Numerical instability? - algorithm

I am working in a program that concerns the optimization of some objective function obj over the scalar beta. The true global minimum beta0 is set at beta0=1.
In the mwe below you can see that obj is constructed as the sum of the 100-R (here I use R=3) smallest eigenvalues of the 100x100 symmetric matrix u'*u. While around the true global minimum obj "looks good" when I plot the objective function evaluated at much larger values of beta the objective function becomes very unstable (here or running the mwe you can see that multiple local minima (and maxima) appear, associated with values of obj(beta) smaller than the true global minimum).
My guess is that there is some sort of "numerical instability" going on, but I am unable to find the source.
%Matrix dimensions
N=100;
T=100;
%Reproducibility
rng('default');
%True global minimum
beta0=1;
%Generating data
l=1+randn(N,2);
s=randn(T+1,2);
la=1+randn(N,2);
X(1,:,:)=1+(3*l+la)*(3*s(1:T,:)+s(2:T+1,:))';
s=s(1:T,:);
a=(randn(N,T));
Y=beta0*squeeze(X(1,:,:))+l*s'+a;
%Give "beta" a large value
beta=1e6;
%Compute objective function
u=Y-beta*squeeze(X(1,:,:));
ev=sort(eig(u'*u)); % sort eigenvalues
obj=sum(ev(1:100-3))/(N*T); % "obj" is sum of 97 smallest eigenvalues
This evaluates the objective function at obj(beta=1e6). I have noticed that some of the eigenvalues from eig(u'*u) are negative (see object ev), when by construction the matrix u'*u is positive semidefinite
I am guessing this may have to do with floating point arithmetic issues and may (partly) be the answer to the instability of my function, but I am not sure.
Finally, this is what the objective function obj evaluated at a wide range of values for betalooks like:
% Now plot "obj" for a wide range of values of "beta"
clear obj
betaGrid=-5e5:100:5e5;
for i=1:length(betaGrid)
u=Y-betaGrid(i)*squeeze(X(1,:,:));
ev=sort(eig(u'*u));
obj(i)=sum(ev(1:100-3))/(N*T);
end
plot(betaGrid,obj,"*")
xlabel('\beta')
ylabel('obj')
This gives this figure, which shows how unstable it becomes for extreme values for beta.

The key here is noticing that computing eigenvalues can be a hard problem.
Actually the condition number for this problem is K = norm(A) * norm(inv(A)) (don't compute it this way, use cond(). This means the the an (relative) perturbation in the inpute (i.e. the matrix entries) gets amplified by the condition number when computing the output. I modified your code a little bit to compute and plot the condition number in each step. It turns out that for a large part of the range you are interested in it is greater than 10^17, which is abysmal. (Note that the double floating point numbers are accurate to not quite 16 significant (decimal) digits. This means even the representation error of double floating point numbers will here produce errors that make every digit "insignificant".) This already explains the bad behaviour. You should note that usually we can compute the largest eigenvalues quite accurately, the errors in the smaller (in magnitude) ones usually increase.
If the condition number was better (closer to 1) I would have suggested
computing the singular values, as they happen to be the eigenvalues (due to the symmetry). The svd is numerically more stable, but with this really bad
condition even this will not help. In the following modification of the
final snippet I added a graph that plots the condition number.
The only case where anything is salvageable is for R=0, then we actually
want to compute the sum of all eigenvalues, which happens to be the
trace of our matrix, which can easily be computed by just summing the
diagonal entries.
To summarize: This problem seems to have an inherent bad condition, so it doesn't really matter how you compute it. If you have a completely different formulation for the same problem that might help.
% Now plot "obj" for a wide range of values of "beta"
clear obj
L = 5e5; % decrease to 5e-1 to see that the condition number is still >1e9 around the optimum
betaGrid=linspace(-L,L,1000);
condition = nan(size(betaGrid));
for i=1:length(betaGrid)
disp(i/length(betaGrid))
u=Y-betaGrid(i)*squeeze(X(1,:,:));
A = u'*u;
ev=sort(eig(A));
condition(i) = cond(A);
obj(i)=sum(ev(1:100-3))/(N*t); % for R=0 use trace(A)/(N*T);
end
subplot(1,2,1);
plot(betaGrid,obj,"*")
xlabel('\beta')
ylabel('obj')
subplot(1,2,2);
semilogy(betaGrid, condition);
title('condition number');

Related

Showing two images with the same colorbar in log

I have two sparse matrices "Matrix1" and "Matrix2" of the same size p x n.
By sparse matrix I mean that it contains a lot of exactly zero elements.
I want to show the two matrices under the same colormap and a unique colorbar. Doing this in MATLAB is straightforward:
bottom = min(min(min(Matrix1)),min(min(Matrix2)));
top = max(max(max(Matrix1)),max(max(Matrix2)));
subplot(1,2,1)
imagesc(Matrix1)
colormap(gray)
caxis manual
caxis([bottom top]);
subplot(1,2,2)
imagesc(Matrix2)
colormap(gray)
caxis manual
caxis([bottom top]);
colorbar;
My problem:
In fact, when I show the matrix using imagesc(Matrix), it can ignore the noises (or backgrounds) that always appear with using imagesc(10*log10(Matrix)).
That is why, I want to show the 10*log10 of the matrices. But in this case, the minimum value will be -Inf since the matrices are sparse. In this case caxis will give an error because bottom is equal to -Inf.
What do you suggest me? How can I modify the above code?
Any help will be very appreciated!
A very important point is that the minimum value in your matrix will always be 0. Leveraging this, a very simple way to address your problem is to add 1 inside the log operation so that values that map to 0 in the original matrix also map to 0 in the log operation. This avoids the -Inf error that you're encountering. In fact, this is a very common way of visualizing the Fourier Transform if you will. Adding 1 to the logarithm ensures that the transform has no negative values in the output, yet the derivative or its rate of change remains intact as the effect is simply a translation of the curve by 1 unit to the left.
Therefore, simply do imagesc(10*log10(1 + Matrix));, then the minimum is always bounded at 0 while the maximum is unbounded but subject to the largest value that is seen in Matrix.

How can a random number be produced with decreasing odds (approaching zero) towards its upper boundary?

I want a random number generator that almost never produces numbers that are near a given upper boundary. The odds should drop linearly to 0 to the upper boundary.
This is possibly best suited as a math-only question, but I need it in code form (pseudo-code is fine, more specifically any C-based language) for my use, so I'm putting it here.
If you want a linear drop-off what you're describing is called a triangle (or triangular) distribution. Given U, a source of uniformly distributed random numbers on the range [0,1), you can generate a triangle on the range [a,b) with its mode at a using:
def triangle(a,b)
return a + (b-a)*(1 - sqrt(U))
end
This can be derived by writing the equation of a triangle for the specified range, scaling it so it has area 1 to make it a valid density, integrating to get the CDF, and using inversion.
As an interesting aside, this will still work if a >= b. For equality, you always get a (which makes sense if the range is zero). Otherwise, you get a triangle which goes from b to a and has its mode at a.

finding peaks and troughs, Part II (with corresponding definition)

this is an update to the previous question that I had about locating peaks and troughs. The previous question was this:
peaks and troughs in MATLAB (but with corresponding definition of a peak and trough)
This time around, I did the suggested answer, but I think there is still something wrong with the final algorithm. Can you please tell me what I did wrong in my code? Thanks.
function [vectpeak, vecttrough]=peaktroughmodified(x,cutoff)
% This function is a modified version of the algorithm used to identify
% peaks and troughs in a series of prices. This will be used to identify
% the head and shoulders algorithm. The function gives you two vectors:
% PEAKS - an indicator vector that identifies the peaks in the function,
% and TROUGHS - an indicator vector that identifies the troughs of the
% function. The input is the vector of exchange rate series, and the cutoff
% used for refining possible peaks and troughs.
% Finding all possible peaks and troughs of our vector.
[posspeak,possploc]=findpeaks(x);
[posstrough,posstloc]=findpeaks(-x);
posspeak=posspeak';
posstrough=posstrough';
% Initialize vector of peaks and troughs.
numobs=length(x);
prelimpeaks=zeros(numobs,1);
prelimtroughs=zeros(numobs,1);
numpeaks=numel(possploc);
numtroughs=numel(posstloc);
% Indicator for possible peaks and troughs.
for i=1:numobs
for j=1:numpeaks
if i==possploc(j);
prelimpeaks(i)=1;
end
end
end
for i=1:numobs
for j=1:numtroughs
if i==posstloc(j);
prelimtroughs(i)=1;
end
end
end
% Vector that gives location.
location=1:1:numobs;
location=location';
% From the list of possible peaks and troughs, find the peaks and troughs
% that fit Chang and Osler [1999] definition.
% "A peak is a local minimum at least x percent higher than the preceding
% trough, and a trough is a local minimum at least x percent lower than the
% preceding peak." [Chang and Osler, p.640]
% cutoffs
peakcutoff=1.0+cutoff; % cutoff for peaks
troughcutoff=1.0-cutoff; % cutoff for troughs
% First peak and first trough are initialized as previous peaks/troughs.
prevpeakloc=possploc(1);
prevtroughloc=posstloc(1);
% Initialize vectors of final peaks and troughs.
vectpeak=zeros(numobs,1);
vecttrough=zeros(numobs,1);
% We first check whether we start looking for peaks and troughs.
for i=1:numobs
if prelimpeaks(i)==1;
if i>prevtroughloc;
ratio=x(i)/x(prevtroughloc);
if ratio>peakcutoff;
vectpeak(i)=1;
prevpeakloc=location(i);
else vectpeak(i)=0;
end
end
elseif prelimtroughs(i)==1;
if i>prevpeakloc;
ratio=x(i)/x(prevpeakloc);
if ratio<troughcutoff;
vecttrough(i)=1;
prevtroughloc=location(i);
else vecttrough(i)=0;
end
end
else
vectpeak(i)=0;
vecttrough(i)=0;
end
end
end
I just ran it, and it seems to work if you make this change:
peakcutoff= 1/cutoff; % cutoff for peaks
troughcutoff= cutoff; % cutoff for troughs
I tested it with the following code, with a cutoff of 0.1 (peaks must be 10 times larger than troughs), and it looks reasonable
x = randn(1,100).^2;
[vectpeak,vecttrough] = peaktroughmodified(x,0.1);
peaks = find(vectpeak);
troughs = find(vecttrough);
plot(1:100,x,peaks,x(peaks),'o',troughs,x(troughs),'o')
I strongly urge you to read up on vectorization in matlab. There are many wasted lines in your program, and it makes it difficult to read and will also make it very slow with big datasets. For instance, prelimpeaks and prelimtroughs can be completely defined without loops, in a single line for each:
prelimpeaks(possploc) = 1;
prelimtroughs(posstloc) = 1;
I think there are better techniques for finding peaks and troughs than the percentage threshold technique given above. Fit the least squares fit parabola to the data set, a technique for doing this is in the 1946 Frank Peters paper, "Parabolic Correlation, a New Descrptive Statistic." The fitted parabola will likely have an index of curvature, as Peters defines it. Find peaks and troughs by testing which points, when eliminated, minimize the absolute value of the index of curvature of the parabola. Once these points are discovered, test for which are peaks and which are troughs by considering how the index of curvature changes when the point is excluded, which will depend on whether the original parabola had a positive or negative index of curvature. If you become concerned about contiguous points the elimination of which achieves the minimum absolute value curvature, constrain by setting a minimum distance the identified points must be from each other. Another constraint would have to be the number of points identified. Without this constraint, this algorithm would remove all but two points, a straight line without curvature.
Sometimes there are steep changes between contiguous points and both should be included in extreme points. Perhaps a percentage threshold test for contiguous points that overrides the minimum distance constraint would be useful.
Another solution might be to compute the Fast Fourier Transform of the series and remove points that minimize the lower spectra. FFT functions are more readily available than code that finds least square fits parabola. There is a matrix manipulation technique for determining the least square fit parabola that is easier to manage than Peter's approach. I saw it documented on the web someplace, but lost the link. Advice from anybody able to arrive at a least square fit parabola using matrix vector notation would be appreciated.

Generate random sequence of integers differing by 1 bit without repeats

I need to generate a (pseudo) random sequence of N bit integers, where successive integers differ from the previous by only 1 bit, and the sequence never repeats. I know a Gray code will generate non-repeating sequences with only 1 bit difference, and an LFSR will generate non-repeating random-like sequences, but I'm not sure how to combine these ideas to produce what I want.
Practically, N will be very large, say 1000. I want to randomly sample this large space of 2^1000 integers, but I need to generate something like a random walk because the application in mind can only hop from one number to the next by flipping one bit.
Use any random number generator algorithm to generate an integer between 1 and N (or 0 to N-1 depending on the language). Use the result to determine the index of the bit to flip.
In order to satisfy randomness you will need to store previously generated numbers (thanks ShreevatsaR). Additionally, you may run into a scenario where no non-repeating answers are possible so this will require a backtracking algorithm as well.
This makes me think of fractals - following a boundary in a julia set or something along those lines.
If N is 1000, use a 2^500 x 2^500 fractal bitmap (obviously don't generate it in advance - you can derive each pixel on demand, and most won't be needed). Each pixel move is one pixel up, down, left or right following the boundary line between pixels, like a simple bitmap tracing algorithm. So long as you start at the edge of the bitmap, you should return to the edge of the bitmap sooner or later - following a specific "colour" boundary should always give a closed curve with no self-crossings, if you look at the unbounded version of that fractal.
The x and y axes of the bitmap will need "Gray coded" co-ordinates, of course - a bit like oversized Karnaugh maps. Each step in the tracing (one pixel up, down, left or right) equates to a single-bit change in one bitmap co-ordinate, and therefore in one bit of the resulting values in the random walk.
EDIT
I just realised there's a problem. The more wrinkly the boundary, the more likely you are in the tracing to hit a point where you have a choice of directions, such as...
* | .
---+---
. | *
Whichever direction you enter this point, you have a choice of three ways out. Choose the wrong one of the other two and you may return back to this point, therefore this is a possible self-crossing point and possible repeat. You can eliminate the continue-in-the-same-direction choice - whichever way you turn should keep the same boundary colours to the left and right of your boundary path as you trace - but this still leaves a choice of two directions.
I think the problem can be eliminated by making having at least three colours in the fractal, and by always keeping the same colour to one particular side (relative to the trace direction) of the boundary. There may be an "as long as the fractal isn't too wrinkly" proviso, though.
The last resort fix is to keep a record of points where this choice was available. If you return to the same point, backtrack and take the other alternative.
While an algorithm like this:
seed()
i = random(0, n)
repeat:
i ^= >> (i % bitlen)
yield i
…would return a random sequence of integers differing each by 1 bit, it would require a huge array for backtracing to ensure uniqueness of numbers.
Further more your running time would increase exponentially(?) with increasing density of your backtrace, as the chance to hit a new and non-repeating number decreases with every number in the sequence.
To reduce time and space one could try to incorporate one of these:
Bloom Filter
Use a Bloom Filter to drastically reduce the space (and time) needed for uniqueness-backtracing.
As Bloom Filters come with the drawback of producing false positives from time to time a certain rate of falsely detected repeats (sic!) (which thus are skipped) in your sequence would occur.
While the use of a Bloom Filter would reduce the space and time your running time would still increase exponentially(?)…
Hilbert Curve
A Hilbert Curve represents a non-repeating (kind of pseudo-random) walk on a quadratic plane (or in a cube) with each step being of length 1.
Using a Hilbert Curve (on an appropriate distribution of values) one might be able to get rid of the need for a backtrace entirely.
To enable your sequence to get a seed you'd generate n (n being the dimension of your plane/cube/hypercube) random numbers between 0 and s (s being the length of your plane's/cube's/hypercube's sides).
Not only would a Hilbert Curve remove the need for a backtrace, it would also make the sequencer run in O(1) per number (in contrast to the use of a backtrace, which would make your running time increase exponentially(?) over time…)
To seed your sequence you'd wrap-shift your n-dimensional distribution by random displacements in each of its n dimension.
Ps: You might get better answers here: CSTheory # StackExchange (or not, see comments)

Is there a fast way to invert a matrix in Matlab?

I have lots of large (around 5000 x 5000) matrices that I need to invert in Matlab. I actually need the inverse, so I can't use mldivide instead, which is a lot faster for solving Ax=b for just one b.
My matrices are coming from a problem that means they have some nice properties. First off, their determinant is 1 so they're definitely invertible. They aren't diagonalizable, though, or I would try to diagonlize them, invert them, and then put them back. Their entries are all real numbers (actually rational).
I'm using Matlab for getting these matrices and for this stuff I need to do with their inverses, so I would prefer a way to speed Matlab up. But if there is another language I can use that'll be faster, then please let me know. I don't know a lot of other languages (a little but of C and a little but of Java), so if it's really complicated in some other language, then I might not be able to use it. Please go ahead and suggest it, though, in case.
I actually need the inverse, so I can't use mldivide instead,...
That's not true, because you can still use mldivide to get the inverse. Note that A-1 = A-1 * I. In MATLAB, this is equivalent to
invA = A\speye(size(A));
On my machine, this takes about 10.5 seconds for a 5000x5000 matrix. Note that MATLAB does have an inv function to compute the inverse of a matrix. Although this will take about the same amount of time, it is less efficient in terms of numerical accuracy (more info in the link).
First off, their determinant is 1 so they're definitely invertible
Rather than det(A)=1, it is the condition number of your matrix that dictates how accurate or stable the inverse will be. Note that det(A)=∏i=1:n λi. So just setting λ1=M, λn=1/M and λi≠1,n=1 will give you det(A)=1. However, as M → ∞, cond(A) = M2 → ∞ and λn → 0, meaning your matrix is approaching singularity and there will be large numerical errors in computing the inverse.
My matrices are coming from a problem that means they have some nice properties.
Of course, there are other more efficient algorithms that can be employed if your matrix is sparse or has other favorable properties. But without any additional info on your specific problem, there is nothing more that can be said.
I would prefer a way to speed Matlab up
MATLAB uses Gauss elimination to compute the inverse of a general matrix (full rank, non-sparse, without any special properties) using mldivide and this is Θ(n3), where n is the size of the matrix. So, in your case, n=5000 and there are 1.25 x 1011 floating point operations. So on a reasonable machine with about 10 Gflops of computational power, you're going to require at least 12.5 seconds to compute the inverse and there is no way out of this, unless you exploit the "special properties" (if they're exploitable)
Inverting an arbitrary 5000 x 5000 matrix is not computationally easy no matter what language you are using. I would recommend looking into approximations. If your matrices are low rank, you might want to try a low-rank approximation M = USV'
Here are some more ideas from math-overflow:
https://mathoverflow.net/search?q=matrix+inversion+approximation
First suppose the eigen values are all 1. Let A be the Jordan canonical form of your matrix. Then you can compute A^{-1} using only matrix multiplication and addition by
A^{-1} = I + (I-A) + (I-A)^2 + ... + (I-A)^k
where k < dim(A). Why does this work? Because generating functions are awesome. Recall the expansion
(1-x)^{-1} = 1/(1-x) = 1 + x + x^2 + ...
This means that we can invert (1-x) using an infinite sum. You want to invert a matrix A, so you want to take
A = I - X
Solving for X gives X = I-A. Therefore by substitution, we have
A^{-1} = (I - (I-A))^{-1} = 1 + (I-A) + (I-A)^2 + ...
Here I've just used the identity matrix I in place of the number 1. Now we have the problem of convergence to deal with, but this isn't actually a problem. By the assumption that A is in Jordan form and has all eigen values equal to 1, we know that A is upper triangular with all 1s on the diagonal. Therefore I-A is upper triangular with all 0s on the diagonal. Therefore all eigen values of I-A are 0, so its characteristic polynomial is x^dim(A) and its minimal polynomial is x^{k+1} for some k < dim(A). Since a matrix satisfies its minimal (and characteristic) polynomial, this means that (I-A)^{k+1} = 0. Therefore the above series is finite, with the largest nonzero term being (I-A)^k. So it converges.
Now, for the general case, put your matrix into Jordan form, so that you have a block triangular matrix, e.g.:
A 0 0
0 B 0
0 0 C
Where each block has a single value along the diagonal. If that value is a for A, then use the above trick to invert 1/a * A, and then multiply the a back through. Since the full matrix is block triangular the inverse will be
A^{-1} 0 0
0 B^{-1} 0
0 0 C^{-1}
There is nothing special about having three blocks, so this works no matter how many you have.
Note that this trick works whenever you have a matrix in Jordan form. The computation of the inverse in this case will be very fast in Matlab because it only involves matrix multiplication, and you can even use tricks to speed that up since you only need powers of a single matrix. This may not help you, though, if it's really costly to get the matrix into Jordan form.

Resources