I have two projects: mylib and myproj
mylib compiles into a shared object.
myproj uses mylib.
I linking myproj using:
g++ -L../../mylib/Release myproj.o -lmylib
That works fine on my development machine.
On another machine, mylib.so is located in /usr/local/lib. Therefore there is no need for -L.
It compiles fine without the -L.
But, once I compile it with the same command (with the -L), it responds with
g++: error: ../../mylib/Release: No such file or directory
I would like myproj to compile on both machines with the same command.
Is there a way to make it ignore non existing directories?
It doesn't seem to care whether a full path doesn't exist, it complains only for relative paths.
You want to use Makefiles as often as you can since they make things a lot easier. In a defined Makefile you could check for the directory first. It could be sth like this:
all:
if [ -d "mylib" ]; then
g++ -L../../mylib/Release myproj.o -lmylib
else
g++ myproj.o -lmylib
fi
Of course you can use Variables like CC, etc. This is just a basic example.
Related
I have a project that basically compiles from the command line in the following form:
g++ -o stack_raster stack_raster.cpp -lgdal -lboost_filesystem -lboost_system
I made a Makefile, and this is the content:
CXX =g++
LDDFLAGS = -lgdal -lboost_system -lboost_filesystem
all: clean stack_raster
clean:
rm -f stack_raster
However I got a collect2: error: ld returned 1 exit status.
A second variation of my Makefile I tried was:
CXX = g++
CPPFLAGS = -lgdal -lboost_system -lboost_filesystem
all: clean stack_raster
clean:
rem -f stack_raster
but I still receive the following message (even though the compile flags appear as they should for my program to compile successfully).
collect2: error: ld returned 1 exit status
<builtin>: recipe for target `stack_raster` failed
make: *** [stack_raster] Error 1
Does anyone could help me with a reference or hint about my problem, and how could I tackle it?
Does anyone could help me with a reference or hint about my problem, and how could I tackle it?
To begin with, you should have a look at the actual link command that make executed. It should have been echoed to make's output just before the error message from collect2. Understanding what's wrong with the command is the first step in determining how to fix your makefile.
In the first case, the command is probably something like
g++ stack_raster.cpp -o stack_raster
In the second, it is probably something like
g++ -lgdal -lboost_system -lboost_filesystem stack_raster.cpp -o stack_raster
The latter is probably also very similar to what you would get with the first makefile if you corrected the spelling of LDDFLAGS to LDFLAGS.
You will note that the library flags come in a different place in that command than they do in your manual command, and I assume you know that the order of objects and library flags on the linker command line is significant to Unix-style linkers such as GNU's (which is the one that the g++ driver will use).
You can certainly fix this by writing an explicit rule, as you describe in your own answer, but your makes' built-in rules may be up to the task, too. If you are using GNU make then they certainly are. For this purpose it is useful to know what the built-in rules actually are, and essential to know what the variables on which these rules depend mean.
Specifically,
LDFLAGS provides options to pass when invoking the linker, and conventionally, they appear on the command line before the objects being linked. As a result, this variable typically is not appropriate for specifying libraries (but it is fine for other link-specific options, such as -L to add directories to the library search path).
CPPFLAGS provides options for modulating the behavior of the C preprocessor (including when compiling C++). These do not typically appear at all in link(-only) commands executed by make, but they will appear (early) in commands for compiling object files from C or C++ sources, and in rules for building executables directly from C or C++ sources.
Neither of those is what you want, but if you are using GNU make, then its documentation for the former explicitly tells you what (with that make implementation) you should do instead:
Extra flags to give to compilers when they are supposed to invoke the
linker, ‘ld’, such as -L. Libraries (-lfoo) should be added to the
LDLIBS variable instead.
(emphasis added)
In GNU make, and perhaps some others, the LDLIBS variable serves exactly the purpose you need: to specify the libraries to link. These will appear at the end of the link command line from built-in rules, as you can confirm from GNU make's catalog of implicit rules, or from the list obtainable by running make -p in a directory containing no makefile.
So, with GNU make you can get the build you seem to want from the built-in rules, with this:
CXX = g++
LDLIBS = -lgdal -lboost_system -lboost_filesystem
all: clean stack_raster
clean:
rm -f stack_raster
In closing, I note that cleaning before building by default, as your examples do and mine imitates, largely defeats the purpose of using make instead of a simple script. Part of the point of make is to do the minimum work necessary, and if your target executable is present and not out of date with respect to its sources then there is no reason to force it to be rebuilt.
Check out the answer:
Set up my makefile to compile C with just "make"
YOu have to specify in the Makefile the file you want to create in this case stack_raster.exe and the objective file in this case stack_raster.cpp and specify the command line arguments you normally pass for compiling. So the Makefile would be something like:
CXX=g++
stack_raster.exe: stack_raster.cpp
g++ -o stack_raster.exe stack_raster.cpp -lgdal -lboost_filesystem -lboost_system
all: clean stack_raster.exe
clean:
rm -f stack_raster.exe
I have a project directory structure of:
Root
Source
Common
MyFolder
++ My 3 source files and header
When I am building my project it generates 3 to 4 shared libraries. Lib1 compiled using c++98 and others using c++11. Flags are added in CmakeList.txt which is at root.
I need my 3 source files to be compiled for Lib1 and for other Libs as as well. but here what happens is compiler is first compiling my source file for lib using c++11 and then it is trying to use same .o file for Lib1 as well. So for .o file which is generated using c++11 is throwing exception when same is used for c++98 compiled library.
So how do write this in CmakeList.txt such that compiler rather than trying to use same .o file will compile source file again for Lib1(c++98 compiled library)
Is there any flag I can specify so that it won't take precompiled .o file and will compile it again ?
Here flags are not being overridden for different shared libraries but actually same object file by make file is being used for different flags
This is sort of counter to how makefiles and cmake usually work.
Most users consider it really important that make performs an incremental build.
The usual way with makefiles is to do make clean which is supposed to remove any binaries and object files that were created.
However, sometimes I write cmake scripts that use globbing over the source directory to assemble the project. (That means, it says "just grab all *.cpp files in the /src folder and make an executable from them".) A makefile cannot check what files in a directory, so the make build will be broken after I add a new file, and make clean won't fix it -- the whole makefile will need to be regenerated by cmake.
Usually what I do is, I write a simple bash script, named rebuild.sh or something,
#!/bin/bash
rm -rf build
mkdir build
cd build
cmake ..
make -j3
./tests
And I put that in the root of my repository, and add /build to my .gitignore. I call that when I want to do a full rebuild -- it nukes the build directory, so its foolproof. When I want an incremental rebuild, I just type make again in the /build directory.
The rebuild.sh script can also serve a double purpose if you use travis-ci for continuous integration.
Most build system assume the compiled objects remain the same within the same pass. To avoid shooting your foot I would suggest telling the build system they were actually different objects, while still compiled from same source files.
I'm not familiar with cmake but this is how you do with make:
For example you have a a.cpp which you want to compile 2 times for different compiler options:
#include <stdio.h>
int main(int argc, char* argv[]) {
printf ("Hello %d\n", TOKEN);
return 0;
}
And the Makefile would looks like:
SRC := $(wildcard *.cpp)
OBJ_1 := $(patsubst %.cpp,%_1.o,$(SRC))
OBJ_2 := $(patsubst %.cpp,%_2.o,$(SRC))
all: pass1 pass2
pass1: $(OBJ_1)
gcc -o $# $(OBJ_1) -lstdc++
pass2: $(OBJ_2)
gcc -o $# $(OBJ_2) -lstdc++
%_1.o: %.cpp
gcc -DTOKEN=1 -c $< -o $#
%_2.o: %.cpp
gcc -DTOKEN=2 -c $< -o $#
clean:
rm -f $(OBJ_1) $(OBJ_2)
What I do here is generate two different list of object from the same source files, which you can even do the same for dependency(-MMD -MP flags).
I'm a first year computer science student following a course on (amongst others) Makefiles. For our first assignment, we had to create a shared library and link against it.
I have the following setup:
A folder hw1 containing the folders app and lib.
Inside lib is a file called libmine.so, the library I want to link against.
Inside app, there are two files: test.cpp and a Makefile. The former uses the libmine library.
The Makefile is as follows (in the file itself, indentation etc. is correct):
all: test
test: test.cpp
g++ -Wall -o test -L../lib -I../lib/include test.cpp -lmine
However, when running test, I get the infamous `libmine.so: cannot open shared object file' error.
I believe this has something to do with exporting LD_LIBRARY_PATH. I have tried doing so (export LD_LIBRARY_PATH=$[very long relative path to the lib folder]), but I want to do this in my Makefile. Additionally, I don't want the path to be relative, as my teachter should be able to open the file when I send it to him (so I think it should be something like ../lib/libmine.so).
I looked at various StackOverflow posts, such as this one, but none seemed to answer this specific question (either it was a different setup or the solution simply didn't work). By the way: putting the line export LD_LIBRARY_PATH=../lib right under test: test.cpp and before the g++ command did not do anything.
Any help is much appreciated :)
when running test, I get the infamous `libmine.so: cannot open shared object file' error.
This is happening because the -L../lib argument tells the static linker where to find the library, but it doesn't tell anything to the dynamic linker (aka loader), and the problem is that the latter can't find this library.
To solve this, you can use LD_LIBRARY_PATH, but this is usually ill-advised.
What you want is something called RPATH or RUNPATH (assuming you are on a Linux or similar system):
g++ -Wall -o test -L../lib -I../lib/include test.cpp -Wl,-rpath=../lib -lmine
Additionally, I don't want the path to be relative, as my teachter should be able to open the file when I send it to him
Is your teacher going to run your binary on the same system, or on a different one? If the former, you could do this:
g++ -Wall -o test -L../lib -I../lib/include test.cpp -Wl,-rpath=/full/path/to/hw1/lib -lmine
If the latter, /full/path/to/hw1/lib may or may not be available on your teacher's machine, and you need to think about what exactly you are going to send to him.
The usual way to solve this is to package both the application and the library into a tar file:
tar cvf to-send.tar app/test lib/libmine.so
The teacher can then extract the parts of your tar file into arbitrary directory, and try to run it. To make this work, you need RPATH that is relative to the application, regardless of where the application ends up. To achieve that, you want:
g++ -Wall -o test -L../lib -I../lib/include test.cpp -Wl,-rpath='$ORIGIN/../lib' -lmine
I have two files -> fact.h and main.c in the /home/snyp1/new folder. main.c has the main function which calls the fact(int x) function in fact.h. I am creating a .a archive with the ar command ->
snyp1#Snyp:~/new$ ar -r -s libfact.a fact.o
ar: creating libfact.a
fact.h fact.o libfact.a main.c
snyp1#Snyp:~/new$ gcc main.c -L/home/snyp1/new -lfact -o main
/home/snyp1/new/libfact.a: could not read symbols: Archive has no index; run ranlib to add one
collect2: ld returned 1 exit status
snyp1#Snyp:~/new$ ranlib libfact.a
snyp1#Snyp:~/new$ gcc main.c -L/home/snyp1/new -lfact -o main
/home/snyp1/new/libfact.a: could not read symbols: Archive has no index; run ranlib to add one
collect2: ld returned 1 exit status
I am on ubuntu 12.04. Please let me know whats wrong. (Also, if I don't use the -L/.../new, gcc will say it can't find "lfact", maybe its because its not in /usr/local/lib)
EDIT: OK I have found the cause. Its due to the fact that I was using fact.h to build the fact.o and then putting it in the library, it wasn't working as expected. So I now changed it into file.c and is working fine now. I should have provided that information, I'm sorry. Though I don't know why this kind of problem should arise. Aren't libraries possible to make without at least one .c file in it?
I was using fact.h to build the fact.o and then putting it in the library, it wasn't working as expected.
Do you mean you were compiling fact.h to produce fact.o?
If so, that wasn't doing what you expect. When you invoke gcc on a header file it produces a precompiled header, not an object file. So although you got a file called foo.o it wasn't a valid object file. If you had just run gcc -c fact.h it would have produced a precompiled header fact.gch, but presumably you ran gcc -c fact.h -o fact.o which causes the file to be called fact.o even though it's still a precompiled header. file fact.o would have shown that:
$ file fact.o
fact.o: GCC precompiled header (version 013) for C
You could have forced GCC to treat the file as C code, not a header, by running gcc -x c -c fact.h -o fact.o (the -x c says to treat the input as C code instead of inferring the type from the file extension) but it's probably simpler and less confusing to just name your file correctly instead of trying to compile a header.
Aren't libraries possible to make without at least one .c file in it?
They need at least one object file (i.e. .o file) but you didn't have a valid object, you had a precompiled header misleadingly named as .o, but it was not actually an object file.
if I don't use the -L/.../new, gcc will say it can't find "lfact", maybe its because its not in /usr/local/lib
The linker doesn't only look in /usr/local/lib, there are other default places it looks, but yes, that's basically the problem. Note that you can also say -L. if the library is in the current directory, that's easier than giving an absolute path.
I'm not sure ar supports a dash on anything other than the first option. Try
ar -rs libfact.a fact.o
or just
ar rs libfact.a fact.o
Mind you, I don't know why running ranlib didn't work though.
I have a structure of code like this:
project_dir/
source1.c
subdir/
source2.c
The Makefile calls subdir/Makefile, so that the file subdir/source2.c is compiled in this way:
gcc -g -someoptions source2.c
and symbols in GDB link to source2.c instead of subdir/source2.c (with the result that GDB can not find symbols in source files). How should I write a Makefile or what options to use in gcc to get symbols using the relative path to the project main directory (or eventually the absolute path)?
I can not use:
cd .. && gcc -g -someoptions ../subdir/source2.c
because I would have to change references to header files in all files in subdir.
Your question is platform-specific (e.g. on Linux GDB should just work(TM), so I assume you are not on Linux).
One option is to build like this:
gcc -g ${PWD}/source2.c -o ...
Another option is to use GDB dir command to add ${TOP}/project_dir/subdir to the list of directories that GDB will search for sources.