Algorithm to cluster 2D points into bounding-box decomposition - algorithm

I'm looking for an algorithm that takes the unstructured 2D point set as illustrated above and gives me a decomposition into bounding boxes as shown below. The bounding boxes may overlap, but the algorithm should nevertheless try to find a tight fit (it does not need to be the best one possible, but a good one).
I already tried to work with K-Means but that doesn't give me useful results as I'd need to know already how many clusters I need.

There are several approaches to achieve this. The one I'd use is to apply the RANSAC algorithm in order to sequentially fit Oriented Bounding Boxes (OBB) to the data. By adopting this approach you can even improve the sample selection by computing a constrained Delaunay triangulation on your data, thus discarding bigger edges when fitting the OBB.
Alternatively, you can apply the Alpha-shape algorithm on the entire set of points and start decomposing in smaller shapes, but this requires the definition of an optimal alpha value which is not trivial.

Related

4x4 transformation matrix between two sets of three points -- approach?

With a truedepth camera, I have measured two sets of three points in 3D space -- basically keypoints on an object that has moved over time. I would like to calculate the 4x4 transformation matrix that matches one set to the other set (which won't be perfect, but want to get as close as possible). The best technique I can come up with is some sort of gradient descent optimization on the terms of the matrix, minimizing the sum of squared distances between the calculated set and target. But I feel like there's a better, more elegant approach out there. Does anyone have any thoughts or pointers? Thanks!
What you probably want is to compute the best rigid transformation matching two sets of points. There is a closed form solution for that. That problem has several names: Kabsch Problem, Whaba Problem, Procrustes Problem and Attitude Estimation problem (with some well known algorithms like QUEST and FOAM)
See:
https://en.m.wikipedia.org/wiki/Kabsch_algorithm

Finding vertices in a mesh that are within certain proximity of each other

I have a 3D mesh that is comprised of a certain amount of vertices.
I know that there are some vertices that are really close to one another. I want to find groups of these, so that I can normalize them.
I could make a KD and do basic NNS, but that doesn't scale so well if I don't have a reference point.
I want to find these groups in relation to all points.
In my searches I also found k-means but I cannot seem to wrap my head around it's scientific descriptions to find out if that's really what I need.
I'm not well versed in spatial algorithms in general. I know where one can apply them, for instance, for this case, but I lack the actual know-how, to even have the correct keywords.
So, yeah, what algorithms are meant for such task?
Simple idea that might work:
Compue a slightly big bounding volume for each vertex in the mesh. For instance is you use a Sphere, use a small radius for it e.g., the radius can be equal to the length of the smallest edge of the mesh.
Compute the intersection of bounding volumes for each vertex. Use a collision detection algorithm for that such as the I-Collide. Use a disjoint-set datastrcture for grouping the points in collision.
Merge all the points residing in the same set.
You can fine-tune the algorithm by changing the size of the bounding volumes. Also you can use this algorithm as a starting point for a k-means algoritm or other sound clustering technique.

Cutting Heuristic Solving Algorithm for n-edged polygone

I want to programm a tool that can place objects on a rectangle with the minumum of waste, this problem is also known as the cutting problem.
So i looked around to find some algorithms and i found out there are a few for rectangles but not that much for n-edged polygones.
my first approach was to get a bounding box for the polygone, then run the normal rectangle algorithm. After that you cound slowly try to increase the number of edges but still have only isometric lines (only vertical and horizontal), to approximate the polygone.
I wonder if there is any good algorithm that implement such thing, but is more common than create my own stuff.
the other way ive come up with could be something with two dimensional knapsack and some sorting heuristics that sort the best fitting polygones and try to put them on the rectangle.
But all i come up with has some good detection of special polygones (such as a square or normal rectangle) but does not work on common polygones.

Algorithms to normalize finger touch data (reduce the number of points)

I'm working on an app that lets users select regions by finger painting on top of a map. The points then get converted to a latitude/longitude and get uploaded to a server.
The touch screen is delivering way too many points to be uploaded over 3G. Even small regions can accumulate up to ~500 points.
I would like to smooth this touch data (approximate it within some tolerance). The accuracy of drawing does not really matter much as long as the general area of the region is the same.
Are there any well known algorithms to do this? Is this work for a Kalman filter?
There is the Ramer–Douglas–Peucker algorithm (wikipedia).
The purpose of the algorithm is, given
a curve composed of line segments, to
find a similar curve with fewer
points. The algorithm defines
'dissimilar' based on the maximum
distance between the original curve
and the simplified curve. The
simplified curve consists of a subset
of the points that defined the
original curve.
You probably don't need anything too exotic to dramatically cut down your data.
Consider something as simple as this:
Construct some sort of error metric. An easy one would be a normalized sum of the distances from the omitted points to the line that was approximating them. Decide what a tolerable error using this metric is.
Then starting from the first point construct the longest line segment that falls within the tolerable error range. Repeat this process until you have converted the entire path into a polyline.
This will not give you the globally optimal approximation but it will probably be good enough.
If you want the approximation to be more "curvey" you might consider using splines or bezier curves rather than straight line segments.
You want to subdivide the surface into a grid with a quadtree or a space-filling-curve. A sfc reduce the 2d complexity to a 1d complexity. You want to look for Nick's hilbert curve quadtree spatial index blog.
I was going to do something this in an app, but was intending on generating a path from the points on-the-fly. I was going to use a technique mentioned in this Point Sequence Interpolation thread

How to subsample a 2D polygon?

I have polygons that define the contour of counties in the UK. These shapes are very detailed (10k to 20k points each), thus rendering the related computations (is point X in polygon P?) quite computationaly expensive.
Thus, I would like to "subsample" my polygons, to obtain a similar shape but with less points. What are the different techniques to do so?
The trivial one would be to take one every N points (thus subsampling by a factor N), but this feels too "crude". I would rather do some averaging of points, or something of that flavor. Any pointer?
Two solutions spring to mind:
1) since the map of the UK is reasonably squarish, you could choose to render a bitmap with the counties. Assign each a specific colour, and then render the borders with a 1 or 2 pixel thick black line. This means you'll only have to perform the expensive interior/exterior calculation if a sample happens to lie on the border. The larger the bitmap, the less often this will happen.
2) simplify the county outlines. You can use a recursive Ramer–Douglas–Peucker algorithm to recursively simplify the boundaries. Just make sure you cache the results. You may also have to solve this not for entire county boundaries but for shared boundaries only, to ensure no gaps. This might be quite tricky.
Here you can find a project dealing exactly with your issues. Although it works primarily with an area "filled" by points, you can set it to work with a "perimeter" type definition as yours.
It uses a k-nearest neighbors approach for calculating the region.
Samples:
Here you can request a copy of the paper.
Seemingly they planned to offer an online service for requesting calculations, but I didn't test it, and probably it isn't running.
HTH!
Polygon triangulation should help here. You'll still have to check many polygons, but these are triangles now, so they are easier to check and you can use some optimizations to determine only a small subset of polygons to check for a given region or point.
As it seems you have all the algorithms you need for polygons, not only for triangles, you can also merge several triangles that are too small after triangulation or if triangle count gets too high.

Resources