How to loop through UUID items - go

How do I loop through a slice composed of UUIDS? My values comes from db via rows.Next()
Here's how I'm appending my uuid values to my slice (really don't know if its proper)
type Images struct {
image_id uuid.UUID `gorm:"type:uuid;primary_key;"`
}
var new_images []Images
for olds.Next() {
olds.Scan(&oldimages.image_id)
new_images = append(new_images , Images{image_id: oldimages.image_id})
}
olds here is the rows im getting from gorm Rows
olds, err := db.Raw("SELECT images_received.image_id FROM old_pics").Rows()
defer olds.Close()
Heres the function in looping I was given but its for int i dont know how to use this for uuid:
func islice(s []int, n int, f func([]int)) {
for i := 0; i < len(s); i += n {
var section []int
if i > len(s)-n {
section = s[i:]
} else {
section = s[i : i+n]
}
f(section)
}
}
Any idea how I do this? Currently for uuid im using the "github.com/satori/go.uuid" lib
I got the function from another SO question, My goal is to iterate over the rows, but rows.Next() doesnt allow that I guess in order to do that I thought I needed to append them into a slice, so I can get them by fours.
Hence leading to this question.

All you need to do is replace []int with []uuid.UUID everywhere in your islice function, including the parameter types. The functionality of islice() is not bound to []int if thats what your problem is.

Related

Using "dynamic" key to extract value from map [duplicate]

This question already has answers here:
Access struct property by name
(5 answers)
Golang dynamic access to a struct property
(2 answers)
How to access to a struct parameter value from a variable in Golang
(1 answer)
Closed 9 months ago.
Came from javascript background, and just started with Golang. I am learning all the new terms in Golang, and creating new question because I cannot find the answer I need (probably due to lack of knowledge of terms to search for)
I created a custom type, created an array of types, and I want to create a function where I can retrieve all the values of a specific key, and return an array of all the values (brands in this example)
type Car struct {
brand string
units int
}
....
var cars []Car
var singleCar Car
//So i have a loop here and inside the for-loop, i create many single cars
singleCar = Car {
brand: "Mercedes",
units: 20
}
//and i append the singleCar into cars
cars = append(cars, singleCar)
Now what I want to do is to create a function that I can retrieve all the brands, and I tried doing the following. I intend to have key as a dynamic value, so I can search by specific key, e.g. brand, model, capacity etc.
func getUniqueByKey(v []Car, key string) []string {
var combined []string
for i := range v {
combined = append(combined, v[i][key])
//this line returns error -
//invalid operation: cannot index v[i] (map index expression of type Car)compilerNonIndexableOperand
}
return combined
//This is suppose to return ["Mercedes", "Honda", "Ferrari"]
}
The above function is suppose to work if i use getUniqueByKey(cars, "brand") where in this example, brand is the key. But I do not know the syntaxes so it's returning error.
Seems like you're trying to get a property using a slice accessor, which doesn't work in Go. You'd need to write a function for each property. Here's an example with the brands:
func getUniqueBrands(v []Car) []string {
var combined []string
tempMap := make(map[string]bool)
for _, c := range v {
if _, p := tempMap[c.brand]; !p {
tempMap[c.brand] = true
combined = append(combined, c.brand)
}
}
return combined
}
Also, note the for loop being used to get the value of Car here. Go's range can be used to iterate over just indices or both indices and values. The index is discarded by assigning to _.
I would recommend re-using this code with an added switch-case block to get the result you want. If you need to return multiple types, use interface{} and type assertion.
Maybe you could marshal your struct into json data then convert it to a map. Example code:
package main
import (
"encoding/json"
"fmt"
)
type RandomStruct struct {
FieldA string
FieldB int
FieldC string
RandomFieldD bool
RandomFieldE interface{}
}
func main() {
fieldName := "FieldC"
randomStruct := RandomStruct{
FieldA: "a",
FieldB: 5,
FieldC: "c",
RandomFieldD: false,
RandomFieldE: map[string]string{"innerFieldA": "??"},
}
randomStructs := make([]RandomStruct, 0)
randomStructs = append(randomStructs, randomStruct, randomStruct, randomStruct)
res := FetchRandomFieldAndConcat(randomStructs, fieldName)
fmt.Println(res)
}
func FetchRandomFieldAndConcat(randomStructs []RandomStruct, fieldName string) []interface{} {
res := make([]interface{}, 0)
for _, randomStruct := range randomStructs {
jsonData, _ := json.Marshal(randomStruct)
jsonMap := make(map[string]interface{})
err := json.Unmarshal(jsonData, &jsonMap)
if err != nil {
fmt.Println(err)
// panic(err)
}
value, exists := jsonMap[fieldName]
if exists {
res = append(res, value)
}
}
return res
}

Golang: accessing map object outside the function it was declared in

I would like to loop through a slice of structs, and populate a struct field (which is a map) by passing in each struct to a function.
I have the below struct
type thing struct {
topicThing map[string]int
}
and I have the below functions
func main() {
ths := make([]thing, 0)
for i := 0; i < 10; i++ {
var th thing
ths = append(ths, th)
}
for _, th := range ths {
dothing(&th)
}
for _, th := range ths {
fmt.Println(th.topicThing)
}
}
func dothing(th *thing) {
tc := make(map[string]int)
tc["Hello"] = 1
tc["Bye"] = 2
th.topicThing = tc
}
The main function creates a slice of things (refered as ths), and passes each thing to the dothing() function by iterating over them.
Within dothing(), I create a new map, populate it with data, and assigns it to the passed in thing's attribute. However, by the time we iterate over ths in the main function to print topicThing of each thing, the map is empty.
Since make() creates objects within the heap, I was hoping it would be accessible even outside of the function scope. Can anyone tell me why this is happening?
P.S.
if I change the dothing() function like below:
func dothing(th *thing) {
th.topicThing["Hello"] = 1
th.topicThing["Bye"] = 2
}
The code works as expected, meaning the map is populated with data when accessed in the main function.
The range copies your object.
So when you do this,
for _, th := range ths {
dothing(&th)
}
you are actually dothing on a copy.
For example, with this main:
func main() {
ths := make([]thing, 0)
for i := 0; i < 10; i++ {
var th thing
ths = append(ths, th)
}
for _, th := range ths {
dothing(&th)
fmt.Println(th.topicThing)
}
it will print the right thing, since we are still working on the copy.
In order to not copy, use the array index:
for idx, _ := range ths {
dothing(&ths[idx])
}

How to pass slice of struct as pointer to a function and modify it?

I have a slice of struct []student, and I want to modify its content with function.
type student struct {
name string
age int
}
students := []student{
{"Doraemon", 30},
{"King Kong", 25},
}
Thus, I decided to pass it as a pointer. May I know how to pass the slice as a reference to a function?
func addAge (s *[]student) error { //this code has error
//everyone add 2 years old
for i, e := range *s {
s[i].age = s[i].age + 2
}
//make the first student much older
s[0].age = s[0].age + 5
return nil
}
I keep playing with Go Playground, but it gives many complains, such as
cannot range over s (type *[]student)
invalid operation: s[i] (type *[]student does not support indexing)
invalid indirect of s
...
How to precisely pass the reference of a slice of struct to a function? How to range the slice of struct? And how to change the value of the struct (modify the same struct in THE slice)?
I keep getting error while playing with s *[]student, range *s, s []student, s *[]*student ... so hard to get it correct...
sorry for my NEWBIE question, still learning GO... trying hard
Slices are passed by reference, so as long as you are modifying the existing slice content you should not explicitly pass a pointer.
package main
import (
"fmt"
)
type student struct {
name string
age int
}
func main() {
students := []student{
{"Doraemon", 30},
{"King Kong", 25},
}
err := addAge (students)
fmt.Println(students)
if err != nil {
fmt.Println("error")
}
}
func addAge (s []student) error {
for i, _ := range s {
s[i].age = 3
}
return nil
}
Now, for your addAdditinalStudent function you should actually use the append function. Plus, have in mind
..., since the slice header is always updated by a call to
append, you need to save the returned slice after the call. In fact,
the compiler won't let you call append without saving the result.
Slices#append
// add student
students = append(students, student{"Test", 33})
Go Playground
in Go you can pass items by value ([]student) or by reference ([]*student). When you want to operate on the values of a struct{} you should pass it to a function with its reference (the pointer).
So you can do something like this:
type student struct {
name string
age int
}
func addTwoYearsToAll(students []*student){
for _, s := range students {
s.age += 2
}
}
This way you're working with the same exact items you build when appending to the slice. Playground example.
Also take a look at Are Golang function parameter passed as copy-on-write?

Expanding a slice's size to prevent slice bounds out of range error

I have written the following:
func main() {
//inside main
fileInputBytes, err := ioutil.ReadFile("/tmp/test")
byteSize2 := len(fileInputBytes)
var inputFileByteSlice = fileInputBytes[0:]
var numberOfIndexes = math.Floor(float64(byteSize / indexingOffset))
for i := 1; i <= int(numberOfIndexes); i++ {
// adding i to the indexer insures that we use lookahed to ignore previously inserted indexing values
var v int = (i * indexingOffset) + i
Insert(&inputFileByteSlice, v+i, indexingByteValue)
fmt.Println(i)
}
}
//outside main
//variation of https://blog.golang.org/slices with pointers and such
func Insert(slice *[]byte, index int, value byte) {
// Grow the slice by one element.
(*slice) = (*slice)[0 : len(*slice)+1]
// Use copy to move the upper part of the slice out of the way and open a hole.
copy((*slice)[index+1:], (*slice)[index:])
// Store the new value.
(*slice)[index] = value
// Return the result.
}
The slice bounds out of range error is getting on my nerves. The length of the slice grows outside of the size and overflows, the reason I don't understand is that I thought the call to 'grow' the slice by one element(before copy) will dynamically allocate more space. Since that is not the case, can anyone offer me a better suggestion?
First of all, a slice is already a reference type. So you don't need to pass its pointer around if you are not going to change its capacity. So your main can be simplified as:
func main() {
fileInputBytes, err := ioutil.ReadFile("/tmp/test")
byteSize2 := len(fileInputBytes)
// No need to use pointer to slice. If you want a brand new slice
// that does not affect the original slice values, use copy()
inputFileByteArray := fileInputBytes
var numberOfIndexes = math.Floor(float64(byteSize / indexingOffset))
for i := 1; i <= int(numberOfIndexes); i++ {
var v int = (i * indexingOffset) + i
// Insert needs to return the newly updated slice reference
// which should be assigned in each iteration.
inputFileByteArray = Insert(inputFileByteArray, v+i, indexingByteValue)
fmt.Println(i)
}
}
Then, the Insert function can be simplified simply by using append along with copy and returning the newly created slice:
func Insert(slice []byte, index int, value byte) []byte {
if index >= len(slice) {
// add to the end of slice in case of index >= len(slice)
return append(slice, value)
}
tmp := make([]byte, len(slice[:index + 1]))
copy(tmp, slice[:index])
tmp[index] = value
return append(tmp, slice[index:]...)
}
This may not be the best implementation but it is simple enough. Example usage at: https://play.golang.org/p/Nuq4RX9XQD
Your function only works if the slice happens to have enough initial capacity. If you need more capacity, you can only "grow" the slice using the append function. You can still use the *[]byte pointer argument to modify the slice in place like so:
func Insert(slice *[]byte, index int, value byte) {
*slice = append(*slice, 0)
copy((*slice)[index+1:], (*slice)[index:])
(*slice)[index] = value
}
However, it's more customary to return a new slice value, and reassign it each time. This gives you a similar function signature to the builtin append.
func Insert(slice []byte, index int, value byte) []byte {
slice = append(slice, 0)
copy(slice[index+1:], slice[index:])
slice[index] = value
return slice
}

Can we write a generic array/slice deduplication in go?

Is there a way to write a generic array/slice deduplication in go, for []int we can have something like (from http://rosettacode.org/wiki/Remove_duplicate_elements#Go ):
func uniq(list []int) []int {
unique_set := make(map[int] bool, len(list))
for _, x := range list {
unique_set[x] = true
}
result := make([]int, len(unique_set))
i := 0
for x := range unique_set {
result[i] = x
i++
}
return result
}
But is there a way to extend it to support any array? with a signature like:
func deduplicate(a []interface{}) []interface{}
I know that you can write that function with that signature, but then you can't actually use it on []int, you need to create a []interface{} put everything from the []int into it, pass it to the function then get it back and put it into a []interface{} and go through this new array and put everything in a new []int.
My question is, is there a better way to do this?
While VonC's answer probably does the closest to what you really want, the only real way to do it in native Go without gen is to define an interface
type IDList interface {
// Returns the id of the element at i
ID(i int) int
// Returns the element
// with the given id
GetByID(id int) interface{}
Len() int
// Adds the element to the list
Insert(interface{})
}
// Puts the deduplicated list in dst
func Deduplicate(dst, list IDList) {
intList := make([]int, list.Len())
for i := range intList {
intList[i] = list.ID(i)
}
uniques := uniq(intList)
for _,el := range uniques {
dst.Insert(list.GetByID(el))
}
}
Where uniq is the function from your OP.
This is just one possible example, and there are probably much better ones, but in general mapping each element to a unique "==able" ID and either constructing a new list or culling based on the deduplication of the IDs is probably the most intuitive way.
An alternate solution is to take in an []IDer where the IDer interface is just ID() int. However, that means that user code has to create the []IDer list and copy all the elements into that list, which is a bit ugly. It's cleaner for the user to wrap the list as an ID list rather than copy, but it's a similar amount of work either way.
The only way I have seen that implemented in Go is with the clipperhouse/gen project,
gen is an attempt to bring some generics-like functionality to Go, with some inspiration from C#’s Linq and JavaScript’s underscore libraries
See this test:
// Distinct returns a new Thing1s slice whose elements are unique. See: http://clipperhouse.github.io/gen/#Distinct
func (rcv Thing1s) Distinct() (result Thing1s) {
appended := make(map[Thing1]bool)
for _, v := range rcv {
if !appended[v] {
result = append(result, v)
appended[v] = true
}
}
return result
}
But, as explained in clipperhouse.github.io/gen/:
gen generates code for your types, at development time, using the command line.
gen is not an import; the generated source becomes part of your project and takes no external dependencies.
You could do something close to this via an interface. Define an interface, say "DeDupable" requiring a func, say, UniqId() []byte, which you could then use to do the removing of dups. and your uniq func would take a []DeDupable and work on it

Resources