Minimum in rotated sorted array with duplicates - algorithm

I am trying to find the minimum in a rotated sorted array with duplicates:
I tried this:
def find_pivot(arr):
lo = 0
hi = len(arr) -1
while lo<=hi:
mid = (hi+lo)//2
if arr[mid]<arr[0]:
hi = mid-1
else:
lo = mid+1
return lo
class Solution:
"""
#param nums: a rotated sorted array
#return: the minimum number in the array
"""
def findMin(self, nums):
pivot_index = find_pivot(nums)
left = nums[:pivot_index]
right = nums[pivot_index:]
if right:
return right[0]
return left[0]
This fails when the array is [999,999,1000,1000,10000,0,999,999,999]. My algorithm returns 999, when it should return 0
How do I fix this?

Binary search will not work here because of duplicates.
Suppose your array is [1,1,1,1,1,0,1,1]. Then arr[lo] = arr[hi] = arr[mid] = 1: which half you dive in? You may say "right one!" of course, but why? All informations you have with those three items only is not enough to have the certainty of you choice. In fact the array could be [1,0,1,1,1,1,1,1], and yet arr[lo] = arr[hi] = arr[mid] = 1, but the pivot is not in right half now.
In the worst case, with this type of instances you stil need to scan the whole array.
If you could have a more tighten order in the array, which means no duplicates (or, no more than k duplicates) then binary search would be useful.

Related

How do I fix my code so that it prints the largest and lowest values in a matrix?

def largestlowest(matrix):
largeset = 0
lowest = 0
for row in range(len(matrix)):
for col in range(len(matrix[row]-1)):
if matrix[col] > matrix[col+1]:
largest = matrix[col]
if matrix[col] < matrix[col+1]:
lowest = matrix[col]
else:
print("there is no min/max value")
return largest and lowest
print(largestlowest([[4,8,2,9,34,57,22,44], [1,2,8,9,1,2,55,3,22,4]]))
Don't forget to mention the language. I assume this is python. Also try to run and test the code before posting it. This code is not running at all.
This is the running version of the code you submitted in python:
def largestlowest(matrix):
largeset = 0
lowest = 0
for row in range(len(matrix)):
for col in range(len(matrix[row])-1):
if (matrix[row][col] > matrix[row][col+1]):
largest = matrix[row][col]
if (matrix[row][col] < matrix[row][col+1]):
lowest = matrix[row][col]
return (largest, lowest)
print(largestlowest([[4,8,2,9,34,57,22,44], [1,2,8,9,1,2,55,3,22,4]]))
Note that to access an element of a list you should call it by both row and column : matrix[row][col].
There are a few things wrong:
You go up to (len(matrix[row])-1) and therefore do not include the
last column.
Then you compare neighboring elements matrix[row][col] > matrix[row][col+1] instead of comparing all of them with the lowest and the largest.
You assign the lowest to 0, which will always be lower than all of your elements
return a and b will return a only
I recommend you search each step (e.g how to call a matrix element in python). You will find plenty of information online. Try to run the code as quickly as possible and solve the errors in the console.
Finally, the code that does what you want (I think):
def largestlowest(matrix):
if (not len(matrix)):
return ("Matrix should have at least one element!")
## assign largest and lowest to first element of martix
largest = lowest = matrix[0][0]
for row in range(len(matrix)):
for col in range(len(matrix[row])):
if (matrix[row][col] > largest):
largest = matrix[row][col]
if (matrix[row][col] < lowest):
lowest = matrix[row][col]
# return (largest, lowest)
return "Largest element of matrix: %d, lowest element of matrix: %d" % (largest, lowest)
print(largestlowest([[4,8,2,9,34,57,22,44], [1,2,8,9,1,2,55,3,22,4]]))
print(largestlowest([]))
Your code was actually comparing the wrong values:
if matrix[col] > matrix[col+1]: isn't comparing the current value to the largest, it is comparing it to the one after it. The same thing was happening for the small.
Also, you were handling your data incorrectly. matrix[col] is an array itself, not an individual element (at least, according to the example you gave).
The code below is commented and works. It outputs:
LARGEST: 57
LOWEST: 1
# Function
def largestlowest(matrix):
# Declaring biggest and smallest variable. Setting extraneous at first
largest = -10000
lowest = 10000
# Loop through every array in the matrix as you have defined it
for arr in matrix:
# Loop through each item in the array
for item in arr:
# If it is bigger than the largest, set the largest to be that value
if item > largest:
largest = item
# If it is smaller than the smallest, set the smallest to be that value
if item < lowest:
lowest = item
# Return the largest and lowest
return largest, lowest
# Example main function
def main():
# Define a test matrix (copied from your example)
matrix = [[4,8,2,9,34,57,22,44], [1,2,8,9,1,2,55,3,22,4]]
# Run the function we created
largest, lowest = largestlowest(matrix)
# Print out the results
print("LARGEST: ", largest)
print("LOWEST: ", lowest)
# Call the main function
main()

Quick Sort Algo

My algorithm is not working as intended. When I use a data set that has a starting value greater than the last element, the method sorts the numbers in descending order rather than ascending. I am not exactly sure changing the numbers at input[0] and input.length - 1 can alter the output from ascending to reverse order. I would appreciate any insight on how to fix this. Thanks!
def quickSort(input)
divide = lambda do |first, last|
if first >= last
return
end
mid = first
i = 0
while i < last do
if input[i] < input[last]
input[i], input[mid] = input[mid], input[i]
mid += 1
end
i += 1
end
input[mid], input[last] = input[last], input[mid]
divide.call(first, mid - 1)
divide.call(mid + 1, last)
end
divide.call(0, input.length - 1 )
return input
end
quickSort([24, 6, 8, 2, 35]) // causes a descending sort
quickSort([3,9,1,4,7]) // works as intended
I don't think that is quicksort (at least not the way I learned), and if you try adding more values to the first array you are sorting it will crash the program.
Take a look at this following implementation (my ruby is a bit rusty so bear with me)
def quickSort(input)
return input if input.length <= 1
i = input.length - 1
pivot = input[rand(i)]
input.delete(pivot)
lesser = []
greater = []
input.map do |n|
lesser.push(n) if n < pivot
greater.push(n) if n >= pivot
end
sorted = []
sorted.concat(quickSort(lesser))
sorted.push(pivot)
sorted.concat(quickSort(greater))
return sorted
end
print quickSort([24, 6, 8, 2, 35, 12])
puts ""
print quickSort([3,9,1,4,7,8,10,15,2])
puts ""
Usually when doing quicksort you will pick a random pivot in the array and split the array into parts lesser and greater than the pivot. Then you recursively call quicksort on the lesser and greater arrays before rejoining them into a sorted array. Hope that helps!

What is the logic behind the algorithm

I am trying to solve a problem from codility
"Even sums"
but am unable to do so. Here is the question below.
Even sums is a game for two players. Players are given a sequence of N positive integers and take turns alternately. In each turn, a player chooses a non-empty slice (a subsequence of consecutive elements) such that the sum of values in this slice is even, then removes the slice and concatenates the remaining parts of the sequence. The first player who is unable to make a legal move loses the game.
You play this game against your opponent and you want to know if you can win, assuming both you and your opponent play optimally. You move first.
Write a function:
string solution(vector< int>& A);
that, given a zero-indexed array A consisting of N integers, returns a string of format "X,Y" where X and Y are, respectively, the first and last positions (inclusive) of the slice that you should remove on your first move in order to win, assuming you have a winning strategy. If there is more than one such winning slice, the function should return the one with the smallest value of X. If there is more than one slice with the smallest value of X, the function should return the shortest. If you do not have a winning strategy, the function should return "NO SOLUTION".
For example, given the following array:
A[0] = 4 A[1] = 5 A[2] = 3 A[3] = 7 A[4] = 2
the function should return "1,2". After removing a slice from positions 1 to 2 (with an even sum of 5 + 3 = 8), the remaining array is [4, 7, 2]. Then the opponent will be able to remove the first element (of even sum 4) or the last element (of even sum 2). Afterwards you can make a move that leaves the array containing just [7], so your opponent will not have a legal move and will lose. One of possible games is shown on the following picture
Note that removing slice "2,3" (with an even sum of 3 + 7 = 10) is also a winning move, but slice "1,2" has a smaller value of X.
For the following array:
A[0] = 2 A[ 1 ] = 5 A[2] = 4
the function should return "NO SOLUTION", since there is no strategy that guarantees you a win.
Assume that:
N is an integer within the range [1..100,000]; each element of array A is an integer within the range [1..1,000,000,000]. Complexity:
expected worst-case time complexity is O(N); expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments). Elements of input arrays can be modified.
I have found a solution online in python.
def check(start, end):
if start>end:
res = 'NO SOLUTION'
else:
res = str(start) + ',' + str(end)
return res
def trans( strr ):
if strr =='NO SOLUTION':
return (-1, -1)
else:
a, b = strr.split(',')
return ( int(a), int(b) )
def solution(A):
# write your code in Python 2.7
odd_list = [ ind for ind in range(len(A)) if A[ind]%2==1 ]
if len(odd_list)%2==0:
return check(0, len(A)-1)
odd_list = [-1] + odd_list + [len(A)]
res_cand = []
# the numbers at the either end of A are even
count = odd_list[1]
second_count = len(A)-1-odd_list[-2]
first_count = odd_list[2]-odd_list[1]-1
if second_count >= count:
res_cand.append( trans(check( odd_list[1]+1, len(A)-1-count )))
if first_count >= count:
res_cand.append( trans(check( odd_list[1]+count+1, len(A)-1 )))
twosum = first_count + second_count
if second_count < count <= twosum:
res_cand.append( trans(check( odd_list[1]+(first_count-(count-second_count))+1, odd_list[-2] )))
###########################################
count = len(A)-1-odd_list[-2]
first_count = odd_list[1]
second_count = odd_list[-2]-odd_list[-3]-1
if first_count >= count:
res_cand.append( trans(check( count, odd_list[-2]-1 )))
if second_count >= count:
res_cand.append( trans(check( 0, odd_list[-2]-count-1)) )
twosum = first_count + second_count
if second_count < count <= twosum:
res_cand.append( trans(check( count-second_count, odd_list[-3])) )
res_cand = sorted( res_cand, key=lambda x: (-x[0],-x[1]) )
cur = (-1, -2)
for item in res_cand:
if item[0]!=-1:
cur = item
return check( cur[0], cur[1] )
This code works and I am unable to understand the code and flow of one function to the the other. However I don't understand the logic of the algorithm. How it has approached the problem and solved it. This might be a long task but can anybody please care enough to explain me the algorithm. Thanks in advance.
So far I have figured out that the number of odd numbers are crucial to find out the result. Especially the index of the first odd number and the last odd number is needed to calculate the important values.
Now I need to understand the logic behind the comparison such as "if first_count >= count" and if "second_count < count <= twosum".
Update:
Hey guys I found out the solution to my question and finally understood the logic of the algorithm.
The idea lies behind the symmetry of the array. We can never win the game if the array is symmetrical. Here symmetrical is defined as the array where there is only one odd in the middle and equal number of evens on the either side of that one odd.
If there are even number of odds we can directly win the game.
If there are odd number of odds we should always try to make the array symmetrical. That is what the algorithm is trying to do.
Now there are two cases to it. Either the last odd will remain or the first odd will remain. I will be happy to explain more if you guys didn't understand it. Thanks.

Find the longest subsequence containing as many 1 as 0 time O(n)

I had a question in an interview and I couldn't find the optimal solution (and it's quite frustrating lol)
So you have a n-list of 1 and 0.
110000110101110..
The goal is to extract the longest sub sequence containing as many 1 as 0.
Here for example it is "110000110101" or "100001101011" or "0000110101110"
I have an idea for O(n^2), just scanning all possibilities from the beginning to the end, but apparently there is a way to do it in O(n).
Any ideas?
Thanks a lot!
Consider '10110':
Create a variable S. Create array A=[0].
Iterate from first number and add 1 to S if you notice 1 and subtract 1 from S if you notice 0 and append S to A.
For our example sequence A will be: [0, 1, 0, 1, 2, 1]. A is simply an array which stores a difference between number of 1s and 0s preceding the index. The sequence has to start and end at the place which has the same difference between 1s and 0s. So now our task is to find the longest distance between same numbers in A.
Now create 2 empty dictionaries (hash maps) First and Last.
Iterate through A and save position of first occurrence of every number in A in dictionary First.
Iterate through A (starting from the end) and save position of the last occurrence of each number in A in dictionary Last.
So for our example array First will be {0:0, 1:1, 2:4} and Last will be {0:2, 1:5, 2:4}
Now find the key(max_key) for which the difference between corresponding values in First and Last is the largest. This max difference is the length of the subsequence. Subsequence starts at First[max_key] and ends at Last[max_key].
I know it is a bit hard to understand but it has complexity O(n) - four loops, each has complexity N. You can replace dictionaries with arrays of course but it is more complicated then using dictionaries.
Solution in Python.
def find_subsequence(seq):
S = 0
A = [0]
for e in seq:
if e=='1':
S+=1
else:
S-=1
A.append(S)
First = {}
Last = {}
for pos, e in enumerate(A):
if e not in First:
First[e] = pos
for pos, e in enumerate(reversed(A)):
if e not in Last:
Last[e] = len(seq) - pos
max_difference = 0
max_key = None
for key in First:
difference = Last[key] - First[key]
if difference>max_difference:
max_difference = difference
max_key = key
if max_key is None:
return ''
return seq[First[max_key]:Last[max_key]]
find_sequene('10110') # Gives '0110'
find_sequence('1') # gives ''
J.F. Sebastian's code is more optimised.
EXTRA
This problem is related to Maximum subarray problem. Its solution is also based on summing elements from start:
def max_subarray(arr):
max_diff = total = min_total = start = tstart = end = 0
for pos, val in enumerate(arr, 1):
total += val
if min_total > total:
min_total = total
tstart = pos
if total - min_total > max_diff:
max_diff = total - min_total
end = pos
start = tstart
return max_diff, arr[start:end]

Programming Interview Question / how to find if any two integers in an array sum to zero?

Not a homework question, but a possible interview question...
Given an array of integers, write an algorithm that will check if the sum of any two is zero.
What is the Big O of this solution?
Looking for non brute force methods
Use a lookup table: Scan through the array, inserting all positive values into the table. If you encounter a negative value of the same magnitude (which you can easily lookup in the table); the sum of them will be zero. The lookup table can be a hashtable to conserve memory.
This solution should be O(N).
Pseudo code:
var table = new HashSet<int>();
var array = // your int array
foreach(int n in array)
{
if ( !table.Contains(n) )
table.Add(n);
if ( table.Contains(n*-1) )
// You found it.;
}
The hashtable solution others have mentioned is usually O(n), but it can also degenerate to O(n^2) in theory.
Here's a Theta(n log n) solution that never degenerates:
Sort the array (optimal quicksort, heap sort, merge sort are all Theta(n log n))
for i = 1, array.len - 1
binary search for -array[i] in i+1, array.len
If your binary search ever returns true, then you can stop the algorithm and you have a solution.
An O(n log n) solution (i.e., the sort) would be to sort all the data values then run a pointer from lowest to highest at the same time you run a pointer from highest to lowest:
def findmatch(array n):
lo = first_index_of(n)
hi = last_index_of(n)
while true:
if lo >= hi: # Catch where pointers have met.
return false
if n[lo] = -n[hi]: # Catch the match.
return true
if sign(n[lo]) = sign(n[hi]): # Catch where pointers are now same sign.
return false
if -n[lo] > n[hi]: # Move relevant pointer.
lo = lo + 1
else:
hi = hi - 1
An O(n) time complexity solution is to maintain an array of all values met:
def findmatch(array n):
maxval = maximum_value_in(n) # This is O(n).
array b = new array(0..maxval) # This is O(1).
zero_all(b) # This is O(n).
for i in index(n): # This is O(n).
if n[i] = 0:
if b[0] = 1:
return true
b[0] = 1
nextfor
if n[i] < 0:
if -n[i] <= maxval:
if b[-n[i]] = 1:
return true;
b[-n[i]] = -1
nextfor
if b[n[i]] = -1:
return true;
b[n[i]] = 1
This works by simply maintaining a sign for a given magnitude, every possible magnitude between 0 and the maximum value.
So, if at any point we find -12, we set b[12] to -1. Then later, if we find 12, we know we have a pair. Same for finding the positive first except we set the sign to 1. If we find two -12's in a row, that still sets b[12] to -1, waiting for a 12 to offset it.
The only special cases in this code are:
0 is treated specially since we need to detect it despite its somewhat strange properties in this algorithm (I treat it specially so as to not complicate the positive and negative cases).
low negative values whose magnitude is higher than the highest positive value can be safely ignored since no match is possible.
As with most tricky "minimise-time-complexity" algorithms, this one has a trade-off in that it may have a higher space complexity (such as when there's only one element in the array that happens to be positive two billion).
In that case, you would probably revert to the sorting O(n log n) solution but, if you know the limits up front (say if you're restricting the integers to the range [-100,100]), this can be a powerful optimisation.
In retrospect, perhaps a cleaner-looking solution may have been:
def findmatch(array num):
# Array empty means no match possible.
if num.size = 0:
return false
# Find biggest value, no match possible if empty.
max_positive = num[0]
for i = 1 to num.size - 1:
if num[i] > max_positive:
max_positive = num[i]
if max_positive < 0:
return false
# Create and init array of positives.
array found = new array[max_positive+1]
for i = 1 to found.size - 1:
found[i] = false
zero_found = false
# Check every value.
for i = 0 to num.size - 1:
# More than one zero means match is found.
if num[i] = 0:
if zero_found:
return true
zero_found = true
# Otherwise store fact that you found positive.
if num[i] > 0:
found[num[i]] = true
# Check every value again.
for i = 0 to num.size - 1:
# If negative and within positive range and positive was found, it's a match.
if num[i] < 0 and -num[i] <= max_positive:
if found[-num[i]]:
return true
# No matches found, return false.
return false
This makes one full pass and a partial pass (or full on no match) whereas the original made the partial pass only but I think it's easier to read and only needs one bit per number (positive found or not found) rather than two (none, positive or negative found). In any case, it's still very much O(n) time complexity.
I think IVlad's answer is probably what you're after, but here's a slightly more off the wall approach.
If the integers are likely to be small and memory is not a constraint, then you can use a BitArray collection. This is a .NET class in System.Collections, though Microsoft's C++ has a bitset equivalent.
The BitArray class allocates a lump of memory, and fills it with zeroes. You can then 'get' and 'set' bits at a designated index, so you could call myBitArray.Set(18, true), which would set the bit at index 18 in the memory block (which then reads something like 00000000, 00000000, 00100000). The operation to set a bit is an O(1) operation.
So, assuming a 32 bit integer scope, and 1Gb of spare memory, you could do the following approach:
BitArray myPositives = new BitArray(int.MaxValue);
BitArray myNegatives = new BitArray(int.MaxValue);
bool pairIsFound = false;
for each (int testValue in arrayOfIntegers)
{
if (testValue < 0)
{
// -ve number - have we seen the +ve yet?
if (myPositives.get(-testValue))
{
pairIsFound = true;
break;
}
// Not seen the +ve, so log that we've seen the -ve.
myNegatives.set(-testValue, true);
}
else
{
// +ve number (inc. zero). Have we seen the -ve yet?
if (myNegatives.get(testValue))
{
pairIsFound = true;
break;
}
// Not seen the -ve, so log that we've seen the +ve.
myPositives.set(testValue, true);
if (testValue == 0)
{
myNegatives.set(0, true);
}
}
}
// query setting of pairIsFound to see if a pair totals to zero.
Now I'm no statistician, but I think this is an O(n) algorithm. There is no sorting required, and the longest duration scenario is when no pairs exist and the whole integer array is iterated through.
Well - it's different, but I think it's the fastest solution posted so far.
Comments?
Maybe stick each number in a hash table, and if you see a negative one check for a collision? O(n). Are you sure the question isn't to find if ANY sum of elements in the array is equal to 0?
Given a sorted array you can find number pairs (-n and +n) by using two pointers:
the first pointer moves forward (over the negative numbers),
the second pointer moves backwards (over the positive numbers),
depending on the values the pointers point at you move one of the pointers (the one where the absolute value is larger)
you stop as soon as the pointers meet or one passed 0
same values (one negative, one possitive or both null) are a match.
Now, this is O(n), but sorting (if neccessary) is O(n*log(n)).
EDIT: example code (C#)
// sorted array
var numbers = new[]
{
-5, -3, -1, 0, 0, 0, 1, 2, 4, 5, 7, 10 , 12
};
var npointer = 0; // pointer to negative numbers
var ppointer = numbers.Length - 1; // pointer to positive numbers
while( npointer < ppointer )
{
var nnumber = numbers[npointer];
var pnumber = numbers[ppointer];
// each pointer scans only its number range (neg or pos)
if( nnumber > 0 || pnumber < 0 )
{
break;
}
// Do we have a match?
if( nnumber + pnumber == 0 )
{
Debug.WriteLine( nnumber + " + " + pnumber );
}
// Adjust one pointer
if( -nnumber > pnumber )
{
npointer++;
}
else
{
ppointer--;
}
}
Interesting: we have 0, 0, 0 in the array. The algorithm will output two pairs. But in fact there are three pairs ... we need more specification what exactly should be output.
Here's a nice mathematical way to do it: Keep in mind all prime numbers (i.e. construct an array prime[0 .. max(array)], where n is the length of the input array, so that prime[i] stands for the i-th prime.
counter = 1
for i in inputarray:
if (i >= 0):
counter = counter * prime[i]
for i in inputarray:
if (i <= 0):
if (counter % prime[-i] == 0):
return "found"
return "not found"
However, the problem when it comes to implementation is that storing/multiplying prime numbers is in a traditional model just O(1), but if the array (i.e. n) is large enough, this model is inapropriate.
However, it is a theoretic algorithm that does the job.
Here's a slight variation on IVlad's solution which I think is conceptually simpler, and also n log n but with fewer comparisons. The general idea is to start on both ends of the sorted array, and march the indices towards each other. At each step, only move the index whose array value is further from 0 -- in only Theta(n) comparisons, you'll know the answer.
sort the array (n log n)
loop, starting with i=0, j=n-1
if a[i] == -a[j], then stop:
if a[i] != 0 or i != j, report success, else failure
if i >= j, then stop: report failure
if abs(a[i]) > abs(a[j]) then i++ else j--
(Yeah, probably a bunch of corner cases in here I didn't think about. You can thank that pint of homebrew for that.)
e.g.,
[ -4, -3, -1, 0, 1, 2 ] notes:
^i ^j a[i]!=a[j], i<j, abs(a[i])>abs(a[j])
^i ^j a[i]!=a[j], i<j, abs(a[i])>abs(a[j])
^i ^j a[i]!=a[j], i<j, abs(a[i])<abs(a[j])
^i ^j a[i]==a[j] -> done
The sum of two integers can only be zero if one is the negative of the other, like 7 and -7, or 2 and -2.

Resources