SVAR residual calculation python has problem? - statsmodels

I am using statsmodels.tsa.vector_ar.svar_model.SVAR function. I am not sure if the calculation for residuals ("resid" in the code) is correct because it seems that it does not take the contemporaneous terms into account.

Autoregression methods are based on least square ones and "resid" means Least Square method fitting residuals, not prediction errors.
https://www.statsmodels.org/dev/generated/statsmodels.tsa.ar_model.ARResults.resid.html
In addition, "residual" usually means estimation errors:
https://en.wikipedia.org/wiki/Errors_and_residuals

Related

Mathematica's NDSolve is finding a stiff system very quickly trying to solve a large set of differential equations

I'm a physics PhD student solving lubrication equations (non-linear PDEs) related to the evaporation of binary droplets in a cylindrical pixel in order to simulate the shape evolution. So I split the system into N ODEs, each representing the height evolution (dh/dt) at point i, write as finite differences, and solve simultaneously using NDSolve. For single-liquid droplets this works perfectly, the droplet evaporates cleanly.
However for binary droplets I include N additional ODEs for the composition fraction evolution (dX/dt) at each point. This also adds a new term (marangoni stress) to the dh/dt equations. Immediately NDSolve says:
At t == 0.00029140763302667777`, step size is effectively zero;
singularity or stiff system suspected.
I plot the droplet height at this t-value and it shows a narrow spike at the origin (clearly exploding, hence the stiffness); plotting the composition shows a narrow plummet at the origin (also exploding, just negative. Also, the physics obviously shouldn't permit the composition fraction to be below 0).
Finally, both sets of equations have terms depending on dX/dr, the composition gradient. If this is set to zero and I also set the evaporation interaction to zero (meaning the two liquids evaporate at the same rate and there can be no X gradient) there should be no change in X anywhere and it should reduce to the single liquid case (dX/dt = 0 and dh/dt no longer depends on X). However, the procedure is introducing some small gradient in X nonetheless, which explodes and causes the same numerical instability.
My question is this: is there anything about NDSolve that might be causing this? I've been over the equations and discretisation a hundred times and am sure it's correct. I've also looked into the documentation of NDSolve, but didn't find anything that helps me. Could it be introducing a small numerical error in the composition gradient?
I can post an MRE code below, but it's pretty dense and obviously written in mathematica code (doesn't transfer to the real world well...) so I don't know how much it'd help. Anyway thank you for reading this!

Modelica events and hybrid modelling

I would like to understand the general idea behind hybrid modelling (in particular state events) from a numerical point of view (although I am not a mathematician :)). Given the following Modelica model:
model BouncingBall
constant Real g=9.81
Real h(start=1);
Real v(start=0);
equation
der(h)=v;
der(v)=-g;
algorithm
when h < 0 then
reinit(v,-pre(v));
end when;
end BouncingBall;
I understand the concept of when and reinit.
The equation in the when statement are only active when the condition become true right?
Let's assume that the ball would hit the floor at exactly 2sec. Since I am using multi-step solver does that mean that the solver "goes beyond 2 seconds", recognizes that h<0 (lets assume at simulation time = 2.5sec , h = -0.7). What does this mean "The time for the event is searched using a crossing function? Is there a simple explanation(example)?
Is the solver now going back? Taking a smaller step-size?
What does the pre() operation mean in that context?
noEvent(): "Expressions are taken literally instead of generating crossing functions. Since there is no crossing function, there is no requirement tat the expression can be evaluated beyond the event limit": What does that mean? Given the same example with the bouncing ball: The solver detects at time 2.5 that h = 0.7. Whats the difference between with and without noEvent()?
Yes, the body of when is only executed at events.
Simple view: The solver takes steps, and then uses a continuous extension to generate a (smooth) interpolation formula for the previous step. That interpolation formula can be used to generate a plot, and also for finding the first point where h has crossed zero (likely 2.000000001). An event iteration is then done at that interpolated point - and afterwards the solver is restarted.
I wouldn't say that the solver goes back. It takes a partial step and then continues forward. Some solvers need to reduce the step-size a lot after the event - others don't.
pre(x) is set to the value of x before the event.
noEvent(h<0) basically means evaluate the expression as written without all the bells-and-whistles of crossing functions. You cannot use when noEvent(h<0) then
There are many additional point:
If you are familiar with Sturm-sequences or control theory you might realize that it is not necessary to interpolate a formula to determine if it crossed zero or not in an interval (and some tools use that). The fact that the function is not necessarily smooth makes it a bit more complicated, and also means that derivative-tests cannot be used.
How much the solver is reset depends on the kind of solver. One-step solvers (Runge-Kutta) can be restarted directly as if virtually nothing happened, whereas multi-step solvers (BDF/Adams - such as dassl/lsodar/cvode) need to start with lower order and smaller step-size.

error bound in function approximation algorithm

Suppose we have the set of floating point number with "m" bit mantissa and "e" bits for exponent. Suppose more over we want to approximate a function "f".
From the theory we know that usually a "range reduced function" is used and then from such function we derive the global function value.
For example let x = (sx,ex,mx) (sign exp and mantissa) then...
log2(x) = ex + log2(1.mx) so basically the range reduced function is "log2(1.mx)".
I have implemented at present reciprocal, square root, log2 and exp2, recently i've started to work with the trigonometric functions. But i was wandering if given a global error bound (ulp error especially) it is possible to derive an error bound for the range reduced function, is there some study about this kind of problem? Speaking of the log2(x) (as example) i would lke to be able to say...
"ok i want log2(x) with k ulp error, to achieve this given our floating point system we need to approximate log2(1.mx) with p ulp error"
Remember that as i said we know we are working with floating point number, but the format is generic, so it could be the classic F32, but even for example e=10, m = 8 end so on.
I can't actually find any reference that shows such kind of study. Reference i have (i.e. muller book) doesn't treat the topic in this way so i was looking for some kind of paper or similar. Do you know any reference?
I'm also trying to derive such bound by myself but it is not easy...
There is a description of current practice, along with a proposed improvement and an error analysis, at https://hal.inria.fr/ensl-00086904/document. The description of current practice appears consistent with the overview at https://docs.oracle.com/cd/E37069_01/html/E39019/z4000ac119729.html, which is consistent with my memory of the most talked about problem being the mod pi range reduction of trigonometric functions.
I think IEEE floating point was a big step forwards just because it standardized things at a time when there were a variety of computer architectures, so lowering the risks of porting code between them, but the accuracy requirements implied by this may have been overkill: for many problems the constraint on the accuracy of the output is the accuracy of the input data, not the accuracy of the calculation of intermediate values.

metafor() non-negative sampling variance

I am trying to learn meta regression using the metafor() package. In running
one of the mixed regression models, I received an error indicating
"There are outcomes with non-positive sampling variances."
I am at lost as to how to proceed with this error. I understand that certain
model statistics (e.g., I^2 and QE) cannot be computed with due to the
presence of non-positive sampling variances. However, I am not sure whether
these results can be interpreted similarly as we would have otherwise. I
also tried using other estimators and/or the unweighted option; the error
still persists.
Any suggestions would be much appreciated.
First of all, to clarify: You are getting a warning, not an error.
Aside from that, I can't think of many situations where it is reasonable to assume that the sampling variance is really equal to 0 in a particular study. I would first question whether this really makes sense. This is why the rma() function is generating this warning message -- to make the user aware of this situation and question whether this really is intended/reasonable.
But suppose that we really want to go through with this, then you have to use an estimator for tau^2 that can handle this (e.g., method="REML" -- which is actually the default). If the estimate of tau^2 ends up equal to 0 as well, then the model cannot be fitted at all (due to division by zero -- and then you get an error). If you do end up with a positive estimate of tau^2, then the results should be okay (but things like the Q-test, I^2, or H^2 cannot be computed then).

Ising 2D Optimization

I have implemented a MC-Simulation of the 2D Ising model in C99.
Compiling with gcc 4.8.2 on Scientific Linux 6.5.
When I scale up the grid the simulation time increases, as expected.
The implementation simply uses the Metropolis–Hastings algorithm.
I tried to find out a way to speed up the algorithm, but I haven't any good idea ?
Are there some tricks to do so ?
As jimifiki wrote, try to do a profiling session.
In order to improve on the algorithmic side only, you could try the following:
Lookup Table:
When calculating the energy difference for the Metropolis criteria you need to evaluate the exponential exp[-K / T * dE ] where K is your scaling constant (in units of Boltzmann's constant) and dE the energy-difference between the original state and the one after a spin-flip.
Calculating exponentials is expensive
So you simply build a table beforehand where to look up the possible values for the dE. There will be (four choose one plus four choose two plus four choose three plus four choose four) possible combinations for a nearest-neightbour interaction, exploit the problem's symmetry and you get five values fordE: 8, 4, 0, -4, -8. Instead of using the exp-function, use the precalculated table.
Parallelization:
As mentioned before, it is possible to parallelize the algorithm. To preserve the physical correctness, you have to use a so-called checkerboard concept. Consider the two-dimensional grid as a checkerboard and compute only the white cells parallel at once, then the black ones. That should be clear, considering the nearest-neightbour interaction which introduces dependencies of the values.
Use GPGPU:
You can also implement the simulation on a GPGPU, e.g. using CUDA, if you're already working on C99.
Some tips:
- Don't forget to align C99-structs properly.
- Use linear Arrays, not that nested ones. Aligned memory is normally faster to access, if done properly.
- Try to let the compiler do loop-unrolling, etc. (gcc special options, not default on O2)
Some more information:
If you look for an efficient method to calculate the critical point of the system, the method of choice would be finite-size scaling where you simulate at different system-sizes and different temperature, then calculate a value which is system-size independet at the critical point, therefore an intersection point of the corresponding curves (please see the theory to get a detailed explaination)
I hope I was helpful.
Cheers...
It's normal that your simulation times scale at least with the square of the size. Isn't it?
Here some subjestions:
If you are concerned with thermalization issues, try to use parallel tempering. It can be of help.
The Metropolis-Hastings algorithm can be made parallel. You could try to do it.
Check you are not pessimizing the code.
Are your spin arrays of ints? You could put many spins on the same int. It's a lot of work.
Moreover, remember what Donald taught us:
premature optimisation is the root of all evil
Before optimising you should first understand where your program is slow. This is called profiling.

Resources