I am trying to tweak this ShaderToy example for vertices to create 'sparks'
out of them. Have tried to play with gl_PointCoord and gl_FragCoord without any results. Maybe, someone here could help me?
I need effect similar to this animated gif:
uniform float time;
uniform vec2 mouse;
uniform vec2 resolution;
#define M_PI 3.1415926535897932384626433832795
float rand(vec2 co)
{
return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453);
}
void main( ) {
float size = 30.0;
float prob = 0.95;
vec2 pos = floor(1.0 / size * gl_FragCoord.xy);
float color = 0.0;
float starValue = rand(pos);
if (starValue > prob)
{
vec2 center = size * pos + vec2(size, size) * 0.5;
float t = 0.9 + sin(time + (starValue - prob) / (1.0 - prob) * 45.0);
color = 1.0 - distance(gl_FragCoord.xy, center) / (0.5 * size);
color = color * t / (abs(gl_FragCoord.y - center.y)) * t / (abs(gl_FragCoord.x - center.x));
}
else if (rand(gl_FragCoord.xy / resolution.xy) > 0.996)
{
float r = rand(gl_FragCoord.xy);
color = r * ( 0.25 * sin(time * (r * 5.0) + 720.0 * r) + 0.75);
}
gl_FragColor = vec4(vec3(color), 1.0);
}
As I understand have to play with vec2 pos, setting it to a vertex position.
You don't need to play with pos. As Vertex Shader is only run by each vertex, there is no way to process its pixel values there using Pos. However, you can do processing pixel using gl_PointCoord.
I can think of two ways only for changing the scale of a texture
gl_PointSize in Vertex Shader in opengl es
In Fragment Shader, you can change the texture UV value, for example,
vec4 color = texture(texture0, ((gl_PointCoord-0.5) * factor) + vec2(0.5));
If you don't want to use any texture but only pixel processing in FS,
you can set UV like ((gl_PointCoord-0.5) * factor) + vec2(0.5)
instead of uv which is normally set as fragCoord.xy / iResolution.xy in Shadertoy
Please provide prompt how to make the atmosphere of the Earth so that it is visible from space and from the ground (as shown in the image)
a model of the earth:
Earth = new THREE.Mesh(new THREE.SphereGeometry(6700,32,32),ShaderMaterialEarth);
model of the cosmos:
cosmos= new THREE.Mesh(new THREE.SphereGeometry(50000,32,32),ShaderMaterialCosmos);
and a light source:
sun = new THREE.DirectionalLight();
where to start, just I do not know. Perhaps this should do ShaderMaterialCosmos, where to pass position of the camera, and calculate how should be painted pixel. But how?
I tried using the following but get zero vectors at the entrance of the fragment shader
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter16.html
vertexShader:
#define M_PI 3.1415926535897932384626433832795
const float ESun=1.0;
const float Kr = 0.0025;
const float Km = 0.0015;
const int nSamples = 2;
const float fSamples = 1.0;
const float fScaleDepth = 0.25;
varying vec2 vUv;
varying vec3 wPosition;
varying vec4 c0;
varying vec4 c1;
varying vec3 t0;
uniform vec3 v3CameraPos; , // The camera's current position
uniform vec3 v3LightDir; // Direction vector to the light source
uniform vec3 v3InvWavelength; // 1 / pow(wavelength, 4) for RGB
uniform float fCameraHeight; // The camera's current height
const float fOuterRadius=6500.0; // The outer (atmosphere) radius
const float fInnerRadius=6371.0; // The inner (planetary) radius
const float fKrESun=Kr*ESun; // Kr * ESun
const float fKmESun=Km*ESun; // Km * ESun
const float fKr4PI=Kr*4.0*M_PI; // Kr * 4 * PI
const float fKm4PI=Km*4.0*M_PI; // Km * 4 * PI
const float fScale=1.0/(fOuterRadius-fInnerRadius); // 1 / (fOuterRadius - fInnerRadius)
const float fScaleOverScaleDepth= fScale / fScaleDepth; // fScale / fScaleDepth
const float fInvScaleDepth=1.0/0.25;
float getNearIntersection(vec3 v3Pos, vec3 v3Ray, float fDistance2, float fRadius2)
{
float B = 2.0 * dot(v3Pos, v3Ray);
float C = fDistance2 - fRadius2;
float fDet = max(0.0, B*B - 4.0 * C);
return 0.5 * (-B - sqrt(fDet));
}
float scale(float fCos)
{
float x = 1.0 - fCos;
return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}
void main() {
// Get the ray from the camera to the vertex and its length (which
// is the far point of the ray passing through the atmosphere)
vec3 v3Pos = position.xyz;
vec3 v3Ray = v3Pos - v3CameraPos;
float fFar = length(v3Ray);
v3Ray /= fFar;
// Calculate the closest intersection of the ray with
// the outer atmosphere (point A in Figure 16-3)
float fNear = getNearIntersection(v3CameraPos, v3Ray, fCameraHeight*fCameraHeight, fOuterRadius*fOuterRadius);
// Calculate the ray's start and end positions in the atmosphere,
// then calculate its scattering offset
vec3 v3Start = v3CameraPos + v3Ray * fNear;
fFar -= fNear;
float fStartAngle = dot(v3Ray, v3Start) / fOuterRadius;
float fStartDepth = exp(-fInvScaleDepth);
float fStartOffset = fStartDepth * scale(fStartAngle);
// Initialize the scattering loop variables
float fSampleLength = fFar / fSamples;
float fScaledLength = fSampleLength * fScale;
vec3 v3SampleRay = v3Ray * fSampleLength;
vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;
// Now loop through the sample points
vec3 v3FrontColor = vec3(0.0, 0.0, 0.0);
for(int i=0; i<nSamples; i++) {
float fHeight = length(v3SamplePoint);
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
float fLightAngle = dot(v3LightDir, v3SamplePoint) / fHeight;
float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight;
float fScatter = (fStartOffset + fDepth * (scale(fLightAngle) * scale(fCameraAngle)));
vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
v3SamplePoint += v3SampleRay;
}
wPosition = (modelMatrix * vec4(position,1.0)).xyz;
c0.rgb = v3FrontColor * (v3InvWavelength * fKrESun);
c1.rgb = v3FrontColor * fKmESun;
t0 = v3CameraPos - v3Pos;
vUv = uv;
}
fragmentShader:
float getMiePhase(float fCos, float fCos2, float g, float g2){
return 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos2) / pow(1.0 + g2 - 2.0*g*fCos, 1.5);
}
// Rayleigh phase function
float getRayleighPhase(float fCos2){
//return 0.75 + 0.75 * fCos2;
return 0.75 * (2.0 + 0.5 * fCos2);
}
varying vec2 vUv;
varying vec3 wPosition;
varying vec4 c0;
varying vec4 c1;
varying vec3 t0;
uniform vec3 v3LightDir;
uniform float g;
uniform float g2;
void main() {
float fCos = dot(v3LightDir, t0) / length(t0);
float fCos2 = fCos * fCos;
gl_FragColor = getRayleighPhase(fCos2) * c0 + getMiePhase(fCos, fCos2, g, g2) * c1;
gl_FragColor = c1;
}
Chapter 16 of GPU Gem 2 has nice explanation and illustration for achieving your goal in real time.
Basically you need to perform ray casting through the atmosphere layer and evaluate the light scattering.
I'm using the following vertex shader (courtesy http://stemkoski.github.io/Three.js/Shader-Heightmap-Textures.html) to generate terrain from a grayscale height map:
uniform sampler2D bumpTexture;
uniform float bumpScale;
varying float vAmount;
varying vec2 vUV;
void main()
{
vUV = uv;
vec4 bumpData = texture2D( bumpTexture, uv );
vAmount = bumpData.r; // assuming map is grayscale it doesn't matter if you use r, g, or b.
// move the position along the normal
vec3 newPosition = position + normal * bumpScale * vAmount;
gl_Position = projectionMatrix * modelViewMatrix * vec4( newPosition, 1.0);
}
I'd like to have 32-bits of resolution, and have generated a heightmap that encodes heights as RGBA. I have no idea how to go about changing the shader code to accommodate this. Any direction or help?
bumpData.r, .g, .b and .a are all quantities in the range [0.0, 1.0] equivalent to the original byte values divided by 255.0.
So depending on your endianness, a naive conversion back to the original int might be:
(bumpData.r * 255.0) +
(bumpdata.g * 255.0 * 256.0) +
(bumpData.b * 255.0 * 256.0 * 256.0) +
(bumpData.a * 255.0 * 256.0 * 256.0 * 256.0)
So that's the same as a dot product with the vector (255.0, 65280.0, 16711680.0, 4278190080.0), which is likely to be the much more efficient way to implement it.
With threejs
const generateHeightTexture = (width) => {
// let max_texture_width = RENDERER.capabilities.maxTextureSize;
let pixels = new Float32Array(width * width)
pixels.fill(0, 0, pixels.length);
let texture = new THREE.DataTexture(pixels, width, width, THREE.AlphaFormat, THREE.FloatType);
texture.magFilter = THREE.LinearFilter;
texture.minFilter = THREE.NearestFilter;
// texture.anisotropy = RENDERER.capabilities.getMaxAnisotropy();
texture.needsUpdate = true;
console.log('Built Physical Texture:', width, 'x', width)
return texture;
}
So I've recently gotten into using WebGL and more specifically writing GLSL Shaders and I have run into a snag while writing the fragment shader for my "water" shader which is derived from this tutorial.
What I'm trying to achieve is a stepped shading (Toon shading, cell shading...) effect on waves generated by my vertex shader but the fragment shader seems to treat the waves as though they are still a flat plane and the entire mesh is drawn as one solid color.
What am I missing here? The sphere works perfectly but flat surfaces are all shaded uniformly. I have the same problem if I use a cube. Each face on the cube is shaded independently but the entire face is given a solid color.
The Scene
This is how I have my test scene set up. I have two meshes using the same material - a sphere and a plane and a light source.
The Problem
As you can see the shader is working as expected on the sphere.
I enabled wireframe for this shot to show that the vertex shader (perlin noise) is working beautifully on the plane.
But when I turn the wireframe off you can see that the fragment shader seems to be receiving the same level of light uniformly across the entire plane creating this...
Rotating the plane to face the light source will change the color of the material but again the color is applied uniformly over the entire surface of the plane.
The Fragment Shader
In all it's script kid glory lol.
uniform vec3 uMaterialColor;
uniform vec3 uDirLightPos;
uniform vec3 uDirLightColor;
uniform float uKd;
uniform float uBorder;
varying vec3 vNormal;
varying vec3 vViewPosition;
void main() {
vec4 color;
// compute direction to light
vec4 lDirection = viewMatrix * vec4( uDirLightPos, 0.0 );
vec3 lVector = normalize( lDirection.xyz );
// N * L. Normal must be normalized, since it's interpolated.
vec3 normal = normalize( vNormal );
// check the diffuse dot product against uBorder and adjust
// this diffuse value accordingly.
float diffuse = max( dot( normal, lVector ), 0.0);
if (diffuse > 0.95)
color = vec4(1.0,0.0,0.0,1.0);
else if (diffuse > 0.85)
color = vec4(0.9,0.0,0.0,1.0);
else if (diffuse > 0.75)
color = vec4(0.8,0.0,0.0,1.0);
else if (diffuse > 0.65)
color = vec4(0.7,0.0,0.0,1.0);
else if (diffuse > 0.55)
color = vec4(0.6,0.0,0.0,1.0);
else if (diffuse > 0.45)
color = vec4(0.5,0.0,0.0,1.0);
else if (diffuse > 0.35)
color = vec4(0.4,0.0,0.0,1.0);
else if (diffuse > 0.25)
color = vec4(0.3,0.0,0.0,1.0);
else if (diffuse > 0.15)
color = vec4(0.2,0.0,0.0,1.0);
else if (diffuse > 0.05)
color = vec4(0.1,0.0,0.0,1.0);
else
color = vec4(0.05,0.0,0.0,1.0);
gl_FragColor = color;
The Vertex Shader
vec3 mod289(vec3 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x)
{
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
vec3 fade(vec3 t) {
return t*t*t*(t*(t*6.0-15.0)+10.0);
}
// Classic Perlin noise
float cnoise(vec3 P)
{
vec3 Pi0 = floor(P); // Integer part for indexing
vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec3 Pf0 = fract(P); // Fractional part for interpolation
vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy, Pi1.yy);
vec4 iz0 = Pi0.zzzz;
vec4 iz1 = Pi1.zzzz;
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 gx0 = ixy0 * (1.0 / 7.0);
vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
gx0 = fract(gx0);
vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
vec4 sz0 = step(gz0, vec4(0.0));
gx0 -= sz0 * (step(0.0, gx0) - 0.5);
gy0 -= sz0 * (step(0.0, gy0) - 0.5);
vec4 gx1 = ixy1 * (1.0 / 7.0);
vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
gx1 = fract(gx1);
vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
vec4 sz1 = step(gz1, vec4(0.0));
gx1 -= sz1 * (step(0.0, gx1) - 0.5);
gy1 -= sz1 * (step(0.0, gy1) - 0.5);
vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
float n000 = dot(g000, Pf0);
float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
float n111 = dot(g111, Pf1);
vec3 fade_xyz = fade(Pf0);
vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return 2.2 * n_xyz;
}
// Classic Perlin noise, periodic variant
float pnoise(vec3 P, vec3 rep)
{
vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period
vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, mod period
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec3 Pf0 = fract(P); // Fractional part for interpolation
vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy, Pi1.yy);
vec4 iz0 = Pi0.zzzz;
vec4 iz1 = Pi1.zzzz;
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 gx0 = ixy0 * (1.0 / 7.0);
vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
gx0 = fract(gx0);
vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
vec4 sz0 = step(gz0, vec4(0.0));
gx0 -= sz0 * (step(0.0, gx0) - 0.5);
gy0 -= sz0 * (step(0.0, gy0) - 0.5);
vec4 gx1 = ixy1 * (1.0 / 7.0);
vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
gx1 = fract(gx1);
vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
vec4 sz1 = step(gz1, vec4(0.0));
gx1 -= sz1 * (step(0.0, gx1) - 0.5);
gy1 -= sz1 * (step(0.0, gy1) - 0.5);
vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
float n000 = dot(g000, Pf0);
float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
float n111 = dot(g111, Pf1);
vec3 fade_xyz = fade(Pf0);
vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return 2.2 * n_xyz;
}
varying vec2 vUv;
varying float noise;
uniform float time;
// for the cell shader
varying vec3 vNormal;
varying vec3 vViewPosition;
float turbulence( vec3 p ) {
float w = 100.0;
float t = -.5;
for (float f = 1.0 ; f <= 10.0 ; f++ ){
float power = pow( 2.0, f );
t += abs( pnoise( vec3( power * p ), vec3( 10.0, 10.0, 10.0 ) ) / power );
}
return t;
}
varying vec3 vertexWorldPos;
void main() {
vUv = uv;
// add time to the noise parameters so it's animated
noise = 10.0 * -.10 * turbulence( .5 * normal + time );
float b = 25.0 * pnoise( 0.05 * position + vec3( 2.0 * time ), vec3( 100.0 ) );
float displacement = - 10. - noise + b;
vec3 newPosition = position + normal * displacement;
gl_Position = projectionMatrix * modelViewMatrix * vec4( newPosition, 1.0 );
// for the cell shader effect
vNormal = normalize( normalMatrix * normal );
vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
vViewPosition = -mvPosition.xyz;
}
Worth Mention
I am using the Three.js library
My light source is an instance of THREE.SpotLight
First of all, shadows are completely different. Your problem here is a lack of change in the per-vertex normal after displacement. Correcting this is not going to get you shadows, but your lighting will at least vary across your displaced geometry.
If you have access to partial derivatives, you can do this in the fragment shader. Otherwise, you are kind of out of luck in GL ES, due to a lack of vertex adjacency information. You could also compute per-face normals with a Geometry Shader, but that is not an option in WebGL.
This should be all of the necessary changes to implement this, note that it requires partial derivative support (optional extension in OpenGL ES 2.0).
Vertex Shader:
varying vec3 vertexViewPos; // NEW
void main() {
...
vec3 newPosition = position + normal * displacement;
vertexViewPos = (modelViewMatrix * vec4 (newPosition, 1.0)).xyz; // NEW
...
}
Fragment Shader:
#extension GL_OES_standard_derivatives : require
uniform vec3 uMaterialColor;
uniform vec3 uDirLightPos;
uniform vec3 uDirLightColor;
uniform float uKd;
uniform float uBorder;
varying vec3 vNormal;
varying vec3 vViewPosition;
varying vec3 vertexViewPos; // NEW
void main() {
vec4 color;
// compute direction to light
vec4 lDirection = viewMatrix * vec4( uDirLightPos, 0.0 );
vec3 lVector = normalize( lDirection.xyz );
// N * L. Normal must be normalized, since it's interpolated.
vec3 normal = normalize(cross (dFdx (vertexViewPos), dFdy (vertexViewPos))); // UPDATED
...
}
To enable partial derivative support in WebGL you need to check the extension like this:
var ext = gl.getExtension("OES_standard_derivatives");
if (!ext) {
alert("OES_standard_derivatives does not exist on this machine");
return;
}
// proceed with the shaders above.