How to set optional parameter after unmarshalling Protobuf ( proto2 ) in Golang? - go

I have 5 fields in protobuf ( 3 required fileds and 2 optional fileds ). From producer end i will send 3 required fileds (marshall) and get those (unmarshall) 3 required fileds at consumer end. Now, i want to add those two optional parameters values at consumer end . Is it possible ? if yes, how?
Thanks in Advance

To update a field for a struct that is already in memory declare the variable name with the field like the example below.
If someStruct is in memory the value can be overwritten at anytime.
someStruct.SomeField = SomeValue
package main
import (
"fmt"
)
type Data struct {
FieldOne string
FieldTwo int
FieldThree []string
FieldFour float64
}
func main() {
data := createData("A string", 9)
data = data.rcv()
fmt.Println(data)
}
func createData(f1 string, f2 int) *Data {
d := &Data{}
d.FieldOne = f1
d.FieldTwo = f2
return d
}
func (d *Data) rcv() *Data {
d.FieldThree = []string{"string1", "string2"}
d.FieldFour = 1.2
return d
}

Related

How to omit conditional field of struct within marshal

There is struct of MyStruct.
type MyStruct struct {
Code int `json:"Code"`
Flags uint8 `json:"Flags"`
OptionField int `json:",omitempty"`
}
Following code convert it to json.
f := MyStruct{Code:500, OptionField:41}
r, _ := json.Marshal(f)
fmt.Println(string(r)
I need to "OptionField" be optional. Some time it should exist in json with one of values [0, 1, 2, 3, ]. and in the other time it should exclude from json.
My problem is: omitempty will exclude it when the value is zero, and the default value of int is zero. Is there any way to omit field in condition (ex: omit if value is -1). Or there is any way to do it.
You could use *int instead of int and set the pointer value to nil in order to omit this.
package main
import (
"encoding/json"
"fmt"
)
type MyStruct struct {
Code int `json:"Code"`
Flags uint8 `json:"Flags"`
OptionField *int `json:",omitempty"`
}
func format(s MyStruct) string {
r, _ := json.Marshal(s)
return string(r)
}
func main() {
f := MyStruct{Code: 500, Flags: 10, OptionField: new(int)}
fmt.Println(format(f)) // {"Code":500,"Flags":10,"OptionField":0}
f.OptionField = nil
fmt.Println(format(f)) // {"Code":500,"Flags":10}
}

struct type as map key [duplicate]

This question already has an answer here:
golang how can I use struct name as map key
(1 answer)
Closed 9 months ago.
We have a following function:
func (h *Handler) Handle(message interface{}) error {
//here there is a switch for different messages
switch m := message.(type) {
}
}
This signature is given and can't be changed. There are around 20 different message types the handler processes.
Now, there are some of these messages (around 4) which need special post-processing. In a different package.
Thus, I am thinking to do this like this:
func (h *Handler) Handle(message interface{}) error {
//here there is a switch for different messages
switch m := message.(type) {
}
//only post-process if original message processing succeeds
postProcessorPkg.Process(message)
}
Now, in the Process function, I want to quickly lookup if the message type is indeed of the ones we need postprocessing for. I don't want to do a switch again here. There are many handlers, in different packages, with varying amount of message types, and it should be generic.
So I was thinking of registering the message type in the postprocessor and then just do a lookup:
func (p *Postprocessor) Register(msgtype interface{}) {
registeredTypes[msgtype] = msgtype
}
and then
func (p *Postprocessor) Process(msgtype interface{}) error {
if ok := registeredTypes[msgtype]; !ok {
return errors.New("Unsupported message type")
}
prop := GetProp(registeredTypes[msgtype])
doSmthWithProp(prop)
}
This will all not work now because I can only "register" instances of the message, not the message type itself, as far as I know. Thus the map would only match a specific instance of a message, not its type, which is what I need.
So I guess this needs redesign. I can completely ditch the registering and the map lookup, but
I can't change the Handle function to a specific type (signature will need to remain message interface{}
I would like to avoid to have to use reflect, just because I will have a hard time defending such a solution with some colleagues.
As there is no possibility to set a type as the map key, I finally decided to implement the following solution, which is based on #Chrono Kitsune 's solution:
type Postprocess interface {
NeedsPostprocess() bool
}
type MsgWithPostProcess struct {}
func (p *MsgWithPostProcess) NeedsPostprocess() bool {
return true
}
type Msg1 struct {
MsgWithPostProcess
//other stuff
}
type Msg2 struct {
MsgWithPostProcess
//other stuff
}
type Msg3 struct {
//no postprocessing needed
}
func (p *Postprocessor) Process(msgtype interface{}) error {
if _, ok := msgtype.(Postprocess); ok {
//do postprocessing
}
}
As of my simple test I did, only Msg1 and Msg2 will be postprocessed, but not Msg3, which is what I wanted.
This question was the first hit I found on Google but the title is somewhat misleading. So I'll leave this here to add some food for thought with the title of the question in mind.
First, the issue with maps is that its key must be a comparable value. This is why for example a slice cannot be used is a map key. A slice is not comparable and is therefore not allowed. You can use an array (fixed sized slice) but not a slice for the same reason.
Second, you have in the reflect.TypeOf(...).String()a way to get a canonical string representation for types. Though it is not unambiguous unless you include the package path, as you can see here.
package main
import (
"fmt"
s2 "go/scanner"
"reflect"
s1 "text/scanner"
)
type X struct{}
func main() {
fmt.Println(reflect.TypeOf(1).String())
fmt.Println(reflect.TypeOf(X{}).String())
fmt.Println(reflect.TypeOf(&X{}).String())
fmt.Println(reflect.TypeOf(s1.Scanner{}).String())
fmt.Println(reflect.TypeOf(s2.Scanner{}).String())
fmt.Println(reflect.TypeOf(s1.Scanner{}).PkgPath(), reflect.TypeOf(s1.Scanner{}).String())
fmt.Println(reflect.TypeOf(s2.Scanner{}).PkgPath(), reflect.TypeOf(s2.Scanner{}).String())
}
int
main.X
*main.X
scanner.Scanner
scanner.Scanner
text/scanner scanner.Scanner
go/scanner scanner.Scanner
https://play.golang.org/p/NLODZNdik6r
With this information, you can (if you feel so inclined) create a map which let's go from a reflect.Type to a key and back again, like this.
package main
import (
"fmt"
s2 "go/scanner"
"reflect"
s1 "text/scanner"
)
type TypeMap struct {
m []reflect.Type
}
func (m *TypeMap) Get(t reflect.Type) int {
for i, x := range m.m {
if x == t {
return i
}
}
m.m = append(m.m, t)
return len(m.m) - 1
}
func (m *TypeMap) Reverse(t int) reflect.Type {
return m.m[t]
}
type X struct{}
func main() {
var m TypeMap
fmt.Println(m.Get(reflect.TypeOf(1)))
fmt.Println(m.Reverse(0))
fmt.Println(m.Get(reflect.TypeOf(1)))
fmt.Println(m.Reverse(0))
fmt.Println(m.Get(reflect.TypeOf(1)))
fmt.Println(m.Reverse(0))
fmt.Println(m.Get(reflect.TypeOf(X{})))
fmt.Println(m.Reverse(1))
fmt.Println(m.Get(reflect.TypeOf(&X{})))
fmt.Println(m.Reverse(2))
fmt.Println(m.Get(reflect.TypeOf(s1.Scanner{})))
fmt.Println(m.Reverse(3).PkgPath(), m.Reverse(3))
fmt.Println(m.Get(reflect.TypeOf(s2.Scanner{})))
fmt.Println(m.Reverse(4).PkgPath(), m.Reverse(4))
}
0
int
0
int
0
int
1
main.X
2
*main.X
3
text/scanner scanner.Scanner
4
go/scanner scanner.Scanner
In the above case I'm assuming that N is small. Also note the use of the identity of reflect.TypeOf, it will return the same pointer for the same type on subsequent calls.
If N is not small, you may want to do something a bit more complex.
package main
import (
"fmt"
s2 "go/scanner"
"reflect"
s1 "text/scanner"
)
type PkgPathNum struct {
PkgPath string
Num int
}
type TypeMap struct {
m map[string][]PkgPathNum
r []reflect.Type
}
func (m *TypeMap) Get(t reflect.Type) int {
k := t.String()
xs := m.m[k]
pkgPath := t.PkgPath()
for _, x := range xs {
if x.PkgPath == pkgPath {
return x.Num
}
}
n := len(m.r)
m.r = append(m.r, t)
xs = append(xs, PkgPathNum{pkgPath, n})
if m.m == nil {
m.m = make(map[string][]PkgPathNum)
}
m.m[k] = xs
return n
}
func (m *TypeMap) Reverse(t int) reflect.Type {
return m.r[t]
}
type X struct{}
func main() {
var m TypeMap
fmt.Println(m.Get(reflect.TypeOf(1)))
fmt.Println(m.Reverse(0))
fmt.Println(m.Get(reflect.TypeOf(X{})))
fmt.Println(m.Reverse(1))
fmt.Println(m.Get(reflect.TypeOf(&X{})))
fmt.Println(m.Reverse(2))
fmt.Println(m.Get(reflect.TypeOf(s1.Scanner{})))
fmt.Println(m.Reverse(3).PkgPath(), m.Reverse(3))
fmt.Println(m.Get(reflect.TypeOf(s2.Scanner{})))
fmt.Println(m.Reverse(4).PkgPath(), m.Reverse(4))
}
0
int
1
main.X
2
*main.X
3
text/scanner scanner.Scanner
4
go/scanner scanner.Scanner
https://play.golang.org/p/2fiMZ8qCQtY
Note the subtitles of pointer to type, that, X and *X actually are different types.

How to access unexported struct fields

Is there a way to use reflect to access unexported fields in Go 1.8?
This no longer seems to work: https://stackoverflow.com/a/17982725/555493
Note that reflect.DeepEqual works just fine (that is, it can access unexported fields) but I can't make heads or tails of that function. Here's a go playarea that shows it in action: https://play.golang.org/p/vyEvay6eVG. The src code is below
import (
"fmt"
"reflect"
)
type Foo struct {
private string
}
func main() {
x := Foo{"hello"}
y := Foo{"goodbye"}
z := Foo{"hello"}
fmt.Println(reflect.DeepEqual(x,y)) //false
fmt.Println(reflect.DeepEqual(x,z)) //true
}
If the struct is addressable, you can use unsafe.Pointer to access the field (read or write) it, like this:
rs := reflect.ValueOf(&MyStruct).Elem()
rf := rs.Field(n)
// rf can't be read or set.
rf = reflect.NewAt(rf.Type(), unsafe.Pointer(rf.UnsafeAddr())).Elem()
// Now rf can be read and set.
See full example on the playground.
This use of unsafe.Pointer is valid according to the documentation and running go vet returns no errors.
If the struct is not addressable this trick won't work, but you can create an addressable copy like this:
rs = reflect.ValueOf(MyStruct)
rs2 := reflect.New(rs.Type()).Elem()
rs2.Set(rs)
rf = rs2.Field(0)
rf = reflect.NewAt(rf.Type(), unsafe.Pointer(rf.UnsafeAddr())).Elem()
// Now rf can be read. Setting will succeed but only affects the temporary copy.
See full example on the playground.
Based on cpcallen's work:
import (
"reflect"
"unsafe"
)
func GetUnexportedField(field reflect.Value) interface{} {
return reflect.NewAt(field.Type(), unsafe.Pointer(field.UnsafeAddr())).Elem().Interface()
}
func SetUnexportedField(field reflect.Value, value interface{}) {
reflect.NewAt(field.Type(), unsafe.Pointer(field.UnsafeAddr())).
Elem().
Set(reflect.ValueOf(value))
}
reflect.NewAt might be confusing to read at first. It returns a reflect.Value representing a pointer to a value of the specified field.Type(), using unsafe.Pointer(field.UnsafeAddr()) as that pointer. In this context reflect.NewAt is different than reflect.New, which would return a pointer to a freshly initialized value.
Example:
type Foo struct {
unexportedField string
}
GetUnexportedField(reflect.ValueOf(&Foo{}).Elem().FieldByName("unexportedField"))
https://play.golang.org/p/IgjlQPYdKFR
reflect.DeepEqual() can do it because it has access to unexported features of the reflect package, in this case namely for the valueInterface() function, which takes a safe argument, which denies access to unexported field values via the Value.Interface() method if safe=true. reflect.DeepEqual() will (might) call that passing safe=false.
You can still do it, but you cannot use Value.Interface() for unexported fields. Instead you have to use type-specific methods, such as Value.String() for string, Value.Float() for floats, Value.Int() for ints etc. These will return you a copy of the value (which is enough to inspect it), but will not allow you to modify the field's value (which might be "partly" possible if Value.Interface() would work and the field type would be a pointer type).
If a field happens to be an interface type, you may use Value.Elem() to get to the value contained / wrapped by the interface value.
To demonstrate:
type Foo struct {
s string
i int
j interface{}
}
func main() {
x := Foo{"hello", 2, 3.0}
v := reflect.ValueOf(x)
s := v.FieldByName("s")
fmt.Printf("%T %v\n", s.String(), s.String())
i := v.FieldByName("i")
fmt.Printf("%T %v\n", i.Int(), i.Int())
j := v.FieldByName("j").Elem()
fmt.Printf("%T %v\n", j.Float(), j.Float())
}
Output (try it on the Go Playground):
string hello
int64 2
float64 3
package main
import (
"fmt"
"reflect"
"strings"
"unsafe"
)
type Person1 struct {
W3ID string
Name string
}
type Address1 struct {
city string
country string
}
type User1 struct {
name string
age int
address Address1
manager Person1
developer Person1
tech Person1
}
func showDetails(load, email interface{}) {
if reflect.ValueOf(load).Kind() == reflect.Struct {
typ := reflect.TypeOf(load)
value := reflect.ValueOf(load)
//#1 For struct, not addressable create a copy With Element.
value2 := reflect.New(value.Type()).Elem()
//#2 Value2 is addressable and can be set
value2.Set(value)
for i := 0; i < typ.NumField(); i++ {
if value.Field(i).Kind() == reflect.Struct {
rf := value2.Field(i)
/* #nosec G103 */
rf = reflect.NewAt(rf.Type(), unsafe.Pointer(rf.UnsafeAddr())).Elem()
irf := rf.Interface()
typrf := reflect.TypeOf(irf)
nameP := typrf.String()
if strings.Contains(nameP, "Person") {
//fmt.Println(nameP, "FOUND !!!!!!! ")
for j := 0; j < typrf.NumField(); j++ {
re := rf.Field(j)
nameW := typrf.Field(j).Name
if strings.Contains(nameW, "W3ID") {
valueW := re.Interface()
fetchEmail := valueW.(string)
if fetchEmail == email {
fmt.Println(fetchEmail, " MATCH!!!!")
}
}
}
}
showDetails(irf, email)
} else {
// fmt.Printf("%d.Type:%T || Value:%#v\n",
// (i + 1), value.Field(i), value.Field(i))
}
}
}
}
func main() {
iD := "tsumi#in.org.com"
load := User1{
name: "John Doe",
age: 34,
address: Address1{
city: "New York",
country: "USA",
},
manager: Person1{
W3ID: "jBult#in.org.com",
Name: "Bualt",
},
developer: Person1{
W3ID: "tsumi#in.org.com",
Name: "Sumi",
},
tech: Person1{
W3ID: "lPaul#in.org.com",
Name: "Paul",
},
}
showDetails(load, iD)
}

What is an idiomatic way of representing enums in Go?

I'm trying to represent a simplified chromosome, which consists of N bases, each of which can only be one of {A, C, T, G}.
I'd like to formalize the constraints with an enum, but I'm wondering what the most idiomatic way of emulating an enum is in Go.
Quoting from the language specs:Iota
Within a constant declaration, the predeclared identifier iota represents successive untyped integer constants. It is reset to 0 whenever the reserved word const appears in the source and increments after each ConstSpec. It can be used to construct a set of related constants:
const ( // iota is reset to 0
c0 = iota // c0 == 0
c1 = iota // c1 == 1
c2 = iota // c2 == 2
)
const (
a = 1 << iota // a == 1 (iota has been reset)
b = 1 << iota // b == 2
c = 1 << iota // c == 4
)
const (
u = iota * 42 // u == 0 (untyped integer constant)
v float64 = iota * 42 // v == 42.0 (float64 constant)
w = iota * 42 // w == 84 (untyped integer constant)
)
const x = iota // x == 0 (iota has been reset)
const y = iota // y == 0 (iota has been reset)
Within an ExpressionList, the value of each iota is the same because it is only incremented after each ConstSpec:
const (
bit0, mask0 = 1 << iota, 1<<iota - 1 // bit0 == 1, mask0 == 0
bit1, mask1 // bit1 == 2, mask1 == 1
_, _ // skips iota == 2
bit3, mask3 // bit3 == 8, mask3 == 7
)
This last example exploits the implicit repetition of the last non-empty expression list.
So your code might be like
const (
A = iota
C
T
G
)
or
type Base int
const (
A Base = iota
C
T
G
)
if you want bases to be a separate type from int.
Referring to the answer of jnml, you could prevent new instances of Base type by not exporting the Base type at all (i.e. write it lowercase). If needed, you may make an exportable interface that has a method that returns a base type. This interface could be used in functions from the outside that deal with Bases, i.e.
package a
type base int
const (
A base = iota
C
T
G
)
type Baser interface {
Base() base
}
// every base must fulfill the Baser interface
func(b base) Base() base {
return b
}
func(b base) OtherMethod() {
}
package main
import "a"
// func from the outside that handles a.base via a.Baser
// since a.base is not exported, only exported bases that are created within package a may be used, like a.A, a.C, a.T. and a.G
func HandleBasers(b a.Baser) {
base := b.Base()
base.OtherMethod()
}
// func from the outside that returns a.A or a.C, depending of condition
func AorC(condition bool) a.Baser {
if condition {
return a.A
}
return a.C
}
Inside the main package a.Baser is effectively like an enum now.
Only inside the a package you may define new instances.
You can make it so:
type MessageType int32
const (
TEXT MessageType = 0
BINARY MessageType = 1
)
With this code compiler should check type of enum
It's true that the above examples of using const and iota are the most idiomatic ways of representing primitive enums in Go. But what if you're looking for a way to create a more fully-featured enum similar to the type you'd see in another language like Java or Python?
A very simple way to create an object that starts to look and feel like a string enum in Python would be:
package main
import (
"fmt"
)
var Colors = newColorRegistry()
func newColorRegistry() *colorRegistry {
return &colorRegistry{
Red: "red",
Green: "green",
Blue: "blue",
}
}
type colorRegistry struct {
Red string
Green string
Blue string
}
func main() {
fmt.Println(Colors.Red)
}
Suppose you also wanted some utility methods, like Colors.List(), and Colors.Parse("red"). And your colors were more complex and needed to be a struct. Then you might do something a bit like this:
package main
import (
"errors"
"fmt"
)
var Colors = newColorRegistry()
type Color struct {
StringRepresentation string
Hex string
}
func (c *Color) String() string {
return c.StringRepresentation
}
func newColorRegistry() *colorRegistry {
red := &Color{"red", "F00"}
green := &Color{"green", "0F0"}
blue := &Color{"blue", "00F"}
return &colorRegistry{
Red: red,
Green: green,
Blue: blue,
colors: []*Color{red, green, blue},
}
}
type colorRegistry struct {
Red *Color
Green *Color
Blue *Color
colors []*Color
}
func (c *colorRegistry) List() []*Color {
return c.colors
}
func (c *colorRegistry) Parse(s string) (*Color, error) {
for _, color := range c.List() {
if color.String() == s {
return color, nil
}
}
return nil, errors.New("couldn't find it")
}
func main() {
fmt.Printf("%s\n", Colors.List())
}
At that point, sure it works, but you might not like how you have to repetitively define colors. If at this point you'd like to eliminate that, you could use tags on your struct and do some fancy reflecting to set it up, but hopefully this is enough to cover most people.
There is a way with struct namespace.
The benefit is all enum variables are under a specific namespace to avoid pollution.
The issue is that we could only use var not const
type OrderStatusType string
var OrderStatus = struct {
APPROVED OrderStatusType
APPROVAL_PENDING OrderStatusType
REJECTED OrderStatusType
REVISION_PENDING OrderStatusType
}{
APPROVED: "approved",
APPROVAL_PENDING: "approval pending",
REJECTED: "rejected",
REVISION_PENDING: "revision pending",
}
As of Go 1.4, the go generate tool has been introduced together with the stringer command that makes your enum easily debuggable and printable.
I am sure we have a lot of good answers here. But, I just thought of adding the way I have used enumerated types
package main
import "fmt"
type Enum interface {
name() string
ordinal() int
values() *[]string
}
type GenderType uint
const (
MALE = iota
FEMALE
)
var genderTypeStrings = []string{
"MALE",
"FEMALE",
}
func (gt GenderType) name() string {
return genderTypeStrings[gt]
}
func (gt GenderType) ordinal() int {
return int(gt)
}
func (gt GenderType) values() *[]string {
return &genderTypeStrings
}
func main() {
var ds GenderType = MALE
fmt.Printf("The Gender is %s\n", ds.name())
}
This is by far one of the idiomatic ways we could create Enumerated types and use in Go.
Edit:
Adding another way of using constants to enumerate
package main
import (
"fmt"
)
const (
// UNSPECIFIED logs nothing
UNSPECIFIED Level = iota // 0 :
// TRACE logs everything
TRACE // 1
// INFO logs Info, Warnings and Errors
INFO // 2
// WARNING logs Warning and Errors
WARNING // 3
// ERROR just logs Errors
ERROR // 4
)
// Level holds the log level.
type Level int
func SetLogLevel(level Level) {
switch level {
case TRACE:
fmt.Println("trace")
return
case INFO:
fmt.Println("info")
return
case WARNING:
fmt.Println("warning")
return
case ERROR:
fmt.Println("error")
return
default:
fmt.Println("default")
return
}
}
func main() {
SetLogLevel(INFO)
}
For a use case like this, it may be useful to use a string constant so it can be marshaled into a JSON string. In the following example, []Base{A,C,G,T} would get marshaled to ["adenine","cytosine","guanine","thymine"].
type Base string
const (
A Base = "adenine"
C = "cytosine"
G = "guanine"
T = "thymine"
)
When using iota, the values get marshaled into integers. In the following example, []Base{A,C,G,T} would get marshaled to [0,1,2,3].
type Base int
const (
A Base = iota
C
G
T
)
Here's an example comparing both approaches:
https://play.golang.org/p/VvkcWvv-Tvj
Here is an example that will prove useful when there are many enumerations. It uses structures in Golang, and draws upon Object Oriented Principles to tie them all together in a neat little bundle. None of the underlying code will change when a new enumeration is added or deleted. The process is:
Define an enumeration structure for enumeration items: EnumItem. It has an integer and string type.
Define the enumeration as a list of enumeration items: Enum
Build methods for the enumeration. A few have been included:
enum.Name(index int): returns the name for the given index.
enum.Index(name string): returns the name for the given index.
enum.Last(): returns the index and name of the last enumeration
Add your enumeration definitions.
Here is some code:
type EnumItem struct {
index int
name string
}
type Enum struct {
items []EnumItem
}
func (enum Enum) Name(findIndex int) string {
for _, item := range enum.items {
if item.index == findIndex {
return item.name
}
}
return "ID not found"
}
func (enum Enum) Index(findName string) int {
for idx, item := range enum.items {
if findName == item.name {
return idx
}
}
return -1
}
func (enum Enum) Last() (int, string) {
n := len(enum.items)
return n - 1, enum.items[n-1].name
}
var AgentTypes = Enum{[]EnumItem{{0, "StaffMember"}, {1, "Organization"}, {1, "Automated"}}}
var AccountTypes = Enum{[]EnumItem{{0, "Basic"}, {1, "Advanced"}}}
var FlagTypes = Enum{[]EnumItem{{0, "Custom"}, {1, "System"}}}
Refactored https://stackoverflow.com/a/17989915/863651 to make it a bit more readable:
package SampleEnum
type EFoo int
const (
A EFoo = iota
C
T
G
)
type IEFoo interface {
Get() EFoo
}
func(e EFoo) Get() EFoo { // every EFoo must fulfill the IEFoo interface
return e
}
func(e EFoo) otherMethod() { // "private"
//some logic
}
This is a safe way to implement enum in golang:
package main
import (
"fmt"
)
const (
MALE = _gender(1)
FEMALE = _gender(2)
RED = _color("RED")
GREEN = _color("GREEN")
BLUE = _color("BLUE")
)
type Gender interface {
_isGender()
Value() int
}
type _gender int
func (_gender) _isGender() {}
func (_g _gender) Value() int {
return int(_g)
}
type Color interface {
_isColor()
Value() string
}
type _color string
func (_color) _isColor() {}
func (_c _color) Value() string {
return string(_c)
}
func main() {
genders := []Gender{MALE, FEMALE}
colors := []Color{RED, GREEN, BLUE}
fmt.Println("Colors =", colors)
fmt.Println("Genders =", genders)
}
The output:
Colors = [RED GREEN BLUE]
Genders = [1 2]
Also, this is a pretty effective way to store different roles in one location in a byte, where the first value is set to 1, bit shifted by an iota.
package main
import "fmt"
const (
isCaptain = 1 << iota
isTrooper
isMedic
canFlyMars
canFlyJupiter
canFlyMoon
)
func main() {
var roles byte = isCaptain | isMedic | canFlyJupiter
//Prints a binary representation.
fmt.Printf("%b\n", roles)
fmt.Printf("%b\n", isCaptain)
fmt.Printf("%b\n", isTrooper)
fmt.Printf("%b\n", isMedic)
fmt.Printf("Is Captain? %v\n", isCaptain&roles == isCaptain)
fmt.Printf("Is Trooper? %v", isTrooper&roles == isTrooper)
}
I created the enum this way. Suppose we need an enum representing gender. Possible values are Male, Female, Others
package gender
import (
"fmt"
"strings"
)
type Gender struct {
g string
}
var (
Unknown = Gender{}
Male = Gender{g: "male"}
Female = Gender{g: "female"}
Other = Gender{g: "other"}
)
var genders = []Gender{
Unknown,
Male,
Female,
Other,
}
func Parse(code string) (parsed Gender, err error) {
for _, g := range genders {
if g.g == strings.ToLower(code) {
if g == Unknown {
err = fmt.Errorf("unknown gender")
}
parsed = g
return
}
}
parsed = Unknown
err = fmt.Errorf("unknown gender", code)
return
}
func (g Gender) Gender() string {
return g.g
}
A simpler way I have found to work.
const (
Stake TX = iota
Withdraw)
type TX int
func (t TX) String() string {
return [...]string{"STAKE", "WITHDRAW"}[t]}
log.Println(Stake.String()) --> STAKE

Using reflect, how do you set the value of a struct field?

having a rough time working with struct fields using reflect package. in particular, have not figured out how to set the field value.
type t struct { fi int; fs string }
var r t = t{ 123, "jblow" }
var i64 int64 = 456
getting Name of field i - this seems to work
var field = reflect.TypeOf(r).Field(i).Name
getting value of field i as a) interface{}, b) int - this seems to work
var iface interface{} = reflect.ValueOf(r).Field(i).Interface()
var i int = int(reflect.ValueOf(r).Field(i).Int())
setting value of field i - try one - panic
reflect.ValueOf(r).Field(i).SetInt( i64 )
panic: reflect.Value·SetInt using value obtained using unexported field
assuming it did not like field names "id" and "name", so renamed to "Id" and "Name"
a) is this assumption correct?
b) if correct, thought not necessary since in same file / package
setting value of field i - try two (with field names capitalized ) - panic
reflect.ValueOf(r).Field(i).SetInt( 465 )
reflect.ValueOf(r).Field(i).SetInt( i64 )
panic: reflect.Value·SetInt using unaddressable value
Instructions below by #peterSO are thorough and high quality
Four. this works:
reflect.ValueOf(&r).Elem().Field(i).SetInt( i64 )
he documents as well that the field names must be exportable (begin with capital letter)
The Go json package marshals and unmarshals JSON from and to Go structures.
Here's a step-by-step example which sets the value of a struct field while carefully avoiding errors.
The Go reflect package has a CanAddr function.
func (v Value) CanAddr() bool
CanAddr returns true if the value's
address can be obtained with Addr.
Such values are called addressable. A
value is addressable if it is an
element of a slice, an element of an
addressable array, a field of an
addressable struct, or the result of
dereferencing a pointer. If CanAddr
returns false, calling Addr will
panic.
The Go reflect package has a CanSet function, which, if true, implies that CanAddr is also true.
func (v Value) CanSet() bool
CanSet returns true if the value of v
can be changed. A Value can be changed
only if it is addressable and was not
obtained by the use of unexported
struct fields. If CanSet returns
false, calling Set or any
type-specific setter (e.g., SetBool,
SetInt64) will panic.
We need to make sure we can Set the struct field. For example,
package main
import (
"fmt"
"reflect"
)
func main() {
type t struct {
N int
}
var n = t{42}
// N at start
fmt.Println(n.N)
// pointer to struct - addressable
ps := reflect.ValueOf(&n)
// struct
s := ps.Elem()
if s.Kind() == reflect.Struct {
// exported field
f := s.FieldByName("N")
if f.IsValid() {
// A Value can be changed only if it is
// addressable and was not obtained by
// the use of unexported struct fields.
if f.CanSet() {
// change value of N
if f.Kind() == reflect.Int {
x := int64(7)
if !f.OverflowInt(x) {
f.SetInt(x)
}
}
}
}
}
// N at end
fmt.Println(n.N)
}
Output:
42
7
If we can be certain that all the error checks are unnecessary, the example simplifies to,
package main
import (
"fmt"
"reflect"
)
func main() {
type t struct {
N int
}
var n = t{42}
fmt.Println(n.N)
reflect.ValueOf(&n).Elem().FieldByName("N").SetInt(7)
fmt.Println(n.N)
}
BTW, Go is available as open source code. A good way to learn about reflection is to see how the core Go developers use it. For example, the Go fmt and json packages. The package documentation has links to the source code files under the heading Package files.
This seems to work:
package main
import (
"fmt"
"reflect"
)
type Foo struct {
Number int
Text string
}
func main() {
foo := Foo{123, "Hello"}
fmt.Println(int(reflect.ValueOf(foo).Field(0).Int()))
reflect.ValueOf(&foo).Elem().Field(0).SetInt(321)
fmt.Println(int(reflect.ValueOf(foo).Field(0).Int()))
}
Prints:
123
321

Resources