What is Upstream and Downstream services in a Micro-service based architecture? - microservices

I have heard of the terms "Upstream Services" and "Downstream Services" in general terms but i came across some articles on micro-service architecture where they have used these terms , however i wasn't able to get what an upstream and downstream service in a micro-service based architecture would be ? does someone has a brief explanation ?
I already know that Upstream services are those that do not depend on any other services and downstream services depending on the upstream services for example the front end would be a downstream service to the back end as it depends on it.
I am developing the micro-services in .Net Core.

Definition 1: The direction of action
Upstream: receiving requests from / sending responses to
A service upstream is calling me.
Downstream: making requests to / receiving responses from
I am calling a service downstream.
Definition 2: The direction of dependency
Upstream: making requests to / receiving responses from
I am calling a service upstream.
Downstream: receiving requests from / sending responses to
A service downstream is calling me.
So,
There are resources on the internet which support both of these definitions. Maybe we will resolve this question one day, but for now the answer is: it's either.

The downstream services are the ones that consume the upstream service. In particular, they depend on the upstream service. More generally, upstream services don't need to know or care about the existence of downstream services. Downstream services care about the existence of upstream services, even if they only optionally consume them.
http://reflectoring.io/upstream-downstream

I see it is a metaphor of water flow: the origin of a river is upstream, the outlet is downstream.
But in practice it is gibberish. Nowadays services exchange data through different means. A service can call another service to fetch data, it can also call the other service to push data. A service can receive data from another service by calls out first or it can receive data passively, like receiving push notification.
At work, you can use it judiciously: if someone who's more senior than your calls a service upstream service, go with it; if you are the most senior one on the team, name whatever you like.

Upstream and Downstream in a Production Process
Upstream and Downstream Software Dependencies
Source
A picture is worth a thousand words !!

It's the stream of service, so the provider is upstream and the consumer is downstream.
http://reflectoring.io/upstream-downstream

Related

REST API uses asynchronous (events) internally

I am implementing a REST API that internally places a message on a message queue and receives a message as a response on a different topic.
How could API implementation handle publishing and consuming different messages and responds to the client?
What if it never receives a message?
How does the service handle this time-out scenario?
Example
I am implementing a REST API to process an order. The implementation internally publishes a series of messages to verify the payment, update inventory, and prepare shipping info. Finally, it sends the response back to the client.
Queues are too low-level abstraction to implement your requirements directly. Look at an orchestration solution like temporal.io that makes programming such async systems trivial.
Disclaimer: I'm one of the founders of the Temporal open source project.
How could API implementation handle publishing and consuming different messages and responds to the client?
Even though messaging systems can be used in RPC like fashion:
there is a request topic/queue and a reply topic/queue
with a request identifier in the messages' header/metadata
this type of communication kills the promise of the messaging system: decouple components in time and space.
Back to your example. If ServiceA receives the request then it publishes a message to topicA and returns with an 202 Accepted status code to indicate that the request is received but not yet processed completely. In the response you can indicate an url on which the consumer of ServiceA's API can retrieve the latest status of its previously issued request.
What if it never receives a message?
In that case the request related data remains in the same state as it was at the time of the message publishing.
How does the service handle this time-out scenario?
You can create scheduled jobs to clean-up never finished/got stuck requests. Based on your business requirements you can simple delete them or transfer them to manual processing by the customer service.
Order placement use case
Rather than creating a customer-facing service which waits for all the processing to be done you can define several statuses/stages of the process:
Order requested
Payment verified
Items locked in inventory
...
Order placed
You can inform your customers about these status/stage changes via websocket, push notification, e-mail, etc.. The orchestration of this order placement flow can be achieved for example via the Saga pattern.

Saga Pattern on hardware failure and inter services communication

I am building a Spring Boot microservice application. I am planning on adopting the Saga pattern to tackle the distributed transaction problem. Below is the list of questions and problems that I am facing.
Here is the context for ease of explanation.
Client -> Service A -> Service B
Handling of non-alive microservices due to failure
Assuming that Service B is not alive due to hardware / software failure, how should A react?
Async communication
It is recommended that we have async communication for saga pattern. Assuming that time for client -> A < A -> B, how does the Client receive the data that A receives from B at a later time? Is it that A has to return an Async object back to client? Something like CompletableFuture class?
Service requesting resources from other services.
Assuming that Service A has to request some resources from Service B, how should A go about doing this? All I can think of is using HTTP / gRPC (eliminated communication from message broker).
If you happened to have some experience / advice, please share :)
Any help or advice on Saga pattern is appreciated!
SAGA is used for distributed transaction. It can be implemented by using Orchestration or Choreography based. It is mostly (prefer) implemented by using async way of communication. Message Broker plays important role here.
There are lots of queries. Let me try to answer those.
If one service is down - You can setup a monitoring system for SAGA. In case, if any service is down or SAGA is not processed for some threshold time then you can raise alert.
Async Communication - It is mostly used to process some commands (not query). Whenever client call service A, it initiate the SAGA and reply back with current status. It also return a id (you can say job id). Now there are 2 ways through which Client get updated status. One is Poll (where client ask for status update after N sec) and 2nd is Push (where server push the changes when there is change in state.)
Service request resource from other - Yeah, prefer way is REST or gRPC. Also, if data is type of constant then you can use cache.
Suggestion - SRE (Monitoring etc.) play an important role in Microservice architecture. So, if you have setup that well then you can easily handle other challenges of microservice.

Microservices asynchronous response

I come across many blog that say using rabbitmq improve the performance of microservices due to asynchronous nature of rabbitmq.
I don't understand in that case how the the http response is send to end user I am elaborating my question below more clearly.
user send a http request to microservice1(which is user facing service)
microservice1 send it to rabbitmq because it need some service from microservice2
microservice2 receive the request process it and send the response to rabbitmq
microservice1 receive the response from rabbitmq
NOW how this response is send to browser?
Does microservice1 waits untill it receive the response from rabbitmq?
If yes then how it become aynchronous??
It's a good question. To answer, you have to imagine the server running one thread at a time. Making a request to a microservice via RestTemplate is a blocking request. The user clicks a button on the web page, which triggers your spring-boot method in microservice1. In that method, you make a request to microservice2, and the microservice1 does a blocking wait for the response.
That thread is busy waiting for microservice2 to complete the request. Threads are not expensive, but on a very busy server, they can be a limiting factor.
RabbitMQ allows microservice1 to queue up a message to microservice2, and then release the thread. Your receive message will be trigger by the system (spring-boot / RabbitMQ) when microservice2 processes the message and provides a response. That thread in the thread pool can be used to process other users' requests in the meantime. When the RabbitMQ response comes, the thread pool uses an unused thread to process the remainder of the request.
Effectively, you're making the server running microservice1 have more threads available more of the time. It only becomes a problem when the server is under heavy load.
Good question , lets discuss one by one
Synchronous behavior:
Client send HTTP or any request and waits for the response HTTP.
Asynchronous behavior:
Client sends the request, There's another thread that is waiting on the socket for the response. Once response arrives, the original sender is notified (usually, using a callback like structure).
Now we can talk about blocking vs nonblocking call
When you are using spring rest then each call will initiate new thread and waiting for response and block your network , while nonblocking call all call going via single thread and pushback will return response without blocking network.
Now come to your question
Using rabbitmq improve the performance of microservices due to
asynchronous nature of rabbitmq.
No , performance is depends on your TPS hit and rabbitmq not going to improve performance .
Messaging give you two different type of messaging model
Synchronous messaging
Asynchronous messaging
Using Messaging you will get loose coupling and fault tolerance .
If your application need blocking call like response is needed else cannot move use Rest
If you can work without getting response go ahaead with non blocking
If you want to design your app loose couple go with messaging.
In short above all are architecture style how you want to architect your application , performance depends on scalability .
You can combine your app with rest and messaging and non-blocking with messaging.
In your scenario microservice 1 could be rest blocking call give call other api using rest template or web client and or messaging queue and once get response will return rest json call to your web app.
I would take another look at your architecture. In general, with microservices - especially user-facing ones that must be essentially synchronous, it's an anti-pattern to have ServiceA have to make a call to ServiceB (which may, in turn, call ServiceC and so on...) to return a response. That condition indicates those services are tightly coupled which makes them fragile. For example: if ServiceB goes down or is overloaded in your example, ServiceA also goes offline due to no fault of its own. So, probably one or more of the following should occur:
Deploy the related services behind a facade that encloses the entire domain - let the client interact synchronously with the facade and let the facade handle talking to multiple services behind the scenes.
Use MQTT or AMQP to publish data as it gets added/changed in ServiceB and have ServiceA subscribe to pick up what it needs so that it can fulfill the user request without explicitly calling another service
Consider merging ServiceA and ServiceB into a single service that can handle requests without having to make external calls
You can also send the HTTP request from the client to the service, set the application-state to waiting or similar, and have the consuming application subscribe to a eventSuccess or eventFail integration message from the bus. The main point of this idea is that you let daisy-chained services (which, again, I don't like) take their turns and whichever service "finishes" the job publishes an integration event to let anyone who's listening know. You can even do things like pass webhook URI's with the initial request to have services call the app back directly on completion (or use SignalR, or gRPC, or...)
The way we use RabbitMQ is to integrate services in real-time so that each service always has the info it needs to be responsive all by itself. To use your example, in our world ServiceB publishes events when data changes. ServiceA only cares about, and subscribes to a small subset of those events (and typically only a field or two of the event data), but it knows within seconds (usually less) when B has changed and it has all the information it needs to respond to requests. Each service literally has no idea what other services exist, it just knows events that it cares about (and that conform to a contract) arrive from time-to-time and it needs to pay attention to them.
You could also use events and make the whole flow async. In this scenario microservice1 creates an event representing the user request and then return a requested created response immediately to the user. You can then notify the user later when the request is finished processing.
I recommend the book Designing Event-Driven Systems written by Ben Stopford.
I asked a similar question to Chris Richardson (www.microservices.io). The result was:
Option 1
You use something like websockets, so the microservice1 can send the response, when it's done.
Option 2
microservice1 responds immediately (OK - request accepted). The client pulls from the server repeatedly until the state changed. Important is that microservice1 stores some state about the request (ie. initial state "accepted", so the client can show the spinner) which is modified, when you finally receive the response (ie. update state to "complete").

Notification microservice API or queue

I'm new to microservices architecture and want to create a centralised notification microservice to send emails/sms to users.
My first option was to create a notification Kafka queue where all other microservices can send notifications to. The notification microservice would then listen to this queue and send messages accordingly. If the notification service was restarted or taken down, we would not lose any messages as the messages will be stored on the queue.
My second option was to add a notification message API on the notifications microservice. This would make it easier for all other microservices as they just have to call an API as opposed to integrate with the queue. The API would then internally send the message to the notification Kafka queue and send the message. The only issue here is if the API is not available or there is an error, we will lose messages.
Any recommendations on the best way to handle this?
Either works. Some concepts that might help you decide:
A service that fronts "Kafka" would be helpful to:
Hide the implementation. This gives you the flexibility to change Kafka out later for something else. Your wrapper API would only respond with a 200 once it has put the notification request on the queue. I also see giving services direct access to "your" queue similar to allowing services to directly interact with a database they don't own. If you allow direct-access to Kafka and Kafka proves to be inadequate, a change to Kafka will require all of your clients to change their code.
Enforce the notification request contract (ensure the body of the request is well-formed). If you want to make sure that all of the items put on the queue are well-formed according to contract, an API can help enforce that. That will help prevent issues later when the "notifier" service picks notifications off the queue to send.
Adding a wrapper API would be less desirable if:
You don't want to/can't spend the time. Maybe deadlines are driving you to hurry and the days it would take to stand up a wrapper is just too much.
You are a small team and you don't have the resources/tools/time for service-explosion.
Your first design is simple and will work. If you're looking for the advantages I outlined, then consider your second design. And, to make sure I understand it, I would see it unfold like:
Client 1 needs to put out a notification and calls Service A POST /notifications
Service A that accepts POST /notifications
Service A checks the request, puts it on Kafka, responds to client with 200
Service B picks up notification request from Kafka queue.
Service A should be run as multiple instances for reliability.

How to manage microservice failure?

Let's say, I have several micro-services (REST API), the problem is, if one service is not accessible (let's call service "A" ) the data which was sending to service "A" will be saved in temporary database. And after service worked, the data will be sent again.
Question:
1. Should I create the service which pings to service "A" in every 10 seconds to know service works or not? Or is it possible to do it by task queue? Any suggestions?
Polling is a waste of bandwidth. You want to use a transactional queue.
Throw all your outbound messages in the queue, and have some other process to handle the messages.
How this will work is - after your process reads from the queue, and tries to send to the REST service:
If it works, commit the transaction (for the queue)
If it doesn't work, don't commit. Start a delay (minutes, seconds - you know best) until you read from the queue again.
You can use Circuit Breaker pattern for e.g. hystrix circuit breaker from netflix.
It is possible to open circuit-breaker base on a timeout or when service call fails or inaccessible.
There are multiple dimensions to your question. First you want to consider using an infrastructure that provides resilience and self healing. Meaning you want to deploy a cluster of containers, all containing your Service A. Now you use a load balancer or API gateway in front of your service to distribute calls/load. It will also periodically check for the health of your service. When it detects a container does not respond correctly it can kill the container and start another one. This can be provided by a container infrastructure such as kubernetes / docker swarm etc.
Now this does not protect you from losing any requests. In the event that a container malfunctions there will still be a short time between the failure and the next health check where requests may not be served. In many applications this is acceptable and the client side will just re-request and hit another (healthy container). If your application requires absolutely not losing requests you will have to cache the request in for example an API gateway and make sure it is kept until a Service has completed it (also called Circuit Breaker). An example technology would be Netflix Zuul with Hystrix. Using such a Gatekeeper with built in fault tolerance can increase the resiliency even further. As a side note - Using an API gateway can also solve issues with central authentication/authorization, routing and monitoring.
Another approach to add resilience / decouple is to use a fast streaming / message queue, such as Apache Kafka, for recording all incoming messages and have a message processor process them whenever ready. The trick then is to only mark the messages as processed when your request was served fully. This can also help in scenarios where faults can occur due to large number of requests that cannot be handled in real time by the Service (Asynchronous Decoupling with Cache).
Service "A" should fire a "ready" event when it becomes available. Just listen to that and resend your request.

Resources