+y0;
j=v[i+2]; j=((j+(gy>>1))/gy)*gy; v[i+2]=j;
}
// [h,v lines -> ASCII Art]
char *text=new char[nx*ny];
char **tyx=new char*[ny];
for (y=0;y<ny;y++)
for (tyx[y]=text+(nx*y),x=0;x<nx;x++)
tyx[y][x]=' ';
// h lines
for (i=0;i<h.num;i+=3)
{
x=(h[i+0]-x0)/gx;
y=(h[i+1]-y0)/gy;
j=(h[i+2] )/gx; j+=x;
x*=cx; y*=cy; j*=cx;
for (;x<=j;x++) tyx[y][x]='-';
}
// v lines
for (i=0;i<v.num;i+=3)
{
x=(v[i+0]-x0)/gx;
y=(v[i+1]-y0)/gy;
j=(v[i+2] )/gy; j+=y;
x*=cx; y*=cy; j*=cy;
for (;y<=j;y++)
if (tyx[y][x]=='-') tyx[y][x]='+';
else tyx[y][x]='|';
}
// convert char[ny][nx] to AnsiString
for (txt="",y=0;y<ny;y++,txt+=eol)
for (x=0;x<nx;x++) txt+=tyx[y][x];
txt_xs=nx; // just remember the text size for window resize
txt_ys=ny;
delete[] text;
delete[] tyx;
// [debug draw]
// grid
bmp->Canvas->Pen->Color=TColor(0x000000FF);
for (i=1,x=x0;i;x+=gx)
{
if (x>=x1){ x=x1; i=0; }
bmp->Canvas->MoveTo(x,y0);
bmp->Canvas->LineTo(x,y1);
}
for (i=1,y=y0;i;y+=gy)
{
if (y>=y1){ y=y1; i=0; }
bmp->Canvas->MoveTo(x0,y);
bmp->Canvas->LineTo(x1,y);
}
if (debug) bmp->SaveToFile("out1_grid.bmp");
// h,v lines
bmp->Canvas->Pen->Color=TColor(0x00FF0000);
bmp->Canvas->Pen->Width=2;
for (i=0;i<h.num;)
{
x=h[i]; i++;
y=h[i]; i++;
j=h[i]; i++;
bmp->Canvas->MoveTo(x,y);
bmp->Canvas->LineTo(x+j,y);
}
for (i=0;i<v.num;)
{
x=v[i]; i++;
y=v[i]; i++;
j=v[i]; i++;
bmp->Canvas->MoveTo(x,y);
bmp->Canvas->LineTo(x,y+j);
}
bmp->Canvas->Pen->Width=1;
if (debug) bmp->SaveToFile("out2_maze.bmp");
delete[] pyx;
return txt;
}
//---------------------------------------------------------------------------
void update()
{
int x0,x1,y0,y1,i,l;
x0=bmp->Width;
y0=bmp->Height;
// Font size
Form1->mm_txt->Font->Size=Form1->cb_font->ItemIndex+4;
txt_xf=abs(Form1->mm_txt->Font->Size);
// mode
Form1->mm_txt->Text=bmp2lintxt(bmp);
// output
Form1->mm_txt->Lines->SaveToFile("pic.txt");
x1=txt_xs*txt_xf;
y1=txt_ys*abs(Form1->mm_txt->Font->Height);
if (y0<y1) y0=y1;
x0+=x1+16+Form1->flb_pic->Width;
y0+=Form1->pan_top->Height;
if (x0<340) x0=340;
if (y0<128) y0=128;
Form1->ClientWidth=x0;
Form1->ClientHeight=y0;
Form1->Caption=AnsiString().sprintf("Picture -> Text ( Font %ix%i )",abs(Form1->mm_txt->Font->Size),abs(Form1->mm_txt->Font->Height));
}
//---------------------------------------------------------------------------
void draw()
{
Form1->ptb_gfx->Canvas->Draw(0,0,bmp);
}
//---------------------------------------------------------------------------
void load(AnsiString name)
{
if (name=="") return;
AnsiString ext=ExtractFileExt(name).LowerCase();
if (ext==".bmp")
{
bmp->LoadFromFile(name);
}
if (ext==".jpg")
{
TJPEGImage *jpg=new TJPEGImage;
jpg->LoadFromFile(name);
bmp->Assign(jpg);
delete jpg;
}
bmp->HandleType=bmDIB;
bmp->PixelFormat=pf32bit;
Form1->ptb_gfx->Width=bmp->Width;
Form1->ClientHeight=bmp->Height;
Form1->ClientWidth=(bmp->Width<<1)+32;
}
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner):TForm(Owner)
{
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormDestroy(TObject *Sender)
{
delete bmp;
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormPaint(TObject *Sender)
{
draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::flb_picChange(TObject *Sender)
{
load(flb_pic->FileName);
update();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormActivate(TObject *Sender)
{
flb_pic->SetFocus();
flb_pic->Update();
if (flb_pic->ItemIndex==-1)
if (flb_pic->Items->Count>0)
{
flb_pic->ItemIndex=0;
flb_picChange(this);
}
}
//---------------------------------------------------------------------------
Just ignore the VCL stuff and convert the resulting text into whatever you have at disposal. I also use mine dynamic list template so:
List<double> xxx; is the same as double xxx[];
xxx.add(5); adds 5 to end of the list
xxx[7] access array element (safe)
xxx.dat[7] access array element (unsafe but fast direct access)
xxx.num is the actual used size of the array
xxx.reset() clears the array and set xxx.num=0
xxx.allocate(100) preallocate space for 100 items
So use whatever list you got or recode or use std::vector instead...
I edited out the texts from your image:
And this is the result using that as input:
+-----------+------------------ |
| | |
| | |
| | | | +-----------+
| | | | |
| | | | |
| +-----------+ +-----+ |
| | | |
| | | |
+------ | +-----+ | |
| | | |
| | | |
| ------+-----------+------ |
| |
| |
| ------------------------------+
And here the saved debug bitmaps (from left to right: BW,Grid,Maze):
The only important stuff from the code is function:
AnsiString bmp2lintxt(Graphics::TBitmap *bmp);
Which returns text from VCL (GDI based) bitmap.

Related

How to fill a fixed rectangle with square pieces entirely?

Is this knapsack algorithm or bin packing? I couldn't find an exact solution but basically I have a fixed rectangle area that I want to fill with perfect squares that represents my items where each have a different weight which will influence their size relative to others.
They will be sorted from large to smaller from top left to bottom right.
Also even though I need perfect squares, in the end some non-uniform scaling is allowed to fill the entire space as long as they still retain their relative area, and the non-uniform scaling is done with the least possible amount.
What algorithm I can use to achieve this?
There's a fast approximation algorithm due to Hiroshi Nagamochi and Yuusuke Abe. I implemented it in C++, taking care to obtain a worst-case O(n log n)-time implementation with worst-case recursive depth O(log n). If n ≤ 100, these precautions are probably unnecessary.
#include <algorithm>
#include <iostream>
#include <random>
#include <vector>
namespace {
struct Rectangle {
double x;
double y;
double width;
double height;
};
Rectangle Slice(Rectangle &r, const double beta) {
const double alpha = 1 - beta;
if (r.width > r.height) {
const double alpha_width = alpha * r.width;
const double beta_width = beta * r.width;
r.width = alpha_width;
return {r.x + alpha_width, r.y, beta_width, r.height};
}
const double alpha_height = alpha * r.height;
const double beta_height = beta * r.height;
r.height = alpha_height;
return {r.x, r.y + alpha_height, r.width, beta_height};
}
void LayoutRecursive(const std::vector<double> &reals, const std::size_t begin,
std::size_t end, double sum, Rectangle rectangle,
std::vector<Rectangle> &dissection) {
while (end - begin > 1) {
double suffix_sum = reals[end - 1];
std::size_t mid = end - 1;
while (mid > begin + 1 && suffix_sum + reals[mid - 1] <= 2 * sum / 3) {
suffix_sum += reals[mid - 1];
mid -= 1;
}
LayoutRecursive(reals, mid, end, suffix_sum,
Slice(rectangle, suffix_sum / sum), dissection);
end = mid;
sum -= suffix_sum;
}
dissection.push_back(rectangle);
}
std::vector<Rectangle> Layout(std::vector<double> reals,
const Rectangle rectangle) {
std::sort(reals.begin(), reals.end());
std::vector<Rectangle> dissection;
dissection.reserve(reals.size());
LayoutRecursive(reals, 0, reals.size(),
std::accumulate(reals.begin(), reals.end(), double{0}),
rectangle, dissection);
return dissection;
}
std::vector<double> RandomReals(const std::size_t n) {
std::vector<double> reals(n);
std::exponential_distribution<> dist;
std::default_random_engine gen;
for (double &real : reals) {
real = dist(gen);
}
return reals;
}
} // namespace
int main() {
const std::vector<Rectangle> dissection =
Layout(RandomReals(100), {72, 72, 6.5 * 72, 9 * 72});
std::cout << "%!PS\n";
for (const Rectangle &r : dissection) {
std::cout << r.x << " " << r.y << " " << r.width << " " << r.height
<< " rectstroke\n";
}
std::cout << "showpage\n";
}
Ok so lets assume integer positions and sizes (no float operations). To evenly divide rectangle into regular square grid (as big squares as possible) the size of the cells will be greatest common divisor GCD of the rectangle sizes.
However you want to have much less squares than that so I would try something like this:
try all square sizes a from 1 to smaller size of rectangle
for each a compute the naive square grid size of the rest of rectangle once a*a square is cut of it
so its simply GCD again on the 2 rectangles that will be created once a*a square is cut of. If the min of all 3 sizes a and GCD for the 2 rectangles is bigger than 1 (ignoring zero area rectangles) then consider a as valid solution so remember it.
after the for loop use last found valida
so simply add a*a square to your output and recursively do this whole again for the 2 rectangles that will remain from your original rectangle after a*a square was cut off.
Here simple C++/VCL/OpenGL example for this:
//---------------------------------------------------------------------------
#include <vcl.h>
#pragma hdrstop
#include "Unit1.h"
#include "gl_simple.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
//---------------------------------------------------------------------------
class square // simple square
{
public:
int x,y,a; // corner 2D position and size
square(){ x=y=a=0.0; }
square(int _x,int _y,int _a){ x=_x; y=_y; a=_a; }
~square(){}
void draw()
{
glBegin(GL_LINE_LOOP);
glVertex2i(x ,y);
glVertex2i(x+a,y);
glVertex2i(x+a,y+a);
glVertex2i(x ,y+a);
glEnd();
}
};
int rec[4]={20,20,760,560}; // x,y,a,b
const int N=1024; // max square number
int n=0; // number of squares
square s[N]; // squares
//---------------------------------------------------------------------------
int gcd(int a,int b) // slow euclid GCD
{
if(!b) return a;
return gcd(b, a % b);
}
//---------------------------------------------------------------------------
void compute(int x0,int y0,int xs,int ys)
{
if ((xs==0)||(ys==0)) return;
const int x1=x0+xs;
const int y1=y0+ys;
int a,b,i,x,y;
square t;
// try to find biggest square first
for (a=1,b=0;(a<=xs)&&(a<=ys);a++)
{
// sizes for the rest of the rectangle once a*a square is cut of
if (xs==a) x=0; else x=gcd(a,xs-a);
if (ys==a) y=0; else y=gcd(a,ys-a);
// min of all sizes
i=a;
if ((x>0)&&(i>x)) i=x;
if ((y>0)&&(i>y)) i=y;
// if divisible better than by 1 remember it as better solution
if (i>1) b=a;
} a=b;
// bigger square not found so use naive square grid division
if (a<=1)
{
t.a=gcd(xs,ys);
for (t.y=y0;t.y<y1;t.y+=t.a)
for (t.x=x0;t.x<x1;t.x+=t.a)
if (n<N){ s[n]=t; n++; }
}
// bigest square found so add it to result and recursively process the rest
else{
t=square(x0,y0,a);
if (n<N){ s[n]=t; n++; }
compute(x0+a,y0,xs-a,a);
compute(x0,y0+a,xs,ys-a);
}
}
//---------------------------------------------------------------------------
void gl_draw()
{
glClear(GL_COLOR_BUFFER_BIT);
glDisable(GL_DEPTH_TEST);
glDisable(GL_TEXTURE_2D);
// set view to 2D [pixel] units
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(-1.0,-1.0,0.0);
glScalef(2.0/float(xs),2.0/float(ys),1.0);
// render input rectangle
glColor3f(0.2,0.2,0.2);
glBegin(GL_QUADS);
glVertex2i(rec[0] ,rec[1]);
glVertex2i(rec[0]+rec[2],rec[1]);
glVertex2i(rec[0]+rec[2],rec[1]+rec[3]);
glVertex2i(rec[0] ,rec[1]+rec[3]);
glEnd();
// render output squares
glColor3f(0.2,0.5,0.9);
for (int i=0;i<n;i++) s[i].draw();
glFinish();
SwapBuffers(hdc);
}
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner):TForm(Owner)
{
// Init of program
gl_init(Handle); // init OpenGL
n=0; compute(rec[0],rec[1],rec[2],rec[3]);
Caption=n;
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormDestroy(TObject *Sender)
{
// Exit of program
gl_exit();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormPaint(TObject *Sender)
{
// repaint
gl_draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormResize(TObject *Sender)
{
// resize
gl_resize(ClientWidth,ClientHeight);
}
//---------------------------------------------------------------------------
And preview for the actually hardcoded rectangle:
The number 8 in Caption of the window is the number of squares produced.
Beware this is just very simple startup example for this problem. I Have not tested it extensively so there is possibility once prime sizes or just unlucky aspect ratios are involved then this might result in really high number of squares... for example if GCD of the rectangle size is 1 (primes) ... In such case you should tweak the initial rectangle size (+/-1 or whatever)
The important thing in the code is just the compute() function and the global variables holding the output squares s[n]... beware the compute() does not clear the list (in order to allow recursion) so you need to set n=0 before its non recursive call.
To keep this simple I avoided to use any libs or dynamic allocations or containers for the compute itself...

Special Perfect Maze Generation Algorithm

I'm trying to create a special perfect maze generator.
Instead of the standard case that has rooms and walls, I'm dealing with a grid of cells filled with blocks, where I can remove blocks from some cells:
to connect two given cells (for example, to connect the top-left cell to the bottom-left cell)
in order to have a maximum blocks removed
each removed block cells must me joinable from each other using one way
I use a DFS algorithm to dig the path maze but I can't find a way to be sure that the two given cells are connected.
The normal case goes from here
+-+-+
| | |
+-+-+
| | |
+-+-+
to here
+-+-+
| | |
+ + +
| |
+-+-+
In my case, I'm trying to connect the top-left cell to the bottom-right cell:
##
##
to here
.#
..
or here
..
#.
but not here (because the bottom-right cell is blocked)
..
.#
and not here (the two cells are not connected)
.#
#.
and not here (the maze is not perfect, the cells are connected by more than one path)
..
..
Here two more 8x8 examples :
Good one (perfect maze, and there is a path from the top-left cell to the bottom-right cell):
..#.....
.#.#.##.
.......#
.#.#.##.
.##...#.
..#.#...
.##.#.#.
...###..
Bad one (perfect maze, but there is no path from the top-left cell to the bottom-right cell):
...#....
.##..#.#
....##..
#.#...##
#..##...
..#..#.#
#...#...
##.###.#
It looks like it's actually quite reasonable to generate mazes meeting your criteria using a two-step process:
Generate a random maze without regards to whether it's possible to get to the bottom-right corner from the top-left corner.
Repeat step (1) until there's a path to the bottom-right corner.
I've coded this up using two strategies, one based on a randomized depth-first search and one based on a randomized breadth-first search. The randomized depth-first search, on grids of size 100 × 100, generates mazes where the bottom-right corner is reachable from the top-left corner 82% of time. With a randomized breadth-first search, the success rate on 100 × 100 grids is around 70%. So this strategy does indeed appear to be viable; you'll need to generate, on average, about 1.2 mazes with DFS and around 1.4 mazes with BFS before you'll find one that works.
The mechanism I used to generate mazes without loops is based on a generalization of the idea from regular BFS and DFS. In both of those algorithms, we pick some location that (1) we haven't yet visited but (2) is adjacent to somewhere we have, then add the new location in with the previous location as its parent. That is, the newly-added location ends up being adjacent to exactly one of the previously-visited cells. I adapted this idea by using this rule:
Do not convert a full cell to an empty cell if it's adjacent to more than one empty cell.
This rule ensures that we never get any cycles (if something is adjacent to two or more empty locations and we empty it out, we create a cycle by getting to the first location, then moving to the newly-emptied square, then moving to the second location).
Here's a sample 30 × 30 maze generated using the DFS approach:
.#.........#...#.#....#.#..##.
.#.#.#.#.#.#.#.....##....#....
..#...#..#.#.##.#.#.####.#.#.#
#..#.##.##.#...#..#......#.#..
.#..#...#..####..#.#.####..##.
...#..##..#.....#..#....##..#.
.##.#.#.#...####..#.###...#.#.
..#.#.#.###.#....#..#.#.#..##.
#.#...#....#..#.###....###....
...#.###.#.#.#...#..##..#..#.#
.#....#..#.#.#.#.#.#..#..#.#..
..####..#..###.#.#...###..#.#.
.#.....#.#.....#.########...#.
#..#.##..#######.....#####.##.
..##...#........####..###..#..
.#..##..####.#.#...##..#..#..#
..#.#.#.#....#.###...#...#..#.
.#....#.#.####....#.##.#.#.#..
.#.#.#..#.#...#.#...#..#.#...#
.#..##.#..#.#..#.##..##..###..
.#.#...##....#....#.#...#...#.
...#.##...##.####..#..##..##..
#.#..#.#.#.......#..#...#..#.#
..#.#.....#.####..#...##..##..
##..###.#..#....#.#.#....#..#.
...#...#..##.#.#...#####...#..
.###.#.#.#...#.#.#..#...#.#..#
.#...#.##..##..###.##.#.#.#.##
.#.###..#.##.#....#...#.##...#
......#.......#.#...#.#....#..
Here's a sample 30 × 30 maze generated using BFS:
.#..#..#...#......#..##.#.....
..#.#.#.#.#..#.##...#....#.#.#
#...#.......###.####..##...#.#
.#.#..#.#.##.#.......#.#.#..#.
.....#..#......#.#.#.#..#..##.
#.#.#.###.#.##..#.#....#.#....
..##.....##..#.##...##.#...#.#
#....#.#...#..##.##...#.#.##..
.#.#..##.##..##...#.#...##...#
....#...#..#....#.#.#.##..##..
#.##..#.##.##.##...#..#..##..#
....#.##.#..#...#.####.#...#..
.#.##......#..##.#.#.....#..#.
#....#.#.#..#........#.#.#.##.
.#.###..#..#.#.##.#.#...####..
.#.#...#.#...#..#..###.#.#...#
....##.#.##.#..#.####.....#.#.
.#.#.......###.#.#.#.##.##....
#..#.#.#.##.#.#........###.#.#
.#..#..#........##.#.####..#..
...#.#.#.#.#.##.#.###..#.##..#
#.#..#.##..#.#.#...#.#.....#..
....#...##.#.....#.....##.#..#
#.#.#.##...#.#.#.#.#.##..#.##.
...#..#..##..#..#...#..#.#....
#.#.#.##...#.##..##...#....#.#
..#..#...##....##...#...#.##..
#...#..#...#.#..#.#.#.#..#...#
..#..##..##..#.#..#..#.##.##..
#.#.#...#...#...#..#........#.
And, for fun, here's the code I used to generate these numbers and these mazes. First, the DFS code:
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <string>
#include <random>
using namespace std;
/* World Dimensions */
const size_t kNumRows = 30;
const size_t kNumCols = 30;
/* Location. */
using Location = pair<size_t, size_t>; // (row, col)
/* Adds the given point to the frontier, assuming it's legal to do so. */
void updateFrontier(const Location& loc, vector<string>& maze, vector<Location>& frontier,
set<Location>& usedFrontier) {
/* Make sure we're in bounds. */
if (loc.first >= maze.size() || loc.second >= maze[0].size()) return;
/* Make sure this is still a wall. */
if (maze[loc.first][loc.second] != '#') return;
/* Make sure we haven't added this before. */
if (usedFrontier.count(loc)) return;
/* All good! Add it in. */
frontier.push_back(loc);
usedFrontier.insert(loc);
}
/* Given a location, adds that location to the maze and expands the frontier. */
void expandAt(const Location& loc, vector<string>& maze, vector<Location>& frontier,
set<Location>& usedFrontier) {
/* Mark the location as in use. */
maze[loc.first][loc.second] = '.';
/* Handle each neighbor. */
updateFrontier(Location(loc.first, loc.second + 1), maze, frontier, usedFrontier);
updateFrontier(Location(loc.first, loc.second - 1), maze, frontier, usedFrontier);
updateFrontier(Location(loc.first + 1, loc.second), maze, frontier, usedFrontier);
updateFrontier(Location(loc.first - 1, loc.second), maze, frontier, usedFrontier);
}
/* Chooses and removes a random element of the frontier. */
Location sampleFrom(vector<Location>& frontier, mt19937& generator) {
uniform_int_distribution<size_t> dist(0, frontier.size() - 1);
/* Pick our spot. */
size_t index = dist(generator);
/* Move it to the end and remove it. */
swap(frontier[index], frontier.back());
auto result = frontier.back();
frontier.pop_back();
return result;
}
/* Returns whether a location is empty. */
bool isEmpty(const Location& loc, const vector<string>& maze) {
return loc.first < maze.size() && loc.second < maze[0].size() && maze[loc.first][loc.second] == '.';
}
/* Counts the number of empty neighbors of a given location. */
size_t neighborsOf(const Location& loc, const vector<string>& maze) {
return !!isEmpty(Location(loc.first - 1, loc.second), maze) +
!!isEmpty(Location(loc.first + 1, loc.second), maze) +
!!isEmpty(Location(loc.first, loc.second - 1), maze) +
!!isEmpty(Location(loc.first, loc.second + 1), maze);
}
/* Returns whether a location is in bounds. */
bool inBounds(const Location& loc, const vector<string>& world) {
return loc.first < world.size() && loc.second < world[0].size();
}
/* Runs a recursive DFS to fill in the maze. */
void dfsFrom(const Location& loc, vector<string>& world, mt19937& generator) {
/* Base cases: out of bounds? Been here before? Adjacent to too many existing cells? */
if (!inBounds(loc, world) || world[loc.first][loc.second] == '.' ||
neighborsOf(loc, world) > 1) return;
/* All next places. */
vector<Location> next = {
{ loc.first - 1, loc.second },
{ loc.first + 1, loc.second },
{ loc.first, loc.second - 1 },
{ loc.first, loc.second + 1 }
};
shuffle(next.begin(), next.end(), generator);
/* Mark us as filled. */
world[loc.first][loc.second] = '.';
/* Explore! */
for (const Location& nextStep: next) {
dfsFrom(nextStep, world, generator);
}
}
/* Generates a random maze. */
vector<string> generateMaze(size_t numRows, size_t numCols, mt19937& generator) {
/* Create the maze. */
vector<string> result(numRows, string(numCols, '#'));
/* Build the maze! */
dfsFrom(Location(0, 0), result, generator);
return result;
}
int main() {
random_device rd;
mt19937 generator(rd());
/* Run some trials. */
size_t numTrials = 0;
size_t numSuccesses = 0;
for (size_t i = 0; i < 10000; i++) {
numTrials++;
auto world = generateMaze(kNumRows, kNumCols, generator);
/* Can we get to the bottom? */
if (world[kNumRows - 1][kNumCols - 1] == '.') {
numSuccesses++;
/* Print the first maze that works. */
if (numSuccesses == 1) {
for (const auto& row: world) {
cout << row << endl;
}
cout << endl;
}
}
}
cout << "Trials: " << numTrials << endl;
cout << "Successes: " << numSuccesses << endl;
cout << "Percent: " << (100.0 * numSuccesses) / numTrials << "%" << endl;
cout << endl;
return 0;
}
Next, the BFS code:
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <string>
#include <random>
using namespace std;
/* World Dimensions */
const size_t kNumRows = 30;
const size_t kNumCols = 30;
/* Location. */
using Location = pair<size_t, size_t>; // (row, col)
/* Adds the given point to the frontier, assuming it's legal to do so. */
void updateFrontier(const Location& loc, vector<string>& maze, vector<Location>& frontier,
set<Location>& usedFrontier) {
/* Make sure we're in bounds. */
if (loc.first >= maze.size() || loc.second >= maze[0].size()) return;
/* Make sure this is still a wall. */
if (maze[loc.first][loc.second] != '#') return;
/* Make sure we haven't added this before. */
if (usedFrontier.count(loc)) return;
/* All good! Add it in. */
frontier.push_back(loc);
usedFrontier.insert(loc);
}
/* Given a location, adds that location to the maze and expands the frontier. */
void expandAt(const Location& loc, vector<string>& maze, vector<Location>& frontier,
set<Location>& usedFrontier) {
/* Mark the location as in use. */
maze[loc.first][loc.second] = '.';
/* Handle each neighbor. */
updateFrontier(Location(loc.first, loc.second + 1), maze, frontier, usedFrontier);
updateFrontier(Location(loc.first, loc.second - 1), maze, frontier, usedFrontier);
updateFrontier(Location(loc.first + 1, loc.second), maze, frontier, usedFrontier);
updateFrontier(Location(loc.first - 1, loc.second), maze, frontier, usedFrontier);
}
/* Chooses and removes a random element of the frontier. */
Location sampleFrom(vector<Location>& frontier, mt19937& generator) {
uniform_int_distribution<size_t> dist(0, frontier.size() - 1);
/* Pick our spot. */
size_t index = dist(generator);
/* Move it to the end and remove it. */
swap(frontier[index], frontier.back());
auto result = frontier.back();
frontier.pop_back();
return result;
}
/* Returns whether a location is empty. */
bool isEmpty(const Location& loc, const vector<string>& maze) {
return loc.first < maze.size() && loc.second < maze[0].size() && maze[loc.first][loc.second] == '.';
}
/* Counts the number of empty neighbors of a given location. */
size_t neighborsOf(const Location& loc, const vector<string>& maze) {
return !!isEmpty(Location(loc.first - 1, loc.second), maze) +
!!isEmpty(Location(loc.first + 1, loc.second), maze) +
!!isEmpty(Location(loc.first, loc.second - 1), maze) +
!!isEmpty(Location(loc.first, loc.second + 1), maze);
}
/* Generates a random maze. */
vector<string> generateMaze(size_t numRows, size_t numCols, mt19937& generator) {
/* Create the maze. */
vector<string> result(numRows, string(numCols, '#'));
/* Worklist of free locations. */
vector<Location> frontier;
/* Set of used frontier sites. */
set<Location> usedFrontier;
/* Seed the starting location. */
expandAt(Location(0, 0), result, frontier, usedFrontier);
/* Loop until there's nothing left to expand. */
while (!frontier.empty()) {
/* Select a random frontier location to expand at. */
Location next = sampleFrom(frontier, generator);
/* If this spot has exactly one used neighbor, add it. */
if (neighborsOf(next, result) == 1) {
expandAt(next, result, frontier, usedFrontier);
}
}
return result;
}
int main() {
random_device rd;
mt19937 generator(rd());
/* Run some trials. */
size_t numTrials = 0;
size_t numSuccesses = 0;
for (size_t i = 0; i < 10000; i++) {
numTrials++;
auto world = generateMaze(kNumRows, kNumCols, generator);
/* Can we get to the bottom? */
if (world[kNumRows - 1][kNumCols - 1] == '.') {
numSuccesses++;
/* Print the first maze that works. */
if (numSuccesses == 1) {
for (const auto& row: world) {
cout << row << endl;
}
cout << endl;
}
}
}
cout << "Trials: " << numTrials << endl;
cout << "Successes: " << numSuccesses << endl;
cout << "Percent: " << (100.0 * numSuccesses) / numTrials << "%" << endl;
cout << endl;
return 0;
}
Hope this helps!
Below I describe one easy way to build a perfect maze.
The idea is that you have three types of cells: closed cells, open cells, and frontier cells.
A closed cell is a cell that is still blocked: there is no path from the starting cell to that cell.
If there is a path from the starting cell to a cell, then that cell is open.
A frontier cell is a closed cell that is adjacent to an open cell.
This figure shows open, closed, and frontier cells.
+--+--+--+--+--+--+--+--+--+--+
|** **|FF| | | | | | | |
+--+ +--+--+--+--+--+--+--+--+
|FF|**|FF| | | | | | | |
+--+ +--+--+--+--+--+--+--+--+
|** **|FF| | | | | | | |
+ +--+--+--+--+--+--+--+--+--+
|**|FF|FF|FF| | | | | | |
+ +--+--+--+--+--+--+--+--+--+
|** ** ** **|FF| | | | | |
+--+--+--+ +--+--+--+--+--+--+
|FF|FF|FF|**|FF| | | | | |
+--+--+--+--+--+--+--+--+--+--+
| | |FF|FF| | | | | | |
+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+
Cells with '**' in them are open. Cells with 'FF' in them are frontier cells. Blank cells are closed cells.
The idea is that you start with every cell in your grid as closed.
Then, create an initially empty list of cells. That is your frontier.
Open the starting cell and one of the adjacent cells, and add all cells adjacent to those two to the frontier. So if the upper left is the starting cell, then the first two rows are.
+--+--+--+--+--+--+--+--+--+--+
|** **| | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | |
And your frontier array contains {[0,2],[1,0],[1,1]}.
Now, perform the following loop until the frontier array is empty:
Randomly select a cell from the frontier array.
Swap that cell with the last cell in the frontier array.
Remove the last cell from the frontier array.
Open that selected frontier cell into an adjacent open cell.
Add any closed cells that are adjacent to the newly-opened cell to the frontier array.
That is guaranteed to create a maze that has a single path from start to finish.
If you don't want to open all of the cells in the graph, then modify the program to stop when the finish cell is selected from the frontier and opened.
Time complexity is O(height * width). As I recall, the maximum size that the frontier array will reach is (2*height*width)/3. In practice, I've never seen it get quite that large.

Determine Minimum Number of Line Segments to Solve a Maze

I have a problem where I need to define a polygon with the minimum number of vertices that intersects or contains every pixel in an image that is not transparent (Let N be the number of pixels in the image). My only assumptions are that the image cannot contain transparent pixels within its boundary (holes), and that at least two pixels are non-transparent. As an example, lets say I have the following image:
My idea for an algorithm is thus:
1) Determine the edge pixels.This is done in O(N) time by iterating through each pixel, and determining whether any neighbors (out of the four pixels left, above, right, and below it) are empty. Store the pixel and which neighbors were non-transparent, keyed by linear index into the array of pixels. Let there be P edge pixels, shown in orange below.
2) Get an adjacency list of the edge pixels.This is done in O(P) time by selecting one of the edge pixels, and chosing a direction based on empty neighbors. For example, if a pixel has a bottom and right neighbor, then the next pixel will be either one in the upper-right corner, or the pixel immediately to the right. Select the next edge pixel from the dictionary of remaining edge pixels. Append that pixel to the list until the algorithm returns to the starting pixel. There are 27 edge pixels in the example image below (some are an edge pixel more than once).
3) Draw a maze that all edges must lie between.This is done in O(P) time by iterating through the adjacency list, and adding an edge to all edges on those pixels without a neighbor. In addition, an edge is added to the interior of the shape based on the direction to the next edge pixel. If the pixel represents a peninsula with single pixel width, the inner edge is added to the middle of the edge instead of the pixel vertex. The interior of the maze is shown in red. Note that the maze boundary is a super-set of all the edge pixels found in step 2.
4) Find a polygon with almost minimal edges that does not touch the border of the maze.This is the part I need help with. Does anyone have a suggestion of how you would go from step #3 to a solution such as the following?
I have no background in image processing, but I came across the Ramer–Douglas–Peucker algorithm yesterday and I think it might be helpful.
From my quick scan of the Wikipedia article, it reduces the number of point in a curve, so I would run this algorithm on each line where the points of the line are the end points you have and also set as points the borders of squares that the line crosses.
I marked out in this image two lines you could run the algorithm on and I think it would work.
How to find each line and when to stop - not 100% sure, but I hope this was useful.
See find holes in 2D point set
it is very similar problem
just invert the map and use midpoint of each grid square as point
that will lead to this:
as you want the inner polygon then there are 2 choices
shrink shape by 1 cell before applying this (can loose some detail in shape)
change the H/V lines so they are 1 cell shorter (half from both sides)
that will lead to something like this:
after some changes in code I can use 2x multi-sampling now so result is:
now you can join connected lines with the same slope
and apply something like ear clipping on the found corners to get more close to your desired polygon
Here the inverted source code in C++ (there may be some hole comments left):
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
/* usage:
int i;
pntcloud_polygons h;
pnt2D point[points];
h.scann_beg(); for (i=0;i<points;i++) { p=point[i]; h.scann_pnt(p.x,p.y); } h.scann_end();
h.cell_size(2.5); // or (h.x1-h.x0)*0.01 ... cell size >> avg point distance
h.holes_beg(); for (i=0;i<points;i++) { p=point[i]; h.holes_pnt(p.x,p.y); } h.holes_end();
*/
//---------------------------------------------------------------------------
class pntcloud_polygons
{
public:
int xs,ys,n; // cell grid x,y - size and points count
int **map; // points density map[xs][ys]
// i=(x-x0)*g2l; x=x0+(i*l2g);
// j=(y-y0)*g2l; y=y0+(j*l2g);
double mg2l,ml2g; // scale to/from global/map space (x,y) <-> map[i][j]
double x0,x1,y0,y1; // used area (bounding box)
struct _line
{
int id; // id of hole for segmentation/polygonize
float i0,i1,j0,j1; // index in map[][]
_line(){}; _line(_line& a){ *this=a; }; ~_line(){}; _line* operator = (const _line *a) { *this=*a; return this; }; /*_line* operator = (const _line &a) { ...copy... return this; };*/
};
List<_line> lin;
int lin_i0; // start index for perimeter lines (smaller indexes are the H,V lines inside hole)
struct _point
{
int i,j; // index in map[][]
int p0,p1; // previous next point
int used;
_point(){}; _point(_point& a){ *this=a; }; ~_point(){}; _point* operator = (const _point *a) { *this=*a; return this; }; /*_point* operator = (const _point &a) { ...copy... return this; };*/
};
List<_point> pnt;
// class init and internal stuff
pntcloud_polygons() { xs=0; ys=0; n=0; map=NULL; mg2l=1.0; ml2g=1.0; x0=0.0; y0=0.0; x1=0.0; y1=0.0; lin_i0=0; };
pntcloud_polygons(pntcloud_polygons& a){ *this=a; };
~pntcloud_polygons() { _free(); };
pntcloud_polygons* operator = (const pntcloud_polygons *a) { *this=*a; return this; };
pntcloud_polygons* operator = (const pntcloud_polygons &a)
{
xs=0; ys=0; n=a.n; map=NULL;
mg2l=a.mg2l; x0=a.x0; x1=a.x1;
ml2g=a.ml2g; y0=a.y0; y1=a.y1;
_alloc(a.xs,a.ys);
for (int i=0;i<xs;i++)
for (int j=0;j<ys;j++) map[i][j]=a.map[i][j];
return this;
}
void _free() { if (map) { for (int i=0;i<xs;i++) if (map[i]) delete[] map[i]; delete[] map; } xs=0; ys=0; }
void _alloc(int _xs,int _ys) { int i=0; _free(); xs=_xs; ys=_ys; map=new int*[xs]; if (map) for (i=0;i<xs;i++) { map[i]=new int[ys]; if (map[i]==NULL) { i=-1; break; } } else i=-1; if (i<0) _free(); }
// scann boundary box interface
void scann_beg();
void scann_pnt(double x,double y);
void scann_end();
// dynamic allocations
void cell_size(double sz); // compute/allocate grid from grid cell size = sz x sz
// scann pntcloud_polygons interface
void holes_beg();
void holes_pnt(double x,double y);
void holes_end();
// global(x,y) <- local map[i][j] + half cell offset
inline void l2g(double &x,double &y,int i,int j) { x=x0+((double(i)+0.5)*ml2g); y=y0+((double(j)+0.5)*ml2g); }
inline void l2g(double &x,double &y,float i,float j) { x=x0+((double(i)+0.5)*ml2g); y=y0+((double(j)+0.5)*ml2g); }
// local map[i][j] <- global(x,y)
inline void g2l(int &i,int &j,double x,double y) { i= double((x-x0) *mg2l); j= double((y-y0) *mg2l); }
};
//---------------------------------------------------------------------------
void pntcloud_polygons::scann_beg()
{
x0=0.0; y0=0.0; x1=0.0; y1=0.0; n=0;
}
//---------------------------------------------------------------------------
void pntcloud_polygons::scann_pnt(double x,double y)
{
if (!n) { x0=x; y0=y; x1=x; y1=y; }
if (n<0x7FFFFFFF) n++; // avoid overflow
if (x0>x) x0=x; if (x1<x) x1=x;
if (y0>y) y0=y; if (y1<y) y1=y;
}
//---------------------------------------------------------------------------
void pntcloud_polygons::scann_end()
{
}
//---------------------------------------------------------------------------
void pntcloud_polygons::cell_size(double sz)
{
int x,y;
if (sz<1e-6) sz=1e-6;
x=ceil((x1-x0)/sz);
y=ceil((y1-y0)/sz);
_alloc(x,y);
ml2g=sz; mg2l=1.0/sz;
}
//---------------------------------------------------------------------------
void pntcloud_polygons::holes_beg()
{
int i,j;
for (i=0;i<xs;i++)
for (j=0;j<ys;j++)
map[i][j]=0;
}
//---------------------------------------------------------------------------
void pntcloud_polygons::holes_pnt(double x,double y)
{
int i,j;
g2l(i,j,x,y);
if ((i>=0)&&(i<xs))
if ((j>=0)&&(j<ys))
if (map[i][j]<0x7FFFFFFF) map[i][j]++; // avoid overflow
}
//---------------------------------------------------------------------------
void pntcloud_polygons::holes_end()
{
int i,j,e,i0,i1;
List<int> ix; // hole lines start/stop indexes for speed up the polygonization
_line *a,*b,l;
_point *aa,*bb,p;
lin.num=0; lin_i0=0;// clear lines
ix.num=0; // clear indexes
// find pntcloud_polygons (map[i][j].cnt!=0) or (map[i][j].cnt>=treshold)
// and create lin[] list of H,V lines covering pntcloud_polygons
for (j=0;j<ys;j++) // search lines
for (i=0;i<xs;)
{
int i0,i1;
for (;i<xs;i++) if (map[i][j]!=0) break; i0=i-1; // find start of polygon
for (;i<xs;i++) if (map[i][j]==0) break; i1=i; // find end of polygon
if (i0< 0) continue; // skip bad circumstances (edges or no hole found)
if (i1>=xs) continue;
if (map[i0][j]!=0) continue;
if (map[i1][j]!=0) continue;
l.i0=i0+0.5;
l.i1=i1-0.5;
l.j0=j ;
l.j1=j ;
l.id=-1;
lin.add(l);
}
for (i=0;i<xs;i++) // search columns
for (j=0;j<ys;)
{
int j0,j1;
for (;j<ys;j++) if (map[i][j]!=0) break; j0=j-1; // find start of polygon
for (;j<ys;j++) if (map[i][j]==0) break; j1=j ; // find end of polygon
if (j0< 0) continue; // skip bad circumstances (edges or no hole found)
if (j1>=ys) continue;
if (map[i][j0]!=0) continue;
if (map[i][j1]!=0) continue;
l.i0=i ;
l.i1=i ;
l.j0=j0+0.5;
l.j1=j1-0.5;
l.id=-1;
lin.add(l);
}
// segmentate lin[] ... group lines of the same hole together by lin[].id
// segmentation based on vector lines data
// you can also segmentate the map[][] directly as bitmap during hole detection
for (i=0;i<lin.num;i++) lin[i].id=i; // all lines are separate
for (;;) // join what you can
{
for (e=0,a=lin.dat,i=0;i<lin.num;i++,a++)
{
for (b=a,j=i;j<lin.num;j++,b++)
if (a->id!=b->id)
{
// if a,b not intersecting or neighbouring
if (a->i0>b->i1) continue;
if (b->i0>a->i1) continue;
if (a->j0>b->j1) continue;
if (b->j0>a->j1) continue;
// if they do mark e for join groups
e=1; break;
}
if (e) break; // join found ... stop searching
}
if (!e) break; // no join found ... stop segmentation
i0=a->id; // joid ids ... rename i1 to i0
i1=b->id;
for (a=lin.dat,i=0;i<lin.num;i++,a++)
if (a->id==i1)
a->id=i0;
}
// sort lin[] by id
for (e=1;e;) for (e=0,a=&lin[0],b=&lin[1],i=1;i<lin.num;i++,a++,b++)
if (a->id>b->id) { l=*a; *a=*b; *b=l; e=1; }
// re id lin[] and prepare start/stop indexes
for (i0=-1,i1=-1,a=&lin[0],i=0;i<lin.num;i++,a++)
if (a->id==i1) a->id=i0;
else { i0++; i1=a->id; a->id=i0; ix.add(i); }
ix.add(lin.num);
// polygonize
lin_i0=lin.num;
for (j=1;j<ix.num;j++) // process hole
{
i0=ix[j-1]; i1=ix[j];
// create border pnt[] list (unique points only)
pnt.num=0; p.used=0; p.p0=-1; p.p1=-1;
for (a=&lin[i0],i=i0;i<i1;i++,a++)
{
p.i=a->i0;
p.j=a->j0;
map[p.i][p.j]=0;
for (aa=&pnt[0],e=0;e<pnt.num;e++,aa++)
if ((aa->i==p.i)&&(aa->j==p.j)) { e=-1; break; }
if (e>=0) pnt.add(p);
p.i=a->i1;
p.j=a->j1;
map[p.i][p.j]=0;
for (aa=&pnt[0],e=0;e<pnt.num;e++,aa++)
if ((aa->i==p.i)&&(aa->j==p.j)) { e=-1; break; }
if (e>=0) pnt.add(p);
}
// mark not border points
for (aa=&pnt[0],i=0;i<pnt.num;i++,aa++)
if (!aa->used) // ignore marked points
if ((aa->i>0)&&(aa->i<xs-1)) // ignore map[][] border points
if ((aa->j>0)&&(aa->j<ys-1))
{ // ignore if any non hole cell around
if (map[aa->i-1][aa->j-1]>0) continue;
if (map[aa->i-1][aa->j ]>0) continue;
if (map[aa->i-1][aa->j+1]>0) continue;
if (map[aa->i ][aa->j-1]>0) continue;
if (map[aa->i ][aa->j+1]>0) continue;
if (map[aa->i+1][aa->j-1]>0) continue;
if (map[aa->i+1][aa->j ]>0) continue;
if (map[aa->i+1][aa->j+1]>0) continue;
aa->used=1;
}
// delete marked points
for (aa=&pnt[0],e=0,i=0;i<pnt.num;i++,aa++)
if (!aa->used) { pnt[e]=*aa; e++; } pnt.num=e;
// connect neighbouring points distance=1
for (i0= 0,aa=&pnt[i0];i0<pnt.num;i0++,aa++)
if (aa->used<2)
for (i1=i0+1,bb=&pnt[i1];i1<pnt.num;i1++,bb++)
if (bb->used<2)
{
i=aa->i-bb->i; if (i<0) i=-i; e =i;
i=aa->j-bb->j; if (i<0) i=-i; e+=i;
if (e!=1) continue;
aa->used++; if (aa->p0<0) aa->p0=i1; else aa->p1=i1;
bb->used++; if (bb->p0<0) bb->p0=i0; else bb->p1=i0;
}
// try to connect neighbouring points distance=sqrt(2)
for (i0= 0,aa=&pnt[i0];i0<pnt.num;i0++,aa++)
if (aa->used<2)
for (i1=i0+1,bb=&pnt[i1];i1<pnt.num;i1++,bb++)
if (bb->used<2)
if ((aa->p0!=i1)&&(aa->p1!=i1))
if ((bb->p0!=i0)&&(bb->p1!=i0))
{
if ((aa->used)&&(aa->p0==bb->p0)) continue; // avoid small losed loops
i=aa->i-bb->i; if (i<0) i=-i; e =i*i;
i=aa->j-bb->j; if (i<0) i=-i; e+=i*i;
if (e!=2) continue;
aa->used++; if (aa->p0<0) aa->p0=i1; else aa->p1=i1;
bb->used++; if (bb->p0<0) bb->p0=i0; else bb->p1=i0;
}
// try to connect to closest point
int ii,dd;
for (i0= 0,aa=&pnt[i0];i0<pnt.num;i0++,aa++)
if (aa->used<2)
{
for (ii=-1,i1=i0+1,bb=&pnt[i1];i1<pnt.num;i1++,bb++)
if (bb->used<2)
if ((aa->p0!=i1)&&(aa->p1!=i1))
if ((bb->p0!=i0)&&(bb->p1!=i0))
{
i=aa->i-bb->i; if (i<0) i=-i; e =i*i;
i=aa->j-bb->j; if (i<0) i=-i; e+=i*i;
if ((ii<0)||(e<dd)) { ii=i1; dd=e; }
}
if (ii<0) continue;
i1=ii; bb=&pnt[i1];
aa->used++; if (aa->p0<0) aa->p0=i1; else aa->p1=i1;
bb->used++; if (bb->p0<0) bb->p0=i0; else bb->p1=i0;
}
// add connected points to lin[] ... this is hole perimeter !!!
// lines are 2 x duplicated so some additional code for sort the order of line swill be good idea
l.id=lin[ix[j-1]].id;
// add index of points instead points
int lin_i1=lin.num;
for (i0=0,aa=&pnt[i0];i0<pnt.num;i0++,aa++)
{
l.i0=i0;
if (aa->p0>i0) { l.i1=aa->p0; lin.add(l); }
if (aa->p1>i0) { l.i1=aa->p1; lin.add(l); }
}
// reorder perimeter lines
for (i0=lin_i1,a=&lin[i0];i0<lin.num-1;i0++,a++)
for (i1=i0+1 ,b=&lin[i1];i1<lin.num ;i1++,b++)
{
if (a->i1==b->i0) { a++; l=*a; *a=*b; *b=l; a--; break; }
if (a->i1==b->i1) { a++; l=*a; *a=*b; *b=l; i=a->i0; a->i0=a->i1; a->i1=i; a--; break; }
}
// convert point indexes to points
for (i0=lin_i1,a=&lin[i0];i0<lin.num;i0++,a++)
{
bb=&pnt[a->i0]; a->i0=bb->i; a->j0=bb->j;
bb=&pnt[a->i1]; a->i1=bb->i; a->j1=bb->j;
}
}
}
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
it is the same as the code in holes link above
just the map[][] conditions inverted to search polygons instead of holes
and found HV lines are shrinked by half of cell from each side
_lin coordinates are float now so o need for 4x multisampling
the best results are with 2x multi-sampling (to avoid polygon width=1)
so each cell in your map add as 2x2 points in the cell area
I added also 2 corner points to better align map[][] and your image

Space utilization algorithm or Mesh creation algorithm

Hey we are facing a space utilization problem or I am not clear what name I should give to problem.
Basically its a mesh problem.
I have tried to explain my problem using an image.
Problem statement is somewhat like below.
The box with the diagonal line is an item which has to be distributed in best proportion such as it should fit in all available container.
Containers are shown in different colors.
Now all containers will be in rectangle shape.
All containers has to be placed either in portrait mode or in landscape mode.
Both containers and item can be measured in width and height, for program they are pixels basically.
Based on comments of fellow members,Spektre and Lasse V. Karlsen here are the clarification on the same
It's a 2D arrangement
Yes we can rearrange the containers to achieve the best possible pattern.
No part of item should be in blank space. Item has to be a part of any container.
Item can overlap the container, and height and width can be vary from container to container. And Item's height width can also vary, but shape will remain rectangle always.
Location of Item is preferable if it sticks to top-left.
Yes it is somewhat like bin packing algorithm, but only problem with that algorithm is , in Bin packing items are more and container is one, in our case item is one and containers are more. So basically its a distribution problem.
Idea is the problem actually that we have the size of the container and need to place the containers so that we can create that rectangle.
The program should give following output
Position of the container
Part of item the container has inside.
And Arrangement pattern.
here something unsophisticated unoptimal but easy as a start point
Based on mine comments
exploiting common container size 480px
Algorithm:
rotate all containers (bins) to get 480 height
sort bins by width after rotation descending
need ceil(1080/480)=3 lines of 480px bins
use the widest bins to fill all the lines but never crossing 1920px
they are sorted so use the first ones
all used ones mark as used
use only unused bins
arrange rest of the bins to lines (goes to the shortest line)
so take unused bins
determine which line is shortest
if the shortest line is already 1920px wide or more then stop
if not move the bin to that line and mark it as used
C++ source code (ugly static allocation but simple and no lib used):
//---------------------------------------------------------------------------
struct _rec { int x,y,xs,ys,_used; };
_rec bin[128],item; int bins=0;
//---------------------------------------------------------------------------
void bin_generate(int n) // generate problem
{
int i;
Randomize();
item.x=0;
item.y=0;
item.xs=1920;
item.ys=1080;
for (bins=0;bins<n;bins++)
{
bin[bins].x=0;
bin[bins].y=0;
i=Random(2);
if (i==0) { bin[bins].xs=320; bin[bins].ys=480; }
else if (i==1) { bin[bins].xs=480; bin[bins].ys=800; }
else i=i;
// if (i==2) { bin[bins].xs=1920; bin[bins].ys=1080; }
}
}
//---------------------------------------------------------------------------
void bin_solve() // try to solve problem
{
int i,e,n,x,y,x0[128],y0[128],common=480;
_rec *r,*s,t;
// rotate bins to ys=480
for (r=bin,i=0;i<bins;i++,r++) if (r->xs==common) { x=r->xs; r->xs=r->ys; r->ys=x; }
// sort bins by xs desc
for (e=1;e;) for (e=0,r=bin,s=r+1,i=1;i<bins;i++,r++,s++) if (r->xs<s->xs) { t=*r; *r=*s; *s=t; e=1; }
// prepare lines needed ... n is num of lines, _rest is one common side height line is needed to add
n=item.ys/common; if (item.ys%common) n++; item.x=0; item.y=0;
for (i=0;i<n;i++) { x0[i]=0; y0[i]=common*i; }
for (r=bin,i=0;i<bins;i++,r++) r->_used=0;
// arrange wide bins to lines
for (e=0;e<n;e++)
for (r=bin,i=0;i<bins;i++,r++)
if (!r->_used)
if (x0[e]+r->xs<=item.xs)
{
r->x=x0[e];
r->y=y0[e];
r->_used=1;
x0[e]+=r->xs;
if (x0[e]>=item.xs) break;
}
// arrange rest bins to lines (goes to the shortest line)
for (r=bin,i=0;i<bins;i++,r++)
if (!r->_used)
{
// find shortest line
for (e=0,x=0;x<n;x++) if (x0[e]>x0[x]) e=x;
// stop if shortest line is already wide enough
if (x0[e]>=item.xs) break;
// fit the bin in it
r->x=x0[e];
r->y=y0[e];
r->_used=1;
x0[e]+=r->xs;
}
// arrange the unused rest below
for (x=0,y=n*common+40,r=bin,i=0;i<bins;i++,r++) if (!r->_used) { r->x=x; r->y=y; x+=r->xs; }
}
//---------------------------------------------------------------------------
Usage:
bin_generate(7); // generate n random devices to bin[bins] array of rectangles
bin_solve(); // try to solve problem ... just rearrange the bin[bins] values
this is not optimal but with some tweaks could be enough
for example last 2 lines need 600px of height together so if you have devices at that size or closely larger you can use them to fill the 2 last lines as 1 line ...
if not then may be some graph or tree approach will be better (due to low container count)
[Edit1] universal sizes
when you have not guarantied fixed common container size then you have to compute it instead...
//---------------------------------------------------------------------------
struct _rec { int x,y,xs,ys,_used; _rec(){}; _rec(_rec& a){ *this=a; }; ~_rec(){}; _rec* operator = (const _rec *a) { *this=*a; return this; }; /*_rec* operator = (const _rec &a) { ...copy... return this; };*/ };
List<_rec> bin,bintype;
_rec item;
//---------------------------------------------------------------------------
void bin_generate(int n) // generate problem
{
int i;
_rec r;
Randomize();
// target resolution
item.x=0; item.xs=1920;
item.y=0; item.ys=1080;
// all used device sizes in portrait start orientation
bintype.num=0; r.x=0; r.y=0; r._used=0;
r.xs= 320; r.ys= 480; bintype.add(r);
r.xs= 480; r.ys= 800; bintype.add(r);
r.xs= 540; r.ys= 960; bintype.add(r);
// r.xs=1080; r.ys=1920; bintype.add(r);
// create test case
bin.num=0; for (i=0;i<n;i++) bin.add(bintype[Random(bintype.num)]);
}
//---------------------------------------------------------------------------
void bin_solve() // try to solve problem
{
int i,j,k,e,x,y;
_rec *r,s;
List<int> hsiz,hcnt; // histogram of sizes
List< List<int> > lin; // line of bins with common size
// compute histogram of sizes
hsiz.num=0; hcnt.num=0;
for (r=bin.dat,i=0;i<bin.num;i++,r++)
{
x=r->xs; for (j=0;j<hsiz.num;j++) if (x==hsiz[j]) { hcnt[j]++; j=-1; break; } if (j>=0) { hsiz.add(x); hcnt.add(1); }
x=r->ys; for (j=0;j<hsiz.num;j++) if (x==hsiz[j]) { hcnt[j]++; j=-1; break; } if (j>=0) { hsiz.add(x); hcnt.add(1); }
}
// sort histogram by cnt desc (most occurent sizes are first)
for (e=1;e;) for (e=0,j=0,i=1;i<hsiz.num;i++,j++) if (hcnt[j]<hcnt[i])
{
x=hsiz[i]; hsiz[i]=hsiz[j]; hsiz[j]=x;
x=hcnt[i]; hcnt[i]=hcnt[j]; hcnt[j]=x; e=1;
}
// create lin[][]; with ys as common size (separate/rotate bins with common sizes from histogram)
lin.num=0;
for (r=bin.dat,i=0;i<bin.num;i++,r++) r->_used=0;
for (i=0;i<hsiz.num;i++)
{
lin.add(); lin[i].num=0; x=hsiz[i];
for (r=bin.dat,j=0;j<bin.num;j++,r++)
{
if ((!r->_used)&&(x==r->xs)) { lin[i].add(j); r->_used=1; y=r->xs; r->xs=r->ys; r->ys=y; }
if ((!r->_used)&&(x==r->ys)) { lin[i].add(j); r->_used=1; }
}
}
for (i=0;i<lin.num;i++) if (!lin[i].num) { lin.del(i); i--; }
// sort lin[][] by xs desc (widest bins are first)
for (i=0;i<lin.num;i++)
for (e=1;e;) for (e=0,k=0,j=1;j<lin[i].num;j++,k++)
if (bin[lin[i][k]].xs<bin[lin[i][j]].xs)
{ s=bin[lin[i][j]]; bin[lin[i][j]]=bin[lin[i][k]]; bin[lin[i][k]]=s; e=1; }
// arrange lines to visually check previous code (debug) ... and also compute the total line length (width)
for (y=item.ys+600,i=0;i<lin.num;i++,y+=r->ys) for (x=0,j=0;j<lin[i].num;j++) { r=&bin[lin[i][j]]; r->x=x; r->y=y; x+=r->xs; }
for (i=0;i<lin.num;i++)
{
j=lin[i][lin[i].num-1]; // last bin in line
hsiz[i]=bin[j].x+bin[j].xs; // total width
hcnt[i]=bin[j].ys; // line height
}
// now compute solution
for (r=bin.dat,i=0;i<bin.num;i++,r++) r->_used=0; // reset usage first
for (y=0,k=1,i=0;i<lin.num;i++) // process lines with common size
while(hsiz[i]>=item.xs) // stop if line shorter then needed
{
x=0;
// arrange wide bins to line
for (j=0;j<lin[i].num;j++)
{
r=&bin[lin[i][j]];
if ((!r->_used)&&(x+r->xs<=item.xs))
{
r->x=x; hsiz[i]-=x; x+=r->xs;
r->y=y; r->_used=k;
if (x>=item.xs) break;
}
}
// arrange short bins to finish line
if (x<item.xs)
for (j=lin[i].num-1;j>=0;j--)
{
r=&bin[lin[i][j]];
if (!r->_used)
{
r->x=x; hsiz[i]-=x; x+=r->xs;
r->y=y; r->_used=k;
if (x>=item.xs) break;
}
}
// remove unfinished line
if (x<item.xs)
{
for (j=0;j<lin[i].num;j++)
{
r=&bin[lin[i][j]];
if (r->_used==k)
{
r->x=0; r->y=0;
r->_used=0;
hsiz[i]+=r->xs;
}
}
break;
}
// next line
y+=hcnt[i];
if (y>=item.ys) break; // solution found already?
}
// rotate unused rest to have ys>=as needed but as wide as can be to form last line
e=item.ys-y; x=0;
if (e>0) for (r=bin.dat,i=0;i<bin.num;i++,r++)
if (!r->_used)
{
if ((r->xs<e)&&(r->ys<e)) continue; // skip too small bins
if (r->xs<r->ys) { j=r->xs; r->xs=r->ys; r->ys=j; }
if (r->ys< e) { j=r->xs; r->xs=r->ys; r->ys=j; }
r->x=x; x+=r->xs;
r->y=y; r->_used=1;
}
}
//---------------------------------------------------------------------------
it is almost the same as before but prior to solution histogram of container sizes is computed
choose most occurent ones and form groups of compatible bins (containers)
then apply the algorithm ...
I added usage of dynamic array template List<> because on static allocation I would go mad before writing this ...
List<int> x; is the same as int x[];
x.num is the number of items inside x[]
x.add() adds new item to end of x[]
x.add(q) adds new item = q to end of x[]
x.del(i) deletes i-th item from x[] ... indexing is from zero
so rewrite to what ever you use instead ...
List< List<int> > y; is 2D array y[][] ...
at last form last line from unused bins ...
This is not robust nor safe but it mostly works (it need some tweaking but I am too lazy for that)
the solution depends also on the input set order so you can find more solutions for the same input set if you shuffle it a bit ... (if some common sizes has the same count)

What is an Efficient algorithm to find Area of Overlapping Rectangles

My situation
Input: a set of rectangles
each rect is comprised of 4 doubles like this: (x0,y0,x1,y1)
they are not "rotated" at any angle, all they are "normal" rectangles that go "up/down" and "left/right" with respect to the screen
they are randomly placed - they may be touching at the edges, overlapping , or not have any contact
I will have several hundred rectangles
this is implemented in C#
I need to find
The area that is formed by their overlap - all the area in the canvas that more than one rectangle "covers" (for example with two rectangles, it would be the intersection)
I don't need the geometry of the overlap - just the area (example: 4 sq inches)
Overlaps shouldn't be counted multiple times - so for example imagine 3 rects that have the same size and position - they are right on top of each other - this area should be counted once (not three times)
Example
The image below contains thre rectangles: A,B,C
A and B overlap (as indicated by dashes)
B and C overlap (as indicated by dashes)
What I am looking for is the area where the dashes are shown
-
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA--------------BBB
AAAAAAAAAAAAAAAA--------------BBB
AAAAAAAAAAAAAAAA--------------BBB
AAAAAAAAAAAAAAAA--------------BBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBB-----------CCCCCCCC
BBBBBB-----------CCCCCCCC
BBBBBB-----------CCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
An efficient way of computing this area is to use a sweep algorithm. Let us assume that we sweep a vertical line L(x) through the union of rectangles U:
first of all, you need to build an event queue Q, which is, in this case, the ordered list of all x-coordinates (left and right) of the rectangles.
during the sweep, you should maintain a 1D datastructure, which should give you the total length of the intersection of L(x) and U. The important thing is that this length is constant between two consecutive events q and q' of Q. So, if l(q) denotes the total length of L(q+) (i.e. L just on the rightside of q) intersected with U, the area swept by L between events q and q' is exactly l(q)*(q' - q).
you just have to sum up all these swept areas to get the total one.
We still have to solve the 1D problem. You want a 1D structure, which computes dynamically a union of (vertical) segments. By dynamically, I mean that you sometimes add a new segment, and sometimes remove one.
I already detailed in my answer to this collapsing ranges question how to do it in a static way (which is in fact a 1D sweep). So if you want something simple, you can directly apply that (by recomputing the union for each event). If you want something more efficient, you just need to adapt it a bit:
assuming that you know the union of segments S1...Sn consists of disjoints segments D1...Dk. Adding Sn+1 is very easy, you just have to locate both ends of Sn+1 amongs the ends of D1...Dk.
assuming that you know the union of segments S1...Sn consists of disjoints segments D1...Dk, removing segment Si (assuming that Si was included in Dj) means recomputing the union of segments that Dj consisted of, except Si (using the static algorithm).
This is your dynamic algorithm. Assuming that you will use sorted sets with log-time location queries to represent D1...Dk, this is probably the most efficient non-specialized method you can get.
One way-out approach is to plot it to a canvas! Draw each rectangle using a semi-transparent colour. The .NET runtime will be doing the drawing in optimised, native code - or even using a hardware accelerator.
Then, you have to read-back the pixels. Is each pixel the background colour, the rectangle colour, or another colour? The only way it can be another colour is if two or more rectangles overlapped...
If this is too much of a cheat, I'd recommend the quad-tree as another answerer did, or the r-tree.
The simplest solution
import numpy as np
A = np.zeros((100, 100))
B = np.zeros((100, 100))
A[rect1.top : rect1.bottom, rect1.left : rect1.right] = 1
B[rect2.top : rect2.bottom, rect2.left : rect2.right] = 1
area_of_union = np.sum((A + B) > 0)
area_of_intersect = np.sum((A + B) > 1)
In this example, we create two zero-matrices that are the size of the canvas. For each rectangle, fill one of these matrices with ones where the rectangle takes up space. Then sum the matrices. Now sum(A+B > 0) is the area of the union, and sum(A+B > 1) is the area of the overlap. This example can easily generalize to multiple rectangles.
This is some quick and dirty code that I used in the TopCoder SRM 160 Div 2.
t = top
b = botttom
l = left
r = right
public class Rect
{
public int t, b, l, r;
public Rect(int _l, int _b, int _r, int _t)
{
t = _t;
b = _b;
l = _l;
r = _r;
}
public bool Intersects(Rect R)
{
return !(l > R.r || R.l > r || R.b > t || b > R.t);
}
public Rect Intersection(Rect R)
{
if(!this.Intersects(R))
return new Rect(0,0,0,0);
int [] horiz = {l, r, R.l, R.r};
Array.Sort(horiz);
int [] vert = {b, t, R.b, R.t};
Array.Sort(vert);
return new Rect(horiz[1], vert[1], horiz[2], vert[2]);
}
public int Area()
{
return (t - b)*(r-l);
}
public override string ToString()
{
return l + " " + b + " " + r + " " + t;
}
}
Here's something that off the top of my head sounds like it might work:
Create a dictionary with a double key, and a list of rectangle+boolean values, like this:
Dictionary< Double, List< KeyValuePair< Rectangle, Boolean>>> rectangles;
For each rectangle in your set, find the corresponding list for the x0 and the x1 values, and add the rectangle to that list, with a boolean value of true for x0, and false for x1. This way you now have a complete list of all the x-coordinates that each rectangle either enters (true) or leaves (false) the x-direction
Grab all the keys from that dictionary (all the distinct x-coordinates), sort them, and loop through them in order, make sure you can get at both the current x-value, and the next one as well (you need them both). This gives you individual strips of rectangles
Maintain a set of rectangles you're currently looking at, which starts out empty. For each x-value you iterate over in point 3, if the rectangle is registered with a true value, add it to the set, otherwise remove it.
For a strip, sort the rectangles by their y-coordinate
Loop through the rectangles in the strip, counting overlapping distances (unclear to me as of yet how to do this efficiently)
Calculate width of strip times height of overlapping distances to get areas
Example, 5 rectangles, draw on top of each other, from a to e:
aaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb
aaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb
aaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb
aaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb
aaaaaaaadddddddddddddddddddddddddddddbbbbbb
aaaaaaaadddddddddddddddddddddddddddddbbbbbb
ddddddddddddddddddddddddddddd
ddddddddddddddddddddddddddddd
ddddddddddddddeeeeeeeeeeeeeeeeee
ddddddddddddddeeeeeeeeeeeeeeeeee
ddddddddddddddeeeeeeeeeeeeeeeeee
ccccccccddddddddddddddeeeeeeeeeeeeeeeeee
ccccccccddddddddddddddeeeeeeeeeeeeeeeeee
cccccccccccc eeeeeeeeeeeeeeeeee
cccccccccccc eeeeeeeeeeeeeeeeee
cccccccccccc
cccccccccccc
Here's the list of x-coordinates:
v v v v v v v v v
|aaaaaaa|aa|aaaa | bbbbbbbbbb|bb|bbb
|aaaaaaa|aa|aaaa | bbbbbbbbbb|bb|bbb
|aaaaaaa|aa|aaaa | bbbbbbbbbb|bb|bbb
|aaaaaaa|aa|aaaa | bbbbbbbbbb|bb|bbb
|aaaaaaaddd|dddddddddd|ddddddddddddddbb|bbb
|aaaaaaaddd|dddddddddd|ddddddddddddddbb|bbb
| ddd|dddddddddd|dddddddddddddd |
| ddd|dddddddddd|dddddddddddddd |
| ddd|ddddddddddeeeeeeeeeeeeeeeeee
| ddd|ddddddddddeeeeeeeeeeeeeeeeee
| ddd|ddddddddddeeeeeeeeeeeeeeeeee
ccccccccddd|ddddddddddeeeeeeeeeeeeeeeeee
ccccccccddd|ddddddddddeeeeeeeeeeeeeeeeee
cccccccccccc eeeeeeeeeeeeeeeeee
cccccccccccc eeeeeeeeeeeeeeeeee
cccccccccccc
cccccccccccc
The list would be (where each v is simply given a coordinate starting at 0 and going up):
0: +a, +c
1: +d
2: -c
3: -a
4: +e
5: +b
6: -d
7: -e
8: -b
Each strip would thus be (rectangles sorted from top to bottom):
0-1: a, c
1-2: a, d, c
2-3: a, d
3-4: d
4-5: d, e
5-6: b, d, e
6-7: b, e
7-8: b
for each strip, the overlap would be:
0-1: none
1-2: a/d, d/c
2-3: a/d
3-4: none
4-5: d/e
5-6: b/d, d/e
6-7: none
7-8: none
I'd imagine that a variation of the sort + enter/leave algorithm for the top-bottom check would be doable as well:
sort the rectangles we're currently analyzing in the strip, top to bottom, for rectangles with the same top-coordinate, sort them by bottom coordinate as well
iterate through the y-coordinates, and when you enter a rectangle, add it to the set, when you leave a rectangle, remove it from the set
whenever the set has more than one rectangle, you have overlap (and if you make sure to add/remove all rectangles that have the same top/bottom coordinate you're currently looking at, multiple overlapping rectangles would not be a problem
For the 1-2 strip above, you would iterate like this:
0. empty set, zero sum
1. enter a, add a to set (1 rectangle in set)
2. enter d, add d to set (>1 rectangles in set = overlap, store this y-coordinate)
3. leave a, remove a from set (now back from >1 rectangles in set, add to sum: y - stored_y
4. enter c, add c to set (>1 rectangles in set = overlap, store this y-coordinate)
5. leave d, remove d from set (now back from >1 rectangles in set, add to sum: y - stored_y)
6. multiply sum with width of strip to get overlapping areas
You would not actually have to maintain an actual set here either, just the count of the rectangles you're inside, whenever this goes from 1 to 2, store the y, and whenever it goes from 2 down to 1, calculate current y - stored y, and sum this difference.
Hope this was understandable, and as I said, this is off the top of my head, not tested in any way.
Using the example:
1 2 3 4 5 6
1 +---+---+
| |
2 + A +---+---+
| | B |
3 + + +---+---+
| | | | |
4 +---+---+---+---+ +
| |
5 + C +
| |
6 +---+---+
1) collect all the x coordinates (both left and right) into a list, then sort it and remove duplicates
1 3 4 5 6
2) collect all the y coordinates (both top and bottom) into a list, then sort it and remove duplicates
1 2 3 4 6
3) create a 2D array by number of gaps between the unique x coordinates * number of gaps between the unique y coordinates.
4 * 4
4) paint all the rectangles into this grid, incrementing the count of each cell it occurs over:
1 3 4 5 6
1 +---+
| 1 | 0 0 0
2 +---+---+---+
| 1 | 1 | 1 | 0
3 +---+---+---+---+
| 1 | 1 | 2 | 1 |
4 +---+---+---+---+
0 0 | 1 | 1 |
6 +---+---+
5) the sum total of the areas of the cells in the grid that have a count greater than one is the area of overlap. For better efficiency in sparse use-cases, you can actually keep a running total of the area as you paint the rectangles, each time you move a cell from 1 to 2.
In the question, the rectangles are described as being four doubles. Doubles typically contain rounding errors, and error might creep into your computed area of overlap. If the legal coordinates are at finite points, consider using an integer representation.
PS using the hardware accelerator as in my other answer is not such a shabby idea, if the resolution is acceptable. Its also easy to implement in a lot less code than the approach I outline above. Horses for courses.
Here's the code I wrote for the area sweep algorithm:
#include <iostream>
#include <vector>
using namespace std;
class Rectangle {
public:
int x[2], y[2];
Rectangle(int x1, int y1, int x2, int y2) {
x[0] = x1;
y[0] = y1;
x[1] = x2;
y[1] = y2;
};
void print(void) {
cout << "Rect: " << x[0] << " " << y[0] << " " << x[1] << " " << y[1] << " " <<endl;
};
};
// return the iterator of rec in list
vector<Rectangle *>::iterator bin_search(vector<Rectangle *> &list, int begin, int end, Rectangle *rec) {
cout << begin << " " <<end <<endl;
int mid = (begin+end)/2;
if (list[mid]->y[0] == rec->y[0]) {
if (list[mid]->y[1] == rec->y[1])
return list.begin() + mid;
else if (list[mid]->y[1] < rec->y[1]) {
if (mid == end)
return list.begin() + mid+1;
return bin_search(list,mid+1,mid,rec);
}
else {
if (mid == begin)
return list.begin()+mid;
return bin_search(list,begin,mid-1,rec);
}
}
else if (list[mid]->y[0] < rec->y[0]) {
if (mid == end) {
return list.begin() + mid+1;
}
return bin_search(list, mid+1, end, rec);
}
else {
if (mid == begin) {
return list.begin() + mid;
}
return bin_search(list, begin, mid-1, rec);
}
}
// add rect to rects
void add_rec(Rectangle *rect, vector<Rectangle *> &rects) {
if (rects.size() == 0) {
rects.push_back(rect);
}
else {
vector<Rectangle *>::iterator it = bin_search(rects, 0, rects.size()-1, rect);
rects.insert(it, rect);
}
}
// remove rec from rets
void remove_rec(Rectangle *rect, vector<Rectangle *> &rects) {
vector<Rectangle *>::iterator it = bin_search(rects, 0, rects.size()-1, rect);
rects.erase(it);
}
// calculate the total vertical length covered by rectangles in the active set
int vert_dist(vector<Rectangle *> as) {
int n = as.size();
int totallength = 0;
int start, end;
int i = 0;
while (i < n) {
start = as[i]->y[0];
end = as[i]->y[1];
while (i < n && as[i]->y[0] <= end) {
if (as[i]->y[1] > end) {
end = as[i]->y[1];
}
i++;
}
totallength += end-start;
}
return totallength;
}
bool mycomp1(Rectangle* a, Rectangle* b) {
return (a->x[0] < b->x[0]);
}
bool mycomp2(Rectangle* a, Rectangle* b) {
return (a->x[1] < b->x[1]);
}
int findarea(vector<Rectangle *> rects) {
vector<Rectangle *> start = rects;
vector<Rectangle *> end = rects;
sort(start.begin(), start.end(), mycomp1);
sort(end.begin(), end.end(), mycomp2);
// active set
vector<Rectangle *> as;
int n = rects.size();
int totalarea = 0;
int current = start[0]->x[0];
int next;
int i = 0, j = 0;
// big loop
while (j < n) {
cout << "loop---------------"<<endl;
// add all recs that start at current
while (i < n && start[i]->x[0] == current) {
cout << "add" <<endl;
// add start[i] to AS
add_rec(start[i], as);
cout << "after" <<endl;
i++;
}
// remove all recs that end at current
while (j < n && end[j]->x[1] == current) {
cout << "remove" <<endl;
// remove end[j] from AS
remove_rec(end[j], as);
cout << "after" <<endl;
j++;
}
// find next event x
if (i < n && j < n) {
if (start[i]->x[0] <= end[j]->x[1]) {
next = start[i]->x[0];
}
else {
next = end[j]->x[1];
}
}
else if (j < n) {
next = end[j]->x[1];
}
// distance to next event
int horiz = next - current;
cout << "horiz: " << horiz <<endl;
// figure out vertical dist
int vert = vert_dist(as);
cout << "vert: " << vert <<endl;
totalarea += vert * horiz;
current = next;
}
return totalarea;
}
int main() {
vector<Rectangle *> rects;
rects.push_back(new Rectangle(0,0,1,1));
rects.push_back(new Rectangle(1,0,2,3));
rects.push_back(new Rectangle(0,0,3,3));
rects.push_back(new Rectangle(1,0,5,1));
cout << findarea(rects) <<endl;
}
You can simplify this problem quite a bit if you split each rectangle into smaller rectangles. Collect all of the X and Y coordinates of all the rectangles, and these become your split points - if a rectangle crosses the line, split it in two. When you're done, you have a list of rectangles that overlap either 0% or 100%, if you sort them it should be easy to find the identical ones.
There is a solution listed at the link http://codercareer.blogspot.com/2011/12/no-27-area-of-rectangles.html for finding the total area of multiple rectangles such that the overlapped area is counted only once.
The above solution can be extended to compute only the overlapped area(and that too only once even if the overlapped area is covered by multiple rectangles) with horizontal sweep lines for every pair of consecutive vertical sweep lines.
If aim is just to find out the total area covered by the all the rectangles, then horizontal sweep lines are not needed and just a merge of all the rectangles between two vertical sweep lines would give the area.
On the other hand, if you want to compute the overlapped area only, the horizontal sweep lines are needed to find out how many rectangles are overlapping in between vertical (y1, y2) sweep lines.
Here is the working code for the solution I implemented in Java.
import java.io.*;
import java.util.*;
class Solution {
static class Rectangle{
int x;
int y;
int dx;
int dy;
Rectangle(int x, int y, int dx, int dy){
this.x = x;
this.y = y;
this.dx = dx;
this.dy = dy;
}
Range getBottomLeft(){
return new Range(x, y);
}
Range getTopRight(){
return new Range(x + dx, y + dy);
}
#Override
public int hashCode(){
return (x+y+dx+dy)/4;
}
#Override
public boolean equals(Object other){
Rectangle o = (Rectangle) other;
return o.x == this.x && o.y == this.y && o.dx == this.dx && o.dy == this.dy;
}
#Override
public String toString(){
return String.format("X = %d, Y = %d, dx : %d, dy : %d", x, y, dx, dy);
}
}
static class RW{
Rectangle r;
boolean start;
RW (Rectangle r, boolean start){
this.r = r;
this.start = start;
}
#Override
public int hashCode(){
return r.hashCode() + (start ? 1 : 0);
}
#Override
public boolean equals(Object other){
RW o = (RW)other;
return o.start == this.start && o.r.equals(this.r);
}
#Override
public String toString(){
return "Rectangle : " + r.toString() + ", start = " + this.start;
}
}
static class Range{
int l;
int u;
public Range(int l, int u){
this.l = l;
this.u = u;
}
#Override
public int hashCode(){
return (l+u)/2;
}
#Override
public boolean equals(Object other){
Range o = (Range) other;
return o.l == this.l && o.u == this.u;
}
#Override
public String toString(){
return String.format("L = %d, U = %d", l, u);
}
}
static class XComp implements Comparator<RW>{
#Override
public int compare(RW rw1, RW rw2){
//TODO : revisit these values.
Integer x1 = -1;
Integer x2 = -1;
if(rw1.start){
x1 = rw1.r.x;
}else{
x1 = rw1.r.x + rw1.r.dx;
}
if(rw2.start){
x2 = rw2.r.x;
}else{
x2 = rw2.r.x + rw2.r.dx;
}
return x1.compareTo(x2);
}
}
static class YComp implements Comparator<RW>{
#Override
public int compare(RW rw1, RW rw2){
//TODO : revisit these values.
Integer y1 = -1;
Integer y2 = -1;
if(rw1.start){
y1 = rw1.r.y;
}else{
y1 = rw1.r.y + rw1.r.dy;
}
if(rw2.start){
y2 = rw2.r.y;
}else{
y2 = rw2.r.y + rw2.r.dy;
}
return y1.compareTo(y2);
}
}
public static void main(String []args){
Rectangle [] rects = new Rectangle[4];
rects[0] = new Rectangle(10, 10, 10, 10);
rects[1] = new Rectangle(15, 10, 10, 10);
rects[2] = new Rectangle(20, 10, 10, 10);
rects[3] = new Rectangle(25, 10, 10, 10);
int totalArea = getArea(rects, false);
System.out.println("Total Area : " + totalArea);
int overlapArea = getArea(rects, true);
System.out.println("Overlap Area : " + overlapArea);
}
static int getArea(Rectangle []rects, boolean overlapOrTotal){
printArr(rects);
// step 1: create two wrappers for every rectangle
RW []rws = getWrappers(rects);
printArr(rws);
// steps 2 : sort rectangles by their x-coordinates
Arrays.sort(rws, new XComp());
printArr(rws);
// step 3 : group the rectangles in every range.
Map<Range, List<Rectangle>> rangeGroups = groupRects(rws, true);
for(Range xrange : rangeGroups.keySet()){
List<Rectangle> xRangeRects = rangeGroups.get(xrange);
System.out.println("Range : " + xrange);
System.out.println("Rectangles : ");
for(Rectangle rectx : xRangeRects){
System.out.println("\t" + rectx);
}
}
// step 4 : iterate through each of the pairs and their rectangles
int sum = 0;
for(Range range : rangeGroups.keySet()){
List<Rectangle> rangeRects = rangeGroups.get(range);
sum += getOverlapOrTotalArea(rangeRects, range, overlapOrTotal);
}
return sum;
}
static Map<Range, List<Rectangle>> groupRects(RW []rws, boolean isX){
//group the rws with either x or y coordinates.
Map<Range, List<Rectangle>> rangeGroups = new HashMap<Range, List<Rectangle>>();
List<Rectangle> rangeRects = new ArrayList<Rectangle>();
int i=0;
int prev = Integer.MAX_VALUE;
while(i < rws.length){
int curr = isX ? (rws[i].start ? rws[i].r.x : rws[i].r.x + rws[i].r.dx): (rws[i].start ? rws[i].r.y : rws[i].r.y + rws[i].r.dy);
if(prev < curr){
Range nRange = new Range(prev, curr);
rangeGroups.put(nRange, rangeRects);
rangeRects = new ArrayList<Rectangle>(rangeRects);
}
prev = curr;
if(rws[i].start){
rangeRects.add(rws[i].r);
}else{
rangeRects.remove(rws[i].r);
}
i++;
}
return rangeGroups;
}
static int getOverlapOrTotalArea(List<Rectangle> rangeRects, Range range, boolean isOverlap){
//create horizontal sweep lines similar to vertical ones created above
// Step 1 : create wrappers again
RW []rws = getWrappers(rangeRects);
// steps 2 : sort rectangles by their y-coordinates
Arrays.sort(rws, new YComp());
// step 3 : group the rectangles in every range.
Map<Range, List<Rectangle>> yRangeGroups = groupRects(rws, false);
//step 4 : for every range if there are more than one rectangles then computer their area only once.
int sum = 0;
for(Range yRange : yRangeGroups.keySet()){
List<Rectangle> yRangeRects = yRangeGroups.get(yRange);
if(isOverlap){
if(yRangeRects.size() > 1){
sum += getArea(range, yRange);
}
}else{
if(yRangeRects.size() > 0){
sum += getArea(range, yRange);
}
}
}
return sum;
}
static int getArea(Range r1, Range r2){
return (r2.u-r2.l)*(r1.u-r1.l);
}
static RW[] getWrappers(Rectangle []rects){
RW[] wrappers = new RW[rects.length * 2];
for(int i=0,j=0;i<rects.length;i++, j+=2){
wrappers[j] = new RW(rects[i], true);
wrappers[j+1] = new RW(rects[i], false);
}
return wrappers;
}
static RW[] getWrappers(List<Rectangle> rects){
RW[] wrappers = new RW[rects.size() * 2];
for(int i=0,j=0;i<rects.size();i++, j+=2){
wrappers[j] = new RW(rects.get(i), true);
wrappers[j+1] = new RW(rects.get(i), false);
}
return wrappers;
}
static void printArr(Object []a){
for(int i=0; i < a.length;i++){
System.out.println(a[i]);
}
System.out.println();
}
The following answer should give the total Area only once.
it comes previous answers, but implemented now in C#.
It works also with floats (or double, if you need[it doesn't itterate over the VALUES).
Credits:
http://codercareer.blogspot.co.il/2011/12/no-27-area-of-rectangles.html
EDIT:
The OP asked for the overlapping area - thats obviously very simple:
var totArea = rects.Sum(x => x.Width * x.Height);
and then the answer is:
var overlappingArea =totArea-GetArea(rects)
Here is the code:
#region rectangle overlapping
/// <summary>
/// see algorithm for detecting overlapping areas here: https://stackoverflow.com/a/245245/3225391
/// or easier here:
/// http://codercareer.blogspot.co.il/2011/12/no-27-area-of-rectangles.html
/// </summary>
/// <param name="dim"></param>
/// <returns></returns>
public static float GetArea(RectangleF[] rects)
{
List<float> xs = new List<float>();
foreach (var item in rects)
{
xs.Add(item.X);
xs.Add(item.Right);
}
xs = xs.OrderBy(x => x).Cast<float>().ToList();
rects = rects.OrderBy(rec => rec.X).Cast<RectangleF>().ToArray();
float area = 0f;
for (int i = 0; i < xs.Count - 1; i++)
{
if (xs[i] == xs[i + 1])//not duplicate
continue;
int j = 0;
while (rects[j].Right < xs[i])
j++;
List<Range> rangesOfY = new List<Range>();
var rangeX = new Range(xs[i], xs[i + 1]);
GetRangesOfY(rects, j, rangeX, out rangesOfY);
area += GetRectArea(rangeX, rangesOfY);
}
return area;
}
private static void GetRangesOfY(RectangleF[] rects, int rectIdx, Range rangeX, out List<Range> rangesOfY)
{
rangesOfY = new List<Range>();
for (int j = rectIdx; j < rects.Length; j++)
{
if (rangeX.less < rects[j].Right && rangeX.greater > rects[j].Left)
{
rangesOfY = Range.AddRange(rangesOfY, new Range(rects[j].Top, rects[j].Bottom));
#if DEBUG
Range rectXRange = new Range(rects[j].Left, rects[j].Right);
#endif
}
}
}
static float GetRectArea(Range rangeX, List<Range> rangesOfY)
{
float width = rangeX.greater - rangeX.less,
area = 0;
foreach (var item in rangesOfY)
{
float height = item.greater - item.less;
area += width * height;
}
return area;
}
internal class Range
{
internal static List<Range> AddRange(List<Range> lst, Range rng2add)
{
if (lst.isNullOrEmpty())
{
return new List<Range>() { rng2add };
}
for (int i = lst.Count - 1; i >= 0; i--)
{
var item = lst[i];
if (item.IsOverlapping(rng2add))
{
rng2add.Merge(item);
lst.Remove(item);
}
}
lst.Add(rng2add);
return lst;
}
internal float greater, less;
public override string ToString()
{
return $"ln{less} gtn{greater}";
}
internal Range(float less, float greater)
{
this.less = less;
this.greater = greater;
}
private void Merge(Range rng2add)
{
this.less = Math.Min(rng2add.less, this.less);
this.greater = Math.Max(rng2add.greater, this.greater);
}
private bool IsOverlapping(Range rng2add)
{
return !(less > rng2add.greater || rng2add.less > greater);
//return
// this.greater < rng2add.greater && this.greater > rng2add.less
// || this.less > rng2add.less && this.less < rng2add.greater
// || rng2add.greater < this.greater && rng2add.greater > this.less
// || rng2add.less > this.less && rng2add.less < this.greater;
}
}
#endregion rectangle overlapping
If your rectangles are going to be sparse (mostly not intersecting) then it might be worth a look at recursive dimensional clustering. Otherwise a quad-tree seems to be the way to go (as has been mentioned by other posters.
This is a common problem in collision detection in computer games, so there is no shortage of resources suggesting ways to solve it.
Here is a nice blog post summarizing RCD.
Here is a Dr.Dobbs article summarizing various collision detection algorithms, which would be suitable.
This type of collision detection is often called AABB (Axis Aligned Bounding Boxes), that's a good starting point for a google search.
You can find the overlap on the x and on the y axis and multiply those.
int LineOverlap(int line1a, line1b, line2a, line2b)
{
// assume line1a <= line1b and line2a <= line2b
if (line1a < line2a)
{
if (line1b > line2b)
return line2b-line2a;
else if (line1b > line2a)
return line1b-line2a;
else
return 0;
}
else if (line2a < line1b)
return line2b-line1a;
else
return 0;
}
int RectangleOverlap(Rect rectA, rectB)
{
return LineOverlap(rectA.x1, rectA.x2, rectB.x1, rectB.x2) *
LineOverlap(rectA.y1, rectA.y2, rectB.y1, rectB.y2);
}
I found a different solution than the sweep algorithm.
Since your rectangles are all rectangular placed, the horizontal and vertical lines of the rectangles will form a rectangular irregular grid. You can 'paint' the rectangles on this grid; which means, you can determine which fields of the grid will be filled out. Since the grid lines are formed from the boundaries of the given rectangles, a field in this grid will always either completely empty or completely filled by an rectangle.
I had to solve the problem in Java, so here's my solution: http://pastebin.com/03mss8yf
This function calculates of the complete area occupied by the rectangles. If you are interested only in the 'overlapping' part, you must extend the code block between lines 70 and 72. Maybe you can use a second set to store which grid fields are used more than once. Your code between line 70 and 72 should be replaced with a block like:
GridLocation gl = new GridLocation(curX, curY);
if(usedLocations.contains(gl) && usedLocations2.add(gl)) {
ret += width*height;
} else {
usedLocations.add(gl);
}
The variable usedLocations2 here is of the same type as usedLocations; it will be constructed
at the same point.
I'm not really familiar with complexity calculations; so I don't know which of the two solutions (sweep or my grid solution) will perform/scale better.
Considering we have two rectangles (A and B) and we have their bottom left (x1,y1) and top right (x2,y2) coordination. The Using following piece of code you can calculate the overlapped area in C++.
#include <iostream>
using namespace std;
int rectoverlap (int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2)
{
int width, heigh, area;
if (ax2<bx1 || ay2<by1 || ax1>bx2 || ay1>by2) {
cout << "Rectangles are not overlapped" << endl;
return 0;
}
if (ax2>=bx2 && bx1>=ax1){
width=bx2-bx1;
heigh=by2-by1;
} else if (bx2>=ax2 && ax1>=bx1) {
width=ax2-ax1;
heigh=ay2-ay1;
} else {
if (ax2>bx2){
width=bx2-ax1;
} else {
width=ax2-bx1;
}
if (ay2>by2){
heigh=by2-ay1;
} else {
heigh=ay2-by1;
}
}
area= heigh*width;
return (area);
}
int main()
{
int ax1,ay1,ax2,ay2,bx1,by1,bx2,by2;
cout << "Inter the x value for bottom left for rectangle A" << endl;
cin >> ax1;
cout << "Inter the y value for bottom left for rectangle A" << endl;
cin >> ay1;
cout << "Inter the x value for top right for rectangle A" << endl;
cin >> ax2;
cout << "Inter the y value for top right for rectangle A" << endl;
cin >> ay2;
cout << "Inter the x value for bottom left for rectangle B" << endl;
cin >> bx1;
cout << "Inter the y value for bottom left for rectangle B" << endl;
cin >> by1;
cout << "Inter the x value for top right for rectangle B" << endl;
cin >> bx2;
cout << "Inter the y value for top right for rectangle B" << endl;
cin >> by2;
cout << "The overlapped area is " << rectoverlap (ax1, ay1, ax2, ay2, bx1, by1, bx2, by2) << endl;
}
The post by user3048546 contains an error in the logic on lines 12-17. Here is a working implementation:
int rectoverlap (int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2)
{
int width, height, area;
if (ax2<bx1 || ay2<by1 || ax1>bx2 || ay1>by2) {
cout << "Rectangles are not overlapped" << endl;
return 0;
}
if (ax2>=bx2 && bx1>=ax1){
width=bx2-bx1;
} else if (bx2>=ax2 && ax1>=bx1) {
width=ax2-ax1;
} else if (ax2>bx2) {
width=bx2-ax1;
} else {
width=ax2-bx1;
}
if (ay2>=by2 && by1>=ay1){
height=by2-by1;
} else if (by2>=ay2 && ay1>=by1) {
height=ay2-ay1;
} else if (ay2>by2) {
height=by2-ay1;
} else {
height=ay2-by1;
}
area = heigh*width;
return (area);
}

Resources