I need to generate a (pseudo) random sequence of N bit integers, where successive integers differ from the previous by only 1 bit, and the sequence never repeats. I know a Gray code will generate non-repeating sequences with only 1 bit difference, and an LFSR will generate non-repeating random-like sequences, but I'm not sure how to combine these ideas to produce what I want.
Practically, N will be very large, say 1000. I want to randomly sample this large space of 2^1000 integers, but I need to generate something like a random walk because the application in mind can only hop from one number to the next by flipping one bit.
Use any random number generator algorithm to generate an integer between 1 and N (or 0 to N-1 depending on the language). Use the result to determine the index of the bit to flip.
In order to satisfy randomness you will need to store previously generated numbers (thanks ShreevatsaR). Additionally, you may run into a scenario where no non-repeating answers are possible so this will require a backtracking algorithm as well.
This makes me think of fractals - following a boundary in a julia set or something along those lines.
If N is 1000, use a 2^500 x 2^500 fractal bitmap (obviously don't generate it in advance - you can derive each pixel on demand, and most won't be needed). Each pixel move is one pixel up, down, left or right following the boundary line between pixels, like a simple bitmap tracing algorithm. So long as you start at the edge of the bitmap, you should return to the edge of the bitmap sooner or later - following a specific "colour" boundary should always give a closed curve with no self-crossings, if you look at the unbounded version of that fractal.
The x and y axes of the bitmap will need "Gray coded" co-ordinates, of course - a bit like oversized Karnaugh maps. Each step in the tracing (one pixel up, down, left or right) equates to a single-bit change in one bitmap co-ordinate, and therefore in one bit of the resulting values in the random walk.
EDIT
I just realised there's a problem. The more wrinkly the boundary, the more likely you are in the tracing to hit a point where you have a choice of directions, such as...
* | .
---+---
. | *
Whichever direction you enter this point, you have a choice of three ways out. Choose the wrong one of the other two and you may return back to this point, therefore this is a possible self-crossing point and possible repeat. You can eliminate the continue-in-the-same-direction choice - whichever way you turn should keep the same boundary colours to the left and right of your boundary path as you trace - but this still leaves a choice of two directions.
I think the problem can be eliminated by making having at least three colours in the fractal, and by always keeping the same colour to one particular side (relative to the trace direction) of the boundary. There may be an "as long as the fractal isn't too wrinkly" proviso, though.
The last resort fix is to keep a record of points where this choice was available. If you return to the same point, backtrack and take the other alternative.
While an algorithm like this:
seed()
i = random(0, n)
repeat:
i ^= >> (i % bitlen)
yield i
…would return a random sequence of integers differing each by 1 bit, it would require a huge array for backtracing to ensure uniqueness of numbers.
Further more your running time would increase exponentially(?) with increasing density of your backtrace, as the chance to hit a new and non-repeating number decreases with every number in the sequence.
To reduce time and space one could try to incorporate one of these:
Bloom Filter
Use a Bloom Filter to drastically reduce the space (and time) needed for uniqueness-backtracing.
As Bloom Filters come with the drawback of producing false positives from time to time a certain rate of falsely detected repeats (sic!) (which thus are skipped) in your sequence would occur.
While the use of a Bloom Filter would reduce the space and time your running time would still increase exponentially(?)…
Hilbert Curve
A Hilbert Curve represents a non-repeating (kind of pseudo-random) walk on a quadratic plane (or in a cube) with each step being of length 1.
Using a Hilbert Curve (on an appropriate distribution of values) one might be able to get rid of the need for a backtrace entirely.
To enable your sequence to get a seed you'd generate n (n being the dimension of your plane/cube/hypercube) random numbers between 0 and s (s being the length of your plane's/cube's/hypercube's sides).
Not only would a Hilbert Curve remove the need for a backtrace, it would also make the sequencer run in O(1) per number (in contrast to the use of a backtrace, which would make your running time increase exponentially(?) over time…)
To seed your sequence you'd wrap-shift your n-dimensional distribution by random displacements in each of its n dimension.
Ps: You might get better answers here: CSTheory # StackExchange (or not, see comments)
Related
Grid Illumination: Given an NxN grid with an array of lamp coordinates. Each lamp provides illumination to every square on their x axis, every square on their y axis, and every square that lies in their diagonal (think of a Queen in chess). Given an array of query coordinates, determine whether that point is illuminated or not. The catch is when checking a query all lamps adjacent to, or on, that query get turned off. The ranges for the variables/arrays were about: 10^3 < N < 10^9, 10^3 < lamps < 10^9, 10^3 < queries < 10^9
It seems like I can get one but not both. I tried to get this down to logarithmic time but I can't seem to find a solution. I can reduce the space complexity but it's not that fast, exponential in fact. Where should I focus on instead, speed or space? Also, if you have any input as to how you would solve this problem please do comment.
Is it better for a car to go fast or go a long way on a little fuel? It depends on circumstances.
Here's a proposal.
First, note you can number all the diagonals that the inputs like on by using the first point as the "origin" for both nw-se and ne-sw. The diagonals through this point are both numbered zero. The nw-se diagonals increase per-pixel in e.g the northeast direction, and decreasing (negative) to the southwest. Similarly ne-sw are numbered increasing in the e.g. the northwest direction and decreasing (negative) to the southeast.
Given the origin, it's easy to write constant time functions that go from (x,y) coordinates to the respective diagonal numbers.
Now each set of lamp coordinates is naturally associated with 4 numbers: (x, y, nw-se diag #, sw-ne dag #). You don't need to store these explicitly. Rather you want 4 maps xMap, yMap, nwSeMap, and swNeMap such that, for example, xMap[x] produces the list of all lamp coordinates with x-coordinate x, nwSeMap[nwSeDiagonalNumber(x, y)] produces the list of all lamps on that diagonal and similarly for the other maps.
Given a query point, look up it's corresponding 4 lists. From these it's easy to deal with adjacent squares. If any list is longer than 3, removing adjacent squares can't make it empty, so the query point is lit. If it's only 3 or fewer, it's a constant time operation to see if they're adjacent.
This solution requires the input points to be represented in 4 lists. Since they need to be represented in one list, you can argue that this algorithm requires only a constant factor of space with respect to the input. (I.e. the same sort of cost as mergesort.)
Run time is expected constant per query point for 4 hash table lookups.
Without much trouble, this algorithm can be split so it can be map-reduced if the number of lampposts is huge.
But it may be sufficient and easiest to run it on one big machine. With a billion lamposts and careful data structure choices, it wouldn't be hard to implement with 24 bytes per lampost in an unboxed structures language like C. So a ~32Gb RAM machine ought to work just fine. Building the maps with multiple threads requires some synchronization, but that's done only once. The queries can be read-only: no synchronization required. A nice 10 core machine ought to do a billion queries in well less than a minute.
There is very easy Answer which works
Create Grid of NxN
Now for each Lamp increment the count of all the cells which suppose to be illuminated by the Lamp.
For each query check if cell on that query has value > 0;
For each adjacent cell find out all illuminated cells and reduce the count by 1
This worked fine but failed for size limit when trying for 10000 X 10000 grid
I want a random number generator that almost never produces numbers that are near a given upper boundary. The odds should drop linearly to 0 to the upper boundary.
This is possibly best suited as a math-only question, but I need it in code form (pseudo-code is fine, more specifically any C-based language) for my use, so I'm putting it here.
If you want a linear drop-off what you're describing is called a triangle (or triangular) distribution. Given U, a source of uniformly distributed random numbers on the range [0,1), you can generate a triangle on the range [a,b) with its mode at a using:
def triangle(a,b)
return a + (b-a)*(1 - sqrt(U))
end
This can be derived by writing the equation of a triangle for the specified range, scaling it so it has area 1 to make it a valid density, integrating to get the CDF, and using inversion.
As an interesting aside, this will still work if a >= b. For equality, you always get a (which makes sense if the range is zero). Otherwise, you get a triangle which goes from b to a and has its mode at a.
I'm trying to convey the difference between two bytestreams. I want to minimize the number of bytes in the patch.
(I don't necessarily want to minimize the number of "changes" in the diff, which is what the optimal patch in a levenshtein distance computation would give me.)
The patch would ideally be in a format such that, given the source bytestream and the diff, it would be easy to reconstruct the target bytestream.
Is there a good algorithm for doing this?
Edit: For the record, I've tried sending changes of the form "at spot 506, insert the following the bytes...", where I create a change list from the levenshtein distance algorithm.
The problem I have is that the levenshtein distance algorithm gives me a lot of changes like:
at spot 506 substitute [some bytes1]
at spot 507 do nothing
at spot 508 substitute [some bytes2]
at spot 509 do nothing
at spot 510 substitute [some bytes3]
...
This is because the lev distance algorithm tries to minimize the number of changes. However, for my purposes this instruction set is wasteful. It would probably be better if an algorithm just said,
At spot 506 substitute [some bytes1, [byte at spot 507], some bytes2, [byte at spot 509], some bytes3, ...]
There's probably some way to modify lev distance to favor these types of changes but it seems a little tricky. I could coalesce substituions after getting a changelist (and I'm going to try that) but there may be opportunities to coalesce deletions / inserts too, and it's less obvious how to do that correctly.
Just wondering if there's a special purpose algorithm for this (or if somebody's done a modification of lev distance to favor these types of changes already).
You can do this using pairwise alignment with affine gap costs, which takes O(nm) time for two strings of lengths n and m respectively.
One thing first: There is no way to find a provably minimal patch in terms of bits or bytes used. That's because if there was such a way, then the function shortest_patch(x, y) that calculates it could be used to find a provably minimal compression of any given string s by calling it with shortest_patch('', s), and Kolmogorov complexity tells us that the shortest possible compression of a given string is formally uncomputable. But if edits tend to be clustered in space, as it seems they are here, then it's certainly possible to find smaller patches than those produced using the usual Levenshtein distance algorithm.
Edit scripts
Patches are usually called "edit scripts" in CS. Finding a minimal (in terms of number of insertions plus number of deletions) edit script for turning one string x into another string y is equivalent to finding an optimal pairwise alignment in which every pair of equal characters has value 0, every pair of unequal characters has value -inf, and every position in which a character from one string is aligned with a - gap character has value -1. Alignments are easy to visualise:
st--ing st-i-ng
stro-ng str-ong
These are 2 optimal alignments of the strings sting and strong, each having cost -3 under the model. If pairs of unequal characters are given the value -1 instead of -inf, then we get an alignment with cost equal to the Levenshtein distance (the number of insertions, plus the number of deletions, plus the number of substitutions):
st-ing sti-ng
strong strong
These are 2 optimal alignments under the new model, and each has cost -2.
To see how these correspond with edit scripts, we can regard the top string as the "original" string, and the bottom string as the "target" string. Columns containing pairs of unequal characters correspond to substitutions, the columns containing a - in the top row correspond to insertions of characters, and the columns containing a - in the bottom row correspond to deletions of characters. You can create an edit script from an alignment by using the "instructions" (C)opy, (D)elete, (I)nsert and (S)ubstitute. Each instruction is followed by a number indicating the number of columns to consume from the alignment, and in the case of I and S, a corresponding number of characters to insert or replace with. For example, the edit scripts for the previous 2 alignments are
C2, I1"r", S1"o", C2 and C2, S1"r", I1"o", C2
Increasing bunching
Now if we have strings like mississippi and tip, we find that the two alignments
mississippi
------tip--
mississippi
t---i----p-
both have the same score of -9: they both require the same total number of insertions, deletions and substitutions. But we much prefer the top one, because its edit script can be described much more succinctly: D6, S1"t", C2, D2. The second's edit script would be S1"t", D3, C1, D4, C1, D1.
In order to get the alignment algorithm to also "prefer" the first alignment, we can adjust gap costs so that starting a blocks of gaps costs more than continuing an existing block of gaps. If we make it so that a column containing a gap costs -2 instead of -1 when the preceding column contains no gap, then what we are effectively doing is penalising the number of contiguous blocks of gaps (since each contiguous block of gaps must obviously have a first position). Under this model, the first alignment above now costs -11, because it contains two contiguous blocks of gaps. The second alignment now costs -12, because it contains three contiguous blocks of gaps. IOW, the algorithm now prefers the first alignment.
This model, in which every aligned position containing a gap costs g and the first position in any contiguous block of gap columns costs g + s, is called the affine gap cost model, and an O(nm) algorithm was given for this by Gotoh in 1982: http://www.genome.ist.i.kyoto-u.ac.jp/~aln_user/archive/JMB82.pdf. Increasing the gap-open cost s will cause aligned segments to bunch together. You can play with the various cost parameters until you get alignments (corresponding to patches) that empirically look about right and are small enough.
There are two approaches to solving this kind of problem:
1) Establish a language for X (edit scripts, in this case), and figure out how to minimize the length of the applicable sentence; or,
2) Compute some kind of minimum representation for Y (string differences), and then think up a way to represent that in the shortest form.
The Myers paper demonstrates that for a particular language, finding the minimum set of changes and finding the minimum length of the change representation are the same problem.
Obviously, changing the language might invalidate that assumption, and certain changes might be extremely complicated to apply correctly (for example, suppose the language included the primitive kP which means to remove the next k characters whose indices are prime. For certain diffs, using that primitive might turn out to be a huge win, but the applications are probably pretty rare. It's an absurd example, I know, but it demonstrates the difficulty of starting with a language.
So I propose starting with the minimum change list, which identifies inserts and deletes. We translate that in a straightforward way to a string of commands, of which there are exactly three. There are no indices here. The idea is that we start with a cursor at the beginning of the original string, and then execute the commands in sequence. The commands are:
= Advance the cursor without altering the character it points to
Ic Insert the character `c` before the cursor.
D Delete the character at the cursor.
Although I said there were exactly three commands, that's not quite true; there are actually A+2 where A is the size of the alphabet.
This might result in a string like this:
=========================IbIaInIaInIaDD=D=D============================
Now, let's try to compress this. First, we run-length encode (RLE), so that every command is preceded by a repeat count, and we drop the trailing =s
27=1Ib1Ia1In1Ia1In1Ia2D1=1D1=1D
(In effect, the RLE recreates indices, although they're relative instead of absolute).
Finally, we use zlib to compress the resulting string. I'm not going to do that here, but just to give some idea of the sort of compression it might come up with:
27=1Ib1Ia1In||2D1=1D|
______+| ____+
___<---+
(Trying to show the back-references. It's not very good ascii art, sorry.)
Liv-Zempell is very good at finding and optimizing unexpected repetitions. In fact, we could have just used it instead of doing the intermediate RLE step, but experience shows that in cases where RLE is highly effective, it's better to LZ the RLE than the source. But it would be worth trying both ways to see what's better for your application.
A common approach to this that uses very few bytes (though not necessarily the theoretical optimal number of bytes) is the following:
Pad the bytes with some character (perhaps zero) until they have the same lengths.
XOR the two streams together. This will result in a byte stream that is zero everywhere the bytes are the same and nonzero otherwise.
Compress the XORed stream using any compression algorithm, perhaps something like LZW.
Assuming that the patch you have is a localized set of changes to a small part of the file, this will result in a very short patch, since the bulk of the file will be zeros, which can be efficiently compressed.
To apply the patch, you just decompress the XORed string and then XOR it with the byte stream to patch. This computes
Original XOR (Original XOR New) = (Original XOR Original) XOR New = New
Since XOR is associative and self-inverting.
Hope this helps!
There is a new promising approach to change detection.
The sequence alignment problem is considered to be an abstract model for changes detection in collaborative text editing designed to minimize the probability of merge conflict. A new cost function is defined as the probability of intersection between detected changes and random string.
The result should be more similar to patch length minimization then other known approaches.
It avoids both the known shortcomings of LCS and others approaches.
The cubic algorithm has been proposed.
http://psta.psiras.ru/read/psta2015_1_3-10.pdf
I need some advice. I'm developing a game similar to Flow Free wherein the gameboard is composed of a grid and colored dots, and the user has to connect the same colored dots together without overlapping other lines, and using up ALL the free spaces in the board.
My question is about level-creation. I wish to make the levels generated randomly (and should at least be able to solve itself so that it can give players hints) and I am in a stump as to what algorithm to use. Any suggestions?
Note: image shows the objective of Flow Free, and it is the same objective of what I am developing.
Thanks for your help. :)
Consider solving your problem with a pair of simpler, more manageable algorithms: one algorithm that reliably creates simple, pre-solved boards and another that rearranges flows to make simple boards more complex.
The first part, building a simple pre-solved board, is trivial (if you want it to be) if you're using n flows on an nxn grid:
For each flow...
Place the head dot at the top of the first open column.
Place the tail dot at the bottom of that column.
Alternatively, you could provide your own hand-made starter boards to pass to the second part. The only goal of this stage is to get a valid board built, even if it's just trivial or predetermined, so it's worth keeping it simple.
The second part, rearranging the flows, involves looping over each flow, seeing which one can work with its neighboring flow to grow and shrink:
For some number of iterations...
Choose a random flow f.
If f is at the minimum length (say 3 squares long), skip to the next iteration because we can't shrink f right now.
If the head dot of f is next to a dot from another flow g (if more than one g to choose from, pick one at random)...
Move f's head dot one square along its flow (i.e., walk it one square towards the tail). f is now one square shorter and there's an empty square. (The puzzle is now unsolved.)
Move the neighboring dot from g into the empty square vacated by f. Now there's an empty square where g's dot moved from.
Fill in that empty spot with flow from g. Now g is one square longer than it was at the beginning of this iteration. (The puzzle is back to being solved as well.)
Repeat the previous step for f's tail dot.
The approach as it stands is limited (dots will always be neighbors) but it's easy to expand upon:
Add a step to loop through the body of flow f, looking for trickier ways to swap space with other flows...
Add a step that prevents a dot from moving to an old location...
Add any other ideas that you come up with.
The overall solution here is probably less than the ideal one that you're aiming for, but now you have two simple algorithms that you can flesh out further to serve the role of one large, all-encompassing algorithm. In the end, I think this approach is manageable, not cryptic, and easy to tweek, and, if nothing else, a good place to start.
Update: I coded a proof-of-concept based on the steps above. Starting with the first 5x5 grid below, the process produced the subsequent 5 different boards. Some are interesting, some are not, but they're always valid with one known solution.
Starting Point
5 Random Results (sorry for the misaligned screenshots)
And a random 8x8 for good measure. The starting point was the same simple columns approach as above.
Updated answer: I implemented a new generator using the idea of "dual puzzles". This allows much sparser and higher quality puzzles than any previous method I know of. The code is on github. I'll try to write more details about how it works, but here is an example puzzle:
Old answer:
I have implemented the following algorithm in my numberlink solver and generator. In enforces the rule, that a path can never touch itself, which is normal in most 'hardcore' numberlink apps and puzzles
First the board is tiled with 2x1 dominos in a simple, deterministic way.
If this is not possible (on an odd area paper), the bottom right corner is
left as a singleton.
Then the dominos are randomly shuffled by rotating random pairs of neighbours.
This is is not done in the case of width or height equal to 1.
Now, in the case of an odd area paper, the bottom right corner is attached to
one of its neighbour dominos. This will always be possible.
Finally, we can start finding random paths through the dominos, combining them
as we pass through. Special care is taken not to connect 'neighbour flows'
which would create puzzles that 'double back on themselves'.
Before the puzzle is printed we 'compact' the range of colours used, as much as possible.
The puzzle is printed by replacing all positions that aren't flow-heads with a .
My numberlink format uses ascii characters instead of numbers. Here is an example:
$ bin/numberlink --generate=35x20
Warning: Including non-standard characters in puzzle
35 20
....bcd.......efg...i......i......j
.kka........l....hm.n....n.o.......
.b...q..q...l..r.....h.....t..uvvu.
....w.....d.e..xx....m.yy..t.......
..z.w.A....A....r.s....BB.....p....
.D.........E.F..F.G...H.........IC.
.z.D...JKL.......g....G..N.j.......
P...a....L.QQ.RR...N....s.....S.T..
U........K......V...............T..
WW...X.......Z0..M.................
1....X...23..Z0..........M....44...
5.......Y..Y....6.........C.......p
5...P...2..3..6..VH.......O.S..99.I
........E.!!......o...."....O..$$.%
.U..&&..J.\\.(.)......8...*.......+
..1.......,..-...(/:.."...;;.%+....
..c<<.==........)./..8>>.*.?......#
.[..[....]........:..........?..^..
..._.._.f...,......-.`..`.7.^......
{{......].....|....|....7.......#..
And here I run it through my solver (same seed):
$ bin/numberlink --generate=35x20 | bin/numberlink --tubes
Found a solution!
┌──┐bcd───┐┌──efg┌─┐i──────i┌─────j
│kka│└───┐││l┌─┘│hm│n────n┌o│┌────┐
│b──┘q──q│││l│┌r└┐│└─h┌──┐│t││uvvu│
└──┐w┌───┘d└e││xx│└──m│yy││t││└──┘│
┌─z│w│A────A┌┘└─r│s───┘BB││┌┘└p┌─┐│
│D┐└┐│┌────E│F──F│G──┐H┐┌┘││┌──┘IC│
└z└D│││JKL┌─┘┌──┐g┌─┐└G││N│j│┌─┐└┐│
P──┐a││││L│QQ│RR└┐│N└──┘s││┌┘│S│T││
U─┐│┌┘││└K└─┐└─┐V││└─────┘││┌┘││T││
WW│││X││┌──┐│Z0││M│┌──────┘││┌┘└┐││
1┐│││X│││23││Z0│└┐││┌────M┌┘││44│││
5│││└┐││Y││Y│┌─┘6││││┌───┐C┌┘│┌─┘│p
5││└P│││2┘└3││6─┘VH│││┌─┐│O┘S┘│99└I
┌┘│┌─┘││E┐!!│└───┐o┘│││"│└─┐O─┘$$┌%
│U┘│&&│└J│\\│(┐)┐└──┘│8││┌*└┐┌───┘+
└─1└─┐└──┘,┐│-└┐│(/:┌┘"┘││;;│%+───┘
┌─c<<│==┌─┐││└┐│)│/││8>>│*┌?│┌───┐#
│[──[└─┐│]││└┐│└─┘:┘│└──┘┌┘┌┘?┌─^││
└─┐_──_│f││└,│└────-│`──`│7┘^─┘┌─┘│
{{└────┘]┘└──┘|────|└───7└─────┘#─┘
I've tested replacing step (4) with a function that iteratively, randomly merges two neighboring paths. However it game much denser puzzles, and I already think the above is nearly too dense to be difficult.
Here is a list of problems I've generated of different size: https://github.com/thomasahle/numberlink/blob/master/puzzles/inputs3
The most straightforward way to create such a level is to find a way to solve it. This way, you can basically generate any random starting configuration and determine if it is a valid level by trying to have it solved. This will generate the most diverse levels.
And even if you find a way to generate the levels some other way, you'll still want to apply this solving algorithm to prove that the generated level is any good ;)
Brute-force enumerating
If the board has a size of NxN cells, and there are also N colours available, brute-force enumerating all possible configurations (regardless of wether they form actual paths between start and end nodes) would take:
N^2 cells total
2N cells already occupied with start and end nodes
N^2 - 2N cells for which the color has yet to be determined
N colours available.
N^(N^2 - 2N) possible combinations.
So,
For N=5, this means 5^15 = 30517578125 combinations.
For N=6, this means 6^24 = 4738381338321616896 combinations.
In other words, the number of possible combinations is pretty high to start with, but also grows ridiculously fast once you start making the board larger.
Constraining the number of cells per color
Obviously, we should try to reduce the number of configurations as much as possible. One way of doing that is to consider the minimum distance ("dMin") between each color's start and end cell - we know that there should at least be this much cells with that color. Calculating the minimum distance can be done with a simple flood fill or Dijkstra's algorithm.
(N.B. Note that this entire next section only discusses the number of cells, but does not say anything about their locations)
In your example, this means (not counting the start and end cells)
dMin(orange) = 1
dMin(red) = 1
dMin(green) = 5
dMin(yellow) = 3
dMin(blue) = 5
This means that, of the 15 cells for which the color has yet to be determined, there have to be at least 1 orange, 1 red, 5 green, 3 yellow and 5 blue cells, also making a total of 15 cells.
For this particular example this means that connecting each color's start and end cell by (one of) the shortest paths fills the entire board - i.e. after filling the board with the shortest paths no uncoloured cells remain. (This should be considered "luck", not every starting configuration of the board will cause this to happen).
Usually, after this step, we have a number of cells that can be freely coloured, let's call this number U. For N=5,
U = 15 - (dMin(orange) + dMin(red) + dMin(green) + dMin(yellow) + dMin(blue))
Because these cells can take any colour, we can also determine the maximum number of cells that can have a particular colour:
dMax(orange) = dMin(orange) + U
dMax(red) = dMin(red) + U
dMax(green) = dMin(green) + U
dMax(yellow) = dMin(yellow) + U
dMax(blue) = dMin(blue) + U
(In this particular example, U=0, so the minimum number of cells per colour is also the maximum).
Path-finding using the distance constraints
If we were to brute force enumerate all possible combinations using these color constraints, we would have a lot less combinations to worry about. More specifically, in this particular example we would have:
15! / (1! * 1! * 5! * 3! * 5!)
= 1307674368000 / 86400
= 15135120 combinations left, about a factor 2000 less.
However, this still doesn't give us the actual paths. so a better idea would be to a backtracking search, where we process each colour in turn and attempt to find all paths that:
doesn't cross an already coloured cell
Is not shorter than dMin(colour) and not longer than dMax(colour).
The second criteria will reduce the number of paths reported per colour, which causes the total number of paths to be tried to be greatly reduced (due to the combinatorial effect).
In pseudo-code:
function SolveLevel(initialBoard of size NxN)
{
foreach(colour on initialBoard)
{
Find startCell(colour) and endCell(colour)
minDistance(colour) = Length(ShortestPath(initialBoard, startCell(colour), endCell(colour)))
}
//Determine the number of uncoloured cells remaining after all shortest paths have been applied.
U = N^(N^2 - 2N) - (Sum of all minDistances)
firstColour = GetFirstColour(initialBoard)
ExplorePathsForColour(
initialBoard,
firstColour,
startCell(firstColour),
endCell(firstColour),
minDistance(firstColour),
U)
}
}
function ExplorePathsForColour(board, colour, startCell, endCell, minDistance, nrOfUncolouredCells)
{
maxDistance = minDistance + nrOfUncolouredCells
paths = FindAllPaths(board, colour, startCell, endCell, minDistance, maxDistance)
foreach(path in paths)
{
//Render all cells in 'path' on a copy of the board
boardCopy = Copy(board)
boardCopy = ApplyPath(boardCopy, path)
uRemaining = nrOfUncolouredCells - (Length(path) - minDistance)
//Recursively explore all paths for the next colour.
nextColour = NextColour(board, colour)
if(nextColour exists)
{
ExplorePathsForColour(
boardCopy,
nextColour,
startCell(nextColour),
endCell(nextColour),
minDistance(nextColour),
uRemaining)
}
else
{
//No more colours remaining to draw
if(uRemaining == 0)
{
//No more uncoloured cells remaining
Report boardCopy as a result
}
}
}
}
FindAllPaths
This only leaves FindAllPaths(board, colour, startCell, endCell, minDistance, maxDistance) to be implemented. The tricky thing here is that we're not searching for the shortest paths, but for any paths that fall in the range determined by minDistance and maxDistance. Hence, we can't just use Dijkstra's or A*, because they will only record the shortest path to each cell, not any possible detours.
One way of finding these paths would be to use a multi-dimensional array for the board, where
each cell is capable of storing multiple waypoints, and a waypoint is defined as the pair (previous waypoint, distance to origin). The previous waypoint is needed to be able to reconstruct the entire path once we've reached the destination, and the distance to origin
prevents us from exceeding the maxDistance.
Finding all paths can then be done by using a flood-fill like exploration from the startCell outwards, where for a given cell, each uncoloured or same-as-the-current-color-coloured neigbour is recursively explored (except the ones that form our current path to the origin) until we reach either the endCell or exceed the maxDistance.
An improvement on this strategy is that we don't explore from the startCell outwards to the endCell, but that we explore from both the startCell and endCell outwards in parallel, using Floor(maxDistance / 2) and Ceil(maxDistance / 2) as the respective maximum distances. For large values of maxDistance, this should reduce the number of explored cells from 2 * maxDistance^2 to maxDistance^2.
I think you'll want to do this in two steps. Step 1) find a set of non-intersecting paths that connect all your points, then 2) Grow/shift those paths to fill the entire board
My thoughts on Step 1 are to essentially perform Dijkstra like algorithm on all points simultaneously, growing together the paths. Similar to Dijkstra, I think you'll want to flood-fill out from each of your points, chosing which node to search next using some heuristic (My hunch says chosing points with the least degrees of freedom first, then by distance, might be a good one). Very differently from Dijkstra though I think we might be stuck with having to backtrack when we have multiple paths attempting to grow into the same node. (This could of course be fairly problematic on bigger maps, but might not be a big deal on small maps like the one you have above.)
You may also solve for some of the easier paths before you start the above algorithm, mainly to cut down on the number of backtracks needed. In specific, if you can make a trace between points along the edge of the board, you can guarantee that connecting those two points in that fashion would never interfere with other paths, so you can simply fill those in and take those guys out of the equation. You could then further iterate on this until all of these "quick and easy" paths are found by tracing along the borders of the board, or borders of existing paths. That algorithm would actually completely solve the above example board, but would undoubtedly fail elsewhere .. still, it would be very cheap to perform and would reduce your search time for the previous algorithm.
Alternatively
You could simply do a real Dijkstra's algorithm between each set of points, pathing out the closest points first (or trying them in some random orders a few times). This would probably work for a fair number of cases, and when it fails simply throw out the map and generate a new one.
Once you have Step 1 solved, Step 2 should be easier, though not necessarily trivial. To grow your paths, I think you'll want to grow your paths outward (so paths closest to walls first, growing towards the walls, then other inner paths outwards, etc.). To grow, I think you'll have two basic operations, flipping corners, and expanding into into adjacent pairs of empty squares.. that is to say, if you have a line like
.v<<.
v<...
v....
v....
First you'll want to flip the corners to fill in your edge spaces
v<<<.
v....
v....
v....
Then you'll want to expand into neighboring pairs of open space
v<<v.
v.^<.
v....
v....
v<<v.
>v^<.
v<...
v....
etc..
Note that what I've outlined wont guarantee a solution if one exists, but I think you should be able to find one most of the time if one exists, and then in the cases where the map has no solution, or the algorithm fails to find one, just throw out the map and try a different one :)
You have two choices:
Write a custom solver
Brute force it.
I used option (2) to generate Boggle type boards and it is VERY successful. If you go with Option (2), this is how you do it:
Tools needed:
Write a A* solver.
Write a random board creator
To solve:
Generate a random board consisting of only endpoints
while board is not solved:
get two endpoints closest to each other that are not yet solved
run A* to generate path
update board so next A* knows new board layout with new path marked as un-traversable.
At exit of loop, check success/fail (is whole board used/etc) and run again if needed
The A* on a 10x10 should run in hundredths of a second. You can probably solve 1k+ boards/second. So a 10 second run should get you several 'usable' boards.
Bonus points:
When generating levels for a IAP (in app purchase) level pack, remember to check for mirrors/rotations/reflections/etc so you don't have one board a copy of another (which is just lame).
Come up with a metric that will figure out if two boards are 'similar' and if so, ditch one of them.
I have a process that generates values and that I observe. When the process terminates, I want to compute the median of those values.
If I had to compute the mean, I could just store the sum and the number of generated values and thus have O(1) memory requirement. How about the median? Is there a way to save on the obvious O(n) coming from storing all the values?
Edit: Interested in 2 cases: 1) the stream length is known, 2) it's not.
You are going to need to store at least ceil(n/2) points, because any one of the first n/2 points could be the median. It is probably simplest to just store the points and find the median. If saving ceil(n/2) points is of value, then read in the first n/2 points into a sorted list (a binary tree is probably best), then as new points are added throw out the low or high points and keep track of the number of points on either end thrown out.
Edit:
If the stream length is unknown, then obviously, as Stephen observed in the comments, then we have no choice but to remember everything. If duplicate items are likely, we could possibly save a bit of memory using Dolphins idea of storing values and counts.
I had the same problem and got a way that has not been posted here. Hopefully my answer can help someone in the future.
If you know your value range and don't care much about median value precision, you can incrementally create a histogram of quantized values using constant memory. Then it is easy to find median or any position of values, with your quantization error.
For example, suppose your data stream is image pixel values and you know these values are integers all falling within 0~255. To create the image histogram incrementally, just create 256 counters (bins) starting from zeros and count one on the bin corresponding to the pixel value while scanning through the input. Once the histogram is created, find the first cumulative count that is larger than half of the data size to get median.
For data that are real numbers, you can still compute histogram with each bin having quantized values (e.g. bins of 10's, 1's, or 0.1's etc.), depending on your expected data value range and precision you want.
If you don't know the value range of entire data sample, you can still estimate the possible value range of median and compute histogram within this range. This drops outliers by nature but is exactly what we want when computing median.
You can
Use statistics, if that's acceptable - for example, you could use sampling.
Use knowledge about your number stream
using a counting sort like approach: k distinct values means storing O(k) memory)
or toss out known outliers and keep a (high,low) counter.
If you know you have no duplicates, you could use a bitmap... but that's just a smaller constant for O(n).
If you have discrete values and lots of repetition you could store the values and counts, which would save a bit of space.
Possibly at stages through the computation you could discard the top 'n' and bottom 'n' values, as long as you are sure that the median is not in that top or bottom range.
e.g. Let's say you are expecting 100,000 values. Every time your stored number gets to (say) 12,000 you could discard the highest 1000 and lowest 1000, dropping storage back to 10,000.
If the distribution of values is fairly consistent, this would work well. However if there is a possibility that you will receive a large number of very high or very low values near the end, that might distort your computation. Basically if you discard a "high" value that is less than the (eventual) median or a "low" value that is equal or greater than the (eventual) median then your calculation is off.
Update
Bit of an example
Let's say that the data set is the numbers 1,2,3,4,5,6,7,8,9.
By inspection the median is 5.
Let's say that the first 5 numbers you get are 1,3,5,7,9.
To save space we discard the highest and lowest, leaving 3,5,7
Now get two more, 2,6 so our storage is 2,3,5,6,7
Discard the highest and lowest, leaving 3,5,6
Get the last two 4,8 and we have 3,4,5,6,8
Median is still 5 and the world is a good place.
However, lets say that the first five numbers we get are 1,2,3,4,5
Discard top and bottom leaving 2,3,4
Get two more 6,7 and we have 2,3,4,6,7
Discard top and bottom leaving 3,4,6
Get last two 8,9 and we have 3,4,6,8,9
With a median of 6 which is incorrect.
If our numbers are well distributed, we can keep trimming the extremities. If they might be bunched in lots of large or lots of small numbers, then discarding is risky.