How to update tag value for exported metric in micrometer? - spring-boot

Im using micrometer for exporting summery of third party api consumption.
Now I want to precisely count failed requests and export each failed request ids.
Invoking below method for each restTemplate exchange call.
private DistributionSummary incFailedCounter(String requestId) {
this.registry = beanProvider.getRegistry();
DistributionSummary summary = summarys.get(myCounter);
if (summary == null) {
Builder tags = DistributionSummary.builder("failed.test").tags("req_id", requestId, "count", "1");
summary = tags.register(registry);
summarys.put(myCounter, summary);
} else {
String tag = summary.getId().getTag("req_id");
String[] split = tag.split(",");
summary.close();
summarys.put(myCounter,
DistributionSummary.builder("failed.test")
.tags("req_id", tag + ", " + requestId, "count", String.valueOf(split.length + 1))
.register(registry));
}
return summary;
}
This code insert new line to metric for each request.
failed_test_count{count="1",instance="localhost:8080",job="monitor-app",req_id="1157408321"}
failed_test_count{count="2",instance="localhost:8080",job="monitor-app",req_id="1157408321, 1157408321"}
failed_test_count{count="3",instance="localhost:8080",job="monitor-app",req_id="1157408321, 1157408321, 1157408321"}
Problem is this metric size is increased with many requests.
Is there way to remove or replace same tag and export only one dynamic metric with updated req_ids ?

Can not remove or update tags, cause they are immutable. One way is to unregister current meter. used below method to removed registered meter and applied new one.
registry.remove(summary.getId());
This produces one line metric.
failed_test_count{count="4",instance="localhost:8080",job="monitor-app",req_id="1157408321, 58500184, 58500184, 58500184"}

Related

Looking for PendingResult await() equivalent in New Places SDK Client

Background: I have a List of strings which contains the different place IDs. Once a user has selected his location, I have a loop that executes and determines if each place in the list (I obtain the location from the place ID) is near his selected location. I was able to implement this with the old Places SDK but could not migrate it to the new SDK because it seems that the new SDK has no await() equivalent.
Here is my old code:
// contains a list of Offices. Has method getId() which contains the Place ID from Google.
List<Office> results = obtained from the database...
// go thru each Location and find those near the user's location
for (int i = 0; i < results.size(); i++) {
// Get the place from the placeID
PendingResult<PlaceBuffer> placeResult = Places.GeoDataApi.
getPlaceById(mGoogleApiClient, results.get(i).getId());
// wait for the result to come out (NEED EQUIVALENT IN NEW PLACES SDK)
PlaceBuffer places = placeResult.await();
// Get the latitude and longitude for the specific Location
LatLng latLng = places.get(0).getLatLng();
// Set the location object for the specific business
Location A = new Location("Business");
A.setLatitude(latLng.latitude);
A.setLongitude(latLng.longitude);
// get the distance of the business from the user's selected location
float distance = A.distanceTo(mSelectedLocation);
// if the distance is less than 50m away
if (distance < 50) { ... do something in code}
As you can see in the code above, the old PLACES SDK API has a PendingResult class with await() as one of the methods. This await() as per documentation Blocks until the task is completed.. IN SUMMARY, the code will not proceed till a result is obtained from getPlaceById.
I migrated to the new Places SDK as per documentation and I have issues. Here is my new migrated code based on the Google documentation: https://developers.google.com/places/android-sdk/client-migration#fetch_a_place_by_id
for (int i = 0; i < results.size(); i++) {
// Get the place Id
String placeId = results.get(position).getId();
// Specify the fields to return.
List<Place.Field> placeFields = Arrays.asList(Place.Field.ID, Place.Field.NAME,
Place.Field.LAT_LNG, Place.Field.ADDRESS);
// Construct a request object, passing the place ID and fields array.
FetchPlaceRequest request = FetchPlaceRequest.builder(placeId, placeFields)
.build();
// Add a listener to handle the response.
placesClient.fetchPlace(request).addOnSuccessListener((response) -> {
Place place = response.getPlace();
// Get the latitude and longitude for the specific location
LatLng latLng = place.getLatLng();
// Set the location object for the specific business
Location A = new Location("Business");
A.setLatitude(latLng.latitude);
A.setLongitude(latLng.longitude);
// get the distance of the business from the selected location
float distance = A.distanceTo(mSelectedLocation);
// if the distance is less than 50m away
if (distance < 50) { ... do something in code}
It seems that key issue here is that in the old code await() blocks the code till its successful hence the for loop does not process. However this is not the case with OnSuccessListener. As a result, with the new migrated code, the for loop proceeds and completes the loop even when fetchPlace is not yet complete getting its results for each iteration. Thus, the code is broken and is unable to get the results needed.
Is there a way to block the code to move till fetchPlace is completed?!
Any Google API task can be waited on by Google's Task API as far as I'm aware.
For example, findAutocompletePredictions returns a Task<> object. Instead of adding an onCompleteListener, you can pass that task to Tasks.await.
Instead of this non-blocking way:
OnCompleteListener<T> onCompleteListener=
new OnCompleteListener<T> {...}
placesClient.findAutocompletePredictions(f)
.addOnCompleteListener(onCompleteListener);
You could pass it on to Tasks.await() and make the API call blocking:
T results = null;
try {
// No timeout
results = Tasks.await(placesClient.findAutocompletePredictions(f));
// Optionally, with a 30 second timeout:
results = Tasks.await(
placesClient.findAutocompletePredictions(f), 30, TimeUnit.SECONDS);
} catch (ExecutionException e) {
// Catch me
} catch (TimeoutException e) {
// Catch me, only needed when a timeout is set
} catch (InterruptedException e) {
// Catch me
}
if (results != null) {
// Do something
} else {
// Do another thing
}
Basically, instead of getting a PendingResult by default, you're now given a Task<T> that you can use however.
I solved the issue by using the Task Class. See below:
for (int position = 0; position < results.size(); position++) {
// Get the placeID
String placeId = results.get(position).getAddress();
// Specify the fields to return.
List<Place.Field> placeFields = Arrays.asList(Place.Field.ID, Place.Field.NAME,
Place.Field.LAT_LNG, Place.Field.ADDRESS);
// Construct a request object, passing the place ID and fields array.
FetchPlaceRequest request = FetchPlaceRequest.builder(placeId, placeFields)
.build();
// create a FetchPlaceResponse task
Task<FetchPlaceResponse> task = placesClient.fetchPlace(request);
try {
FetchPlaceResponse response = Tasks.await(task);
Place place = response.getPlace();
// Get the latitude and longitude for the specific place
LatLng latLng = place.getLatLng();
// Set the location object for the specific business
Location A = new Location("Business");
A.setLatitude(latLng.latitude);
A.setLongitude(latLng.longitude);
// get the distance of the business from the selected location
float distance = A.distanceTo(mSelectedLocation);
These two codes will ask the system to wait for the response..
Task task = placesClient.fetchPlace(request);
FetchPlaceResponse response = Tasks.await(task);

How to extract and manipulate data within a Nifi processor

I'm trying to write a custom Nifi processor which will take in the contents of the incoming flow file, perform some math operations on it, then write the results into an outgoing flow file. Is there a way to dump the contents of the incoming flow file into a string or something? I've been searching for a while now and it doesn't seem that simple. If anyone could point me toward a good tutorial that deals with doing something like that it would be greatly appreciated.
The Apache NiFi Developer Guide documents the process of creating a custom processor very well. In your specific case, I would start with the Component Lifecycle section and the Enrich/Modify Content pattern. Any other processor which does similar work (like ReplaceText or Base64EncodeContent) would be good examples to learn from; all of the source code is available on GitHub.
Essentially you need to implement the #onTrigger() method in your processor class, read the flowfile content and parse it into your expected format, perform your operations, and then re-populate the resulting flowfile content. Your source code will look something like this:
#Override
public void onTrigger(final ProcessContext context, final ProcessSession session) throws ProcessException {
FlowFile flowFile = session.get();
if (flowFile == null) {
return;
}
final ComponentLog logger = getLogger();
AtomicBoolean error = new AtomicBoolean();
AtomicReference<String> result = new AtomicReference<>(null);
// This uses a lambda function in place of a callback for InputStreamCallback#process()
processSession.read(flowFile, in -> {
long start = System.nanoTime();
// Read the flowfile content into a String
// TODO: May need to buffer this if the content is large
try {
final String contents = IOUtils.toString(in, StandardCharsets.UTF_8);
result.set(new MyMathOperationService().performSomeOperation(contents));
long stop = System.nanoTime();
if (getLogger().isDebugEnabled()) {
final long durationNanos = stop - start;
DecimalFormat df = new DecimalFormat("#.###");
getLogger().debug("Performed operation in " + durationNanos + " nanoseconds (" + df.format(durationNanos / 1_000_000_000.0) + " seconds).");
}
} catch (Exception e) {
error.set(true);
getLogger().error(e.getMessage() + " Routing to failure.", e);
}
});
if (error.get()) {
processSession.transfer(flowFile, REL_FAILURE);
} else {
// Again, a lambda takes the place of the OutputStreamCallback#process()
FlowFile updatedFlowFile = session.write(flowFile, (in, out) -> {
final String resultString = result.get();
final byte[] resultBytes = resultString.getBytes(StandardCharsets.UTF_8);
// TODO: This can use a while loop for performance
out.write(resultBytes, 0, resultBytes.length);
out.flush();
});
processSession.transfer(updatedFlowFile, REL_SUCCESS);
}
}
Daggett is right that the ExecuteScript processor is a good place to start because it will shorten the development lifecycle (no building NARs, deploying, and restarting NiFi to use it) and when you have the correct behavior, you can easily copy/paste into the generated skeleton and deploy it once.

NFC External record is returning in wrong format?

I've successfully written an external record to an NFC tag. When I use a 3rd party tag reader to evaluate the external record that was written, I see the appropriate value, which is a single, positive integer.
However, when I run my code (below) to see what the value of the payload (external record) is on the tag (using a Toast) in order to incorporate that value into an "if" statement, I get different values. So far, I've seen the following:
B#41fb4278 or B#41fb1190.
At this point, the value of the external record is just "2". How can I just return/write simply 2?
protected void onNewIntent(Intent intent) {
super.onNewIntent(intent);
if(intent.hasExtra(NfcAdapter.EXTRA_TAG))
{
Tag tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
byte[] payload = "2".getBytes(); ///this is where the ID (payload) for the tag is assigned.
NdefRecord[] ndefRecords = new NdefRecord[2];
ndefRecords[0] = NdefRecord.createExternal("com.example.bmt_admin", "externaltype", payload);
ndefRecords[1] = NdefRecord.createApplicationRecord("com.example.bmt_01");
NdefMessage ndefMessage = new NdefMessage(ndefRecords);
writeNdefMessage(tag, ndefMessage);
Toast.makeText(this, "NFC Scan: " + payload, Toast.LENGTH_SHORT).show();
}
}
Thanks for any help!!
payload is defined as byte[]. When you use payload in your toast() statment, you use it a pointer to that array. Therefore what you see is the address of the array. When you want to get a string representation of a byte[], you can use for example:
String s = new String(payload);

Setting Time To Live (TTL) from Java - sample requested

EDIT:
This is basically what I want to do, only in Java
Using ElasticSearch, we add documents to an index bypassing IndexRequest items to a BulkRequestBuilder.
I would like for the documents to be dropped from the index after some time has passed (time to live/ttl)
This can be done either by setting a default for the index, or on a per-document basis. Either approach is fine by me.
The code below is an attempt to do it per document. It does not work. I think it's because TTL is not enabled for the index. Either show me what Java code I need to add to enable TTL so the code below works, or show me different code that enables TTL + sets default TTL value for the index in Java I know how to do it from the REST API but I need to do it from Java code, if at all possible.
logger.debug("Indexing record ({}): {}", id, map);
final IndexRequest indexRequest = new IndexRequest(_indexName, _documentType, id);
final long debug = indexRequest.ttl();
if (_ttl > 0) {
indexRequest.ttl(_ttl);
System.out.println("Setting TTL to " + _ttl);
System.out.println("IndexRequest now has ttl of " + indexRequest.ttl());
}
indexRequest.source(map);
indexRequest.operationThreaded(false);
bulkRequestBuilder.add(indexRequest);
}
// execute and block until done.
BulkResponse response;
try {
response = bulkRequestBuilder.execute().actionGet();
Later I check in my unit test by polling this method, but the document count never goes down.
public long getDocumentCount() throws Exception {
Client client = getClient();
try {
client.admin().indices().refresh(new RefreshRequest(INDEX_NAME)).actionGet();
ActionFuture<CountResponse> response = client.count(new CountRequest(INDEX_NAME).types(DOCUMENT_TYPE));
CountResponse countResponse = response.get();
return countResponse.getCount();
} finally {
client.close();
}
}
After a LONG day of googling and writing test programs, I came up with a working example of how to use ttl and basic index/object creation from the Java API. Frankly most of the examples in the docs are trivial, and some JavaDoc and end-to-end examples would go a LONG way to help those of us who are using the non-REST interfaces.
Ah well.
Code here: Adding mapping to a type from Java - how do I do it?

Dynamics CRM 2011 Bulk Update

Running Dynamics CRM 2011 rollout 3. Need to update millions of customer records periodically (delta updates). Using standard update (one by one) takes a few weeks. Also we don't want to touch the DB directly as it may break stuff in the future.
Is there a bulk update method in the Dynamics CRM 2011 webservice/REST API we can use? (WhatWhereHow)
I realize this is post is over 2 years old, but I can add to it in case someone else reads it and has a similar need.
Peter Majeed's answer is on target in that CRM processes requests one record at a time. There is no bulk edit that works the way you are looking for. I encourage you not to touch the DB directly if you need/want Microsoft support.
If you are looking at periodic updates of millions of records, you have a few options. Consider using Scribe or develop your own custom import utility or script using the CRM SDK.
Scribe is probably going to be your best option since it is cost effective for data imports and will allow you to easily update and insert from the same file.
If you write your own .Net/SDK based utility, I'd suggest making it multithreaded and either programmatically break up your input file in memory or on disk and have each thread work with its own subset of the data - that is, of course, if the order of execution does not have to be chronological according to the contents of the input file. If you can divide and conquer the input file over multiple threads, you can reduce the overall execution time considerably.
Also, if your corporate policy allows you to have access to one of the CRM Servers and you can place your code directly on the server and execute it from there - you can eliminate the network latency between a workstation running the code and the CRM web services.
Last but not least, if this large volume of import data is coming from another system, you can write a CRM plug-in to run on the Retrieve and RetrieveMultiple messages (events) in CRM for your specific entity, programmatically retrieve the desired data from the other system (and if the other system is unavailable - just use the cached copy in CRM), and keep CRM up to date in real-time or on a 'last-cached-on' basis. This is certainly more coding effort, but it potentially eliminates the need for a large synchronization job to be run every few weeks.
Yes and no, mostly no. Someone can correct me if I'm mistaken, in which case I'll gladly edit/delete my answer, but everything that's done in Dynamics CRM is done one at a time. It doesn't even try to handle set-based inserts/updates/deletes. So unless you go straight to direct DB operations, it will take you weeks.
The webservice does allow for "bulk" inserts/deletes/updates, but I put "bulk" in quotes because all it does is set up an asynchronous process where it does all the relevant data operations - yep - one at a time. There's a section of the SDK that addresses this sort of data management (linked). And to update the records this way, you'd have to first suffer the overhead of selecting all the data you want to update, then creating an xml file that contains the data, and finally updating the data (remember: one row at a time). So it would actually be more efficient to just loop through your data and issue an Update request for each yourself.
(I will note that our org hasn't experienced any memorable issues regarding direct DB access to handle what the SDK doesn't, nor have I seen anything in my personal internet readings that suggest others have.)
Edit:
See iFirefly's answer below for some other excellent ways to address this issue.
I realize this is an old question but it comes up high on "CRM Bulk Update" so the Update Rollup 12 feature ExecuteMultiple needs to be mentioned here -- its not going to work around your issue (massive volume) because as iFirefly and Peter point out CRM does everything one at a time. What it does do is package all your requests into a single envelope letting CRM handle the execution of each update and reduce the number of round trips between your app and the server if you do end up issuing an Update request for every record.
This is quite an old question, but nobody mentioned the fasted way (but also the most challenging) of updating/creating huge amounts of records in CRM 201X - using built-in import feature, which is totally doable using CRM SDK. There is a perfect MSDN article about that:
https://msdn.microsoft.com/en-us/library/gg328321(v=crm.5).aspx. In short you have to:
1) Build Excel file containing the data you want to import (simply export some data from CRM 201X and check how the structure looks like, remember that the first 3 columns are hidden)
2) create Import Map entity (specify the file you created)
3) Create column mappings if necessary
4) Create Import and ImportFile entity, providing proper mappings
5) Parse data using ParseImportRequest
6) Tranform data using TransformImportRequest
7) Import data using ImportRecordsImportRequest
This were the steps for CRM 2011, now in 2017 we have more versions available and there are slight differences between them. Check the sample that is available on MSDN and in SDK:
https://msdn.microsoft.com/en-us/library/hh547396(v=crm.5).aspx
Of course point 1, will be the most difficult part, because you have to build XML or docx file perfectly corresponding to what CRM expects, but I'm assuming you are doing it from external app, so you can use some great .NET libraries that will make things much simpler.
I never saw anything faster than standard CRM import when it comes to updating/creating records, even if you go for parallelism and Batch Update requests.
If something goes wrong with the MSDN sites, I'm posting here an example from the link above that is showing how to import data to CRM programatically:
using System;
using System.ServiceModel;
using System.Collections.Generic;
using System.Linq;
// These namespaces are found in the Microsoft.Xrm.Sdk.dll assembly
// located in the SDK\bin folder of the SDK download.
using Microsoft.Xrm.Sdk;
using Microsoft.Xrm.Sdk.Query;
using Microsoft.Xrm.Sdk.Client;
using Microsoft.Xrm.Sdk.Messages;
using Microsoft.Xrm.Sdk.Metadata;
// These namespaces are found in the Microsoft.Crm.Sdk.Proxy.dll assembly
// located in the SDK\bin folder of the SDK download.
using Microsoft.Crm.Sdk.Messages;
namespace Microsoft.Crm.Sdk.Samples
{
/// <summary>
/// This sample shows how to define a complex mapping for importing and then use the
/// Microsoft Dynamics CRM 2011 API to bulk import records with that mapping.
/// </summary>
public class ImportWithCreate
{
#region Class Level Members
private OrganizationServiceProxy _serviceProxy;
private DateTime _executionDate;
#endregion
/// <summary>
/// This method first connects to the organization service. Afterwards,
/// auditing is enabled on the organization, account entity, and a couple
/// of attributes.
/// </summary>
/// <param name="serverConfig">Contains server connection information.</param>
/// <param name="promptforDelete">When True, the user will be prompted to delete all
/// created entities.</param>
public void Run(ServerConnection.Configuration serverConfig, bool promptforDelete)
{
using (_serviceProxy = ServerConnection.GetOrganizationProxy(serverConfig))
{
// This statement is required to enable early bound type support.
_serviceProxy.EnableProxyTypes();
// Log the start time to ensure deletion of records created during execution.
_executionDate = DateTime.Today;
ImportRecords();
DeleteRequiredRecords(promptforDelete);
}
}
/// <summary>
/// Imports records to Microsoft Dynamics CRM from the specified .csv file.
/// </summary>
public void ImportRecords()
{
// Create an import map.
ImportMap importMap = new ImportMap()
{
Name = "Import Map " + DateTime.Now.Ticks.ToString(),
Source = "Import Accounts.csv",
Description = "Description of data being imported",
EntitiesPerFile =
new OptionSetValue((int)ImportMapEntitiesPerFile.SingleEntityPerFile),
EntityState = EntityState.Created
};
Guid importMapId = _serviceProxy.Create(importMap);
// Create column mappings.
#region Column One Mappings
// Create a column mapping for a 'text' type field.
ColumnMapping colMapping1 = new ColumnMapping()
{
// Set source properties.
SourceAttributeName = "src_name",
SourceEntityName = "Account_1",
// Set target properties.
TargetAttributeName = "name",
TargetEntityName = Account.EntityLogicalName,
// Relate this column mapping with the data map.
ImportMapId =
new EntityReference(ImportMap.EntityLogicalName, importMapId),
// Force this column to be processed.
ProcessCode =
new OptionSetValue((int)ColumnMappingProcessCode.Process)
};
// Create the mapping.
Guid colMappingId1 = _serviceProxy.Create(colMapping1);
#endregion
#region Column Two Mappings
// Create a column mapping for a 'lookup' type field.
ColumnMapping colMapping2 = new ColumnMapping()
{
// Set source properties.
SourceAttributeName = "src_parent",
SourceEntityName = "Account_1",
// Set target properties.
TargetAttributeName = "parentaccountid",
TargetEntityName = Account.EntityLogicalName,
// Relate this column mapping with the data map.
ImportMapId =
new EntityReference(ImportMap.EntityLogicalName, importMapId),
// Force this column to be processed.
ProcessCode =
new OptionSetValue((int)ColumnMappingProcessCode.Process),
};
// Create the mapping.
Guid colMappingId2 = _serviceProxy.Create(colMapping2);
// Because we created a column mapping of type lookup, we need to specify lookup details in a lookupmapping.
// One lookupmapping will be for the parent account, and the other for the current record.
// This lookupmapping is important because without it the current record
// cannot be used as the parent of another record.
// Create a lookup mapping to the parent account.
LookUpMapping parentLookupMapping = new LookUpMapping()
{
// Relate this mapping with its parent column mapping.
ColumnMappingId =
new EntityReference(ColumnMapping.EntityLogicalName, colMappingId2),
// Force this column to be processed.
ProcessCode =
new OptionSetValue((int)LookUpMappingProcessCode.Process),
// Set the lookup for an account entity by its name attribute.
LookUpEntityName = Account.EntityLogicalName,
LookUpAttributeName = "name",
LookUpSourceCode =
new OptionSetValue((int)LookUpMappingLookUpSourceCode.System)
};
// Create the lookup mapping.
Guid parentLookupMappingId = _serviceProxy.Create(parentLookupMapping);
// Create a lookup on the current record's "src_name" so that this record can
// be used as the parent account for another record being imported.
// Without this lookup, no record using this account as its parent will be imported.
LookUpMapping currentLookUpMapping = new LookUpMapping()
{
// Relate this lookup with its parent column mapping.
ColumnMappingId =
new EntityReference(ColumnMapping.EntityLogicalName, colMappingId2),
// Force this column to be processed.
ProcessCode =
new OptionSetValue((int)LookUpMappingProcessCode.Process),
// Set the lookup for the current record by its src_name attribute.
LookUpAttributeName = "src_name",
LookUpEntityName = "Account_1",
LookUpSourceCode =
new OptionSetValue((int)LookUpMappingLookUpSourceCode.Source)
};
// Create the lookup mapping
Guid currentLookupMappingId = _serviceProxy.Create(currentLookUpMapping);
#endregion
#region Column Three Mappings
// Create a column mapping for a 'picklist' type field
ColumnMapping colMapping3 = new ColumnMapping()
{
// Set source properties
SourceAttributeName = "src_addresstype",
SourceEntityName = "Account_1",
// Set target properties
TargetAttributeName = "address1_addresstypecode",
TargetEntityName = Account.EntityLogicalName,
// Relate this column mapping with its parent data map
ImportMapId =
new EntityReference(ImportMap.EntityLogicalName, importMapId),
// Force this column to be processed
ProcessCode =
new OptionSetValue((int)ColumnMappingProcessCode.Process)
};
// Create the mapping
Guid colMappingId3 = _serviceProxy.Create(colMapping3);
// Because we created a column mapping of type picklist, we need to specify picklist details in a picklistMapping
PickListMapping pickListMapping1 = new PickListMapping()
{
SourceValue = "bill",
TargetValue = 1,
// Relate this column mapping with its column mapping data map
ColumnMappingId =
new EntityReference(ColumnMapping.EntityLogicalName, colMappingId3),
// Force this column to be processed
ProcessCode =
new OptionSetValue((int)PickListMappingProcessCode.Process)
};
// Create the mapping
Guid picklistMappingId1 = _serviceProxy.Create(pickListMapping1);
// Need a picklist mapping for every address type code expected
PickListMapping pickListMapping2 = new PickListMapping()
{
SourceValue = "ship",
TargetValue = 2,
// Relate this column mapping with its column mapping data map
ColumnMappingId =
new EntityReference(ColumnMapping.EntityLogicalName, colMappingId3),
// Force this column to be processed
ProcessCode =
new OptionSetValue((int)PickListMappingProcessCode.Process)
};
// Create the mapping
Guid picklistMappingId2 = _serviceProxy.Create(pickListMapping2);
#endregion
// Create Import
Import import = new Import()
{
// IsImport is obsolete; use ModeCode to declare Create or Update.
ModeCode = new OptionSetValue((int)ImportModeCode.Create),
Name = "Importing data"
};
Guid importId = _serviceProxy.Create(import);
// Create Import File.
ImportFile importFile = new ImportFile()
{
Content = BulkImportHelper.ReadCsvFile("Import Accounts.csv"), // Read contents from disk.
Name = "Account record import",
IsFirstRowHeader = true,
ImportMapId = new EntityReference(ImportMap.EntityLogicalName, importMapId),
UseSystemMap = false,
Source = "Import Accounts.csv",
SourceEntityName = "Account_1",
TargetEntityName = Account.EntityLogicalName,
ImportId = new EntityReference(Import.EntityLogicalName, importId),
EnableDuplicateDetection = false,
FieldDelimiterCode =
new OptionSetValue((int)ImportFileFieldDelimiterCode.Comma),
DataDelimiterCode =
new OptionSetValue((int)ImportFileDataDelimiterCode.DoubleQuote),
ProcessCode =
new OptionSetValue((int)ImportFileProcessCode.Process)
};
// Get the current user to set as record owner.
WhoAmIRequest systemUserRequest = new WhoAmIRequest();
WhoAmIResponse systemUserResponse =
(WhoAmIResponse)_serviceProxy.Execute(systemUserRequest);
// Set the owner ID.
importFile.RecordsOwnerId =
new EntityReference(SystemUser.EntityLogicalName, systemUserResponse.UserId);
Guid importFileId = _serviceProxy.Create(importFile);
// Retrieve the header columns used in the import file.
GetHeaderColumnsImportFileRequest headerColumnsRequest = new GetHeaderColumnsImportFileRequest()
{
ImportFileId = importFileId
};
GetHeaderColumnsImportFileResponse headerColumnsResponse =
(GetHeaderColumnsImportFileResponse)_serviceProxy.Execute(headerColumnsRequest);
// Output the header columns.
int columnNum = 1;
foreach (string headerName in headerColumnsResponse.Columns)
{
Console.WriteLine("Column[" + columnNum.ToString() + "] = " + headerName);
columnNum++;
}
// Parse the import file.
ParseImportRequest parseImportRequest = new ParseImportRequest()
{
ImportId = importId
};
ParseImportResponse parseImportResponse =
(ParseImportResponse)_serviceProxy.Execute(parseImportRequest);
Console.WriteLine("Waiting for Parse async job to complete");
BulkImportHelper.WaitForAsyncJobCompletion(_serviceProxy, parseImportResponse.AsyncOperationId);
BulkImportHelper.ReportErrors(_serviceProxy, importFileId);
// Retrieve the first two distinct values for column 1 from the parse table.
// NOTE: You must create the parse table first using the ParseImport message.
// The parse table is not accessible after ImportRecordsImportResponse is called.
GetDistinctValuesImportFileRequest distinctValuesRequest = new GetDistinctValuesImportFileRequest()
{
columnNumber = 1,
ImportFileId = importFileId,
pageNumber = 1,
recordsPerPage = 2,
};
GetDistinctValuesImportFileResponse distinctValuesResponse =
(GetDistinctValuesImportFileResponse)_serviceProxy.Execute(distinctValuesRequest);
// Output the distinct values. In this case: (column 1, row 1) and (column 1, row 2).
int cellNum = 1;
foreach (string cellValue in distinctValuesResponse.Values)
{
Console.WriteLine("(1, " + cellNum.ToString() + "): " + cellValue);
Console.WriteLine(cellValue);
cellNum++;
}
// Retrieve data from the parse table.
// NOTE: You must create the parse table first using the ParseImport message.
// The parse table is not accessible after ImportRecordsImportResponse is called.
RetrieveParsedDataImportFileRequest parsedDataRequest = new RetrieveParsedDataImportFileRequest()
{
ImportFileId = importFileId,
PagingInfo = new PagingInfo()
{
// Specify the number of entity instances returned per page.
Count = 2,
// Specify the number of pages returned from the query.
PageNumber = 1,
// Specify a total number of entity instances returned.
PagingCookie = "1"
}
};
RetrieveParsedDataImportFileResponse parsedDataResponse =
(RetrieveParsedDataImportFileResponse)_serviceProxy.Execute(parsedDataRequest);
// Output the first two rows retrieved.
int rowCount = 1;
foreach (string[] rows in parsedDataResponse.Values)
{
int colCount = 1;
foreach (string column in rows)
{
Console.WriteLine("(" + rowCount.ToString() + "," + colCount.ToString() + ") = " + column);
colCount++;
}
rowCount++;
}
// Transform the import
TransformImportRequest transformImportRequest = new TransformImportRequest()
{
ImportId = importId
};
TransformImportResponse transformImportResponse =
(TransformImportResponse)_serviceProxy.Execute(transformImportRequest);
Console.WriteLine("Waiting for Transform async job to complete");
BulkImportHelper.WaitForAsyncJobCompletion(_serviceProxy, transformImportResponse.AsyncOperationId);
BulkImportHelper.ReportErrors(_serviceProxy, importFileId);
// Upload the records.
ImportRecordsImportRequest importRequest = new ImportRecordsImportRequest()
{
ImportId = importId
};
ImportRecordsImportResponse importResponse =
(ImportRecordsImportResponse)_serviceProxy.Execute(importRequest);
Console.WriteLine("Waiting for ImportRecords async job to complete");
BulkImportHelper.WaitForAsyncJobCompletion(_serviceProxy, importResponse.AsyncOperationId);
BulkImportHelper.ReportErrors(_serviceProxy, importFileId);
}
/// <summary>
/// Deletes any entity records that were created for this sample.
/// <param name="prompt">Indicates whether to prompt the user
/// to delete the records created in this sample.</param>
/// </summary>
public void DeleteRequiredRecords(bool prompt)
{
bool toBeDeleted = true;
if (prompt)
{
// Ask the user if the created entities should be deleted.
Console.Write("\nDo you want these entity records deleted? (y/n) [y]: ");
String answer = Console.ReadLine();
if (answer.StartsWith("y") ||
answer.StartsWith("Y") ||
answer == String.Empty)
{
toBeDeleted = true;
}
else
{
toBeDeleted = false;
}
}
if (toBeDeleted)
{
// Retrieve all account records created in this sample.
QueryExpression query = new QueryExpression()
{
EntityName = Account.EntityLogicalName,
Criteria = new FilterExpression()
{
Conditions =
{
new ConditionExpression("createdon", ConditionOperator.OnOrAfter, _executionDate),
}
},
ColumnSet = new ColumnSet(false)
};
var accountsCreated = _serviceProxy.RetrieveMultiple(query).Entities;
// Delete all records created in this sample.
foreach (var account in accountsCreated)
{
_serviceProxy.Delete(Account.EntityLogicalName, account.Id);
}
Console.WriteLine("Entity record(s) have been deleted.");
}
}
#region Main method
/// <summary>
/// Standard Main() method used by most SDK samples.
/// </summary>
/// <param name="args"></param>
static public void Main(string[] args)
{
try
{
// Obtain the target organization's web address and client logon
// credentials from the user.
ServerConnection serverConnect = new ServerConnection();
ServerConnection.Configuration config = serverConnect.GetServerConfiguration();
var app = new ImportWithCreate();
app.Run(config, true);
}
catch (FaultException<Microsoft.Xrm.Sdk.OrganizationServiceFault> ex)
{
Console.WriteLine("The application terminated with an error.");
Console.WriteLine("Timestamp: {0}", ex.Detail.Timestamp);
Console.WriteLine("Code: {0}", ex.Detail.ErrorCode);
Console.WriteLine("Message: {0}", ex.Detail.Message);
Console.WriteLine("Trace: {0}", ex.Detail.TraceText);
Console.WriteLine("Inner Fault: {0}",
null == ex.Detail.InnerFault ? "No Inner Fault" : "Has Inner Fault");
}
catch (System.TimeoutException ex)
{
Console.WriteLine("The application terminated with an error.");
Console.WriteLine("Message: {0}", ex.Message);
Console.WriteLine("Stack Trace: {0}", ex.StackTrace);
Console.WriteLine("Inner Fault: {0}",
null == ex.InnerException.Message ? "No Inner Fault" : ex.InnerException.Message);
}
catch (System.Exception ex)
{
Console.WriteLine("The application terminated with an error.");
Console.WriteLine(ex.Message);
// Display the details of the inner exception.
if (ex.InnerException != null)
{
Console.WriteLine(ex.InnerException.Message);
FaultException<Microsoft.Xrm.Sdk.OrganizationServiceFault> fe = ex.InnerException
as FaultException<Microsoft.Xrm.Sdk.OrganizationServiceFault>;
if (fe != null)
{
Console.WriteLine("Timestamp: {0}", fe.Detail.Timestamp);
Console.WriteLine("Code: {0}", fe.Detail.ErrorCode);
Console.WriteLine("Message: {0}", fe.Detail.Message);
Console.WriteLine("Trace: {0}", fe.Detail.TraceText);
Console.WriteLine("Inner Fault: {0}",
null == fe.Detail.InnerFault ? "No Inner Fault" : "Has Inner Fault");
}
}
}
// Additional exceptions to catch: SecurityTokenValidationException, ExpiredSecurityTokenException,
// SecurityAccessDeniedException, MessageSecurityException, and SecurityNegotiationException.
finally
{
Console.WriteLine("Press <Enter> to exit.");
Console.ReadLine();
}
}
#endregion Main method
}
}
Not sure how this would go with millions of records, but you can select your records, then click the Edit button in the ribbon. This will bring up the "Edit Multiple Records" dialog. Any changes you make will be applied to all your records.
The BulkUpdate API works well for me; it is 10 times faster than updating records one at a time. Following is a snippet that performs a bulk update:
public override ExecuteMultipleResponse BulkUpdate(List<Entity> entities)
{
ExecuteMultipleRequest request = new ExecuteMultipleRequest()
{
Settings = new ExecuteMultipleSettings()
{
ContinueOnError = true,
ReturnResponses = true
},
Requests = new OrganizationRequestCollection()
};
for (int i = 0; i < entities.Count; i++)
{
request.Requests.Add(new UpdateRequest() { Target = entities[i] });
}
return (ExecuteMultipleResponse) ServiceContext.Execute(request);
}
I worked on a very large data migration project for Dynamics CRM 2011. We needed to load about 3 million records over a weekend. I ended up building a console application (single thread) and ran multiple instances on multiple machines. Each console application had an id (1, 2, etc.) and was responsible for loading segments of the data based on a unique SQL WHERE clause that matched the application's id.
You could do the same thing with updates. Each instance could query a subset of the records to update and can perform the updates via the SDK. Since we loaded millions of records over a weekend I think you could perform millions of updates (if relatively small) in just a few hours.
Microsoft PFE team for dynamics CRM wrote
new Another CRM SDK library that make use of parallelization
to bulk execute requests ensuring thread safety.
You may try : Parallel Execute Requests
I would be interested to know if it works and scales to millions of records.
CRM doesn't implement a way to update bulk data; there are 3 ways to improve the bulk update operation performance but internally they cannot change the fact that CRM updates record one by one.
Basically the ideas are:
reduce the time wasted on communicating to CRM server
use parallelism to do multiple operations at the same time
make sure the update process does NOT trigger any workflows/plugins. Otherwise you might never see the end of the process...
3 ways to improve bulk operation performance:
After RollUp 12 there is a ExecuteMultipleRequest feature, which allows you to send up to 1000 requests at once. This means you may save some time from sending 1000 requests to CRM web service, however, these requests are processed one after another. So if your CRM server is well configured, most likely this method won't help too much.
You may use OrganizationServiceContext instance to do bulk update. OrganizationServiceContext implements unit of work pattern so you can do multiple updates and transmit these operations to the server in one call. Comparing to ExecuteMultipleRequest, it doesn't have a limit on request amount, but if it encounters a failure during the update, it will rollback all the changes.
Use multithreading or multitask. Either way would improve the speed, but they are likely to generate some connection failures or SQL errors, so you would need to add some retry logic in the code.
One of my client had exactly the same problem. He solved it by creating a custom ETL and doing parallelism attacking two front-end. The whole thing was made in C#. Nowaday, it could be possible with KingswaySoft or Scribe.

Resources