Summary
When putting the monitor in sleep mode in Windows 10, Windows seems to execute some tasks that don't get executed with the screen on.
This is interfering with our software, and we need to get rid of it.
Ful story
For a hardware device with a touch screen, I need to be able to turn off the touch screen when it's not in use, for durability reasons. Windows has a message that you can send to turn it off, SC_MONITORPOWER. More specifically:
SendMessage(hwnd, WM_SYSCOMMAND, SC_MONITORPOWER, 2);
This works fine, but when the screen is off, Windows is apparently sometimes performing some tasks that it doesn't do when the screen is on. We are careful to never write anything to the screen in this situation (that causes huge problems when the screen is off, in fact just having a blinking cursor in a DOS box is using up half a core when the screen is off).
Our software requires a callback to be executed every 0.25 ms. We have turned nearly every task, service and several other things in Windows off, and with the screen on, I can run our software for days without ever missing a callback. But with the screen off I get hiccups. The callback already runs at the highest possible priority.
So there is apparently something that we missed when we turned all services and tasks off. There appear to be 2 causes of hiccups:
One happens once every 10-30 hours or so (not sure of the exact time, it seems to vary). But it always happens 5 times, with EXACTLY 5 minutes (at most a few milliseconds off) in between (so in total it happens 5 times in a 25 minute period).
Beside this, we get a single hiccup typically every 4-10 hours, but the time between occurrences doesn't seem to be very constant so there could also be multiple causes.
I'm a bit at a loss here, and running analysis software can easily interfere with our own software, making it harder to detect when these hiccups really occur and when they are caused by running the analysis software.
Interestingly, I have seen this 5-times-every-5-minutes thing also on a completely different system (different hardware, different OS version), when recording audio in Adobe Audition. Audition misses pieces of audio every 5 minutes in this case, and I think it also only happens when the monitor is in sleep mode and you're not logged in remotely.
We have already tried to turn the touch screen off using direct monitor commands like Nircmd does, and it doesn't support those. My guess is that the SC_MONITORPOWER message is triggering more things in Windows, and if we can turn them off, that would fix our problem. Any ideas?
System
Intel i5-8700 with 6 cores, Windows LTSB, no extra software installed except our own.
Never mind, problem solved. It was not an extra task that was being started, it was one of the existing Windows processes that for some reason only causes issues when the display is off. Since killing them is not an option (Windows will just restart them), I've suspended the following processes, and the culprit is one of these (I don't know which one yet):
sihost.exe
igfxEM.exe (I very much suspect this one)
RuntimeBroker.exe
dllhost.exe
taskhostw.exe
explorer.exe
I have to continue testing a bit longer to be absolutely certain, but so far with these tasks all suspended I've not seen a missed callback in the last 38 hours. I don't know yet if there are any drawbacks to suspending all these things, so I'll try to find the cause(s) and suspend only that/those.
Related
I have a new Win10 laptop. I've installed lots of software, including a 25-year-old Codewright editor that I've customized up the wazoo, and that I've been installing on all my machines for, well, 25 years. After working for a few days, it suddenly stopped, and reinstalling it didn't fix it. On startup, it puts up a small splash window, and normally opens the main window a half a second later (that took more than 5 seconds 25 years ago). It's not using any CPU, and there's nothing I can do but kill the process.
In the past, I've occasionally got my system into a state where Codewright would hang on loading, due to some other program that hadn't terminated correctly, and it was unfrozen by killing off that other process. So that's reason to believe that Codewright is waiting at some global lock which some other malfunctioning software is holding. So I have two questions:
Does this ring a bell? Is there some known failure mode where a program putting up a splash window then switching to another window can be prevented by something else going on the system?
Is there a way to diagnose this, perhaps by finding out what system call it's hanging inside? I tried dtrace.exe, started Codewright, and then stopped tracing, and it produced a 3GB XML file, which is quite a haystack. There's a way to filter it by PID, but since this is a startup problem, I have no idea what the PID will be. Is there a better tool for doing this, or some more appropriate dtrace feature that I missed?
The comment about using the Task Manager to create a dump file actually led me to notice that there is an Analyze Wait Chain function there that I had never seen before, since I haven't used Task Manager much since I switched from Win7. This gave me exactly the answer I wanted. My editor was waiting for something that was being held by some NVIDIA GeForce Experience module. Since I don't use that, I uninstalled it, and I'm back up and running. Thanks for the tip.
I have a computer-based test that takes several hours to complete.
However, the test is timed-out at some point, because my PC "goes to sleep in one way or another".
This is possibly related to the fact that the test consists of two processes which communicate with each other via port, so I'm suspecting that perhaps networking is disabled in some way (even if it's completely "local networking").
I have disabled both screen turn off and sleep in the Settings "page", under Power & Sleep.
Still no luck, the screen is locked with a password at some point, which I suspect causes the test to stop running in the background.
I even followed a procedure that I found on the web to disable screen-lock via Regedit in something like 18 steps (why on earth did this company figure out that this is a reasonable user experience).
Is there a solution to this problem?
Found a (very hacky) solution:
If you keep all windows minimized, then the screen doesn't get locked.
What a great operating system, by such a great company!!!
I use gnome shell in Fedora 18 x86_64 on an emachines E725 notebook. For the last month, every 60 seconds the display locks up for 25 seconds. Sometimes it does this for 10 minutes, and sometimes all day. The mouse cursor still moves, and sound still plays without skipping. Also, progress bars jump forward when it unfreezes as they never froze. I have stopped all cron tasks and restarted many times. The exact second the clock stops on varies each time I restart the system. I have also noticed a small increase in network use right before it freezes. It sometimes starts freezing before I open any apps, and it still freezes after I close all apps. Please let me know if there is any additional information I should post. I have done many convoluted google and stackoverflow searches over a long period of time and have found no similar problems posted. Thank you for any help or advice.
Probably off topic, but I'd suggest trying a CD/USB linux distribution (i.e. one that runs off the CD rather than having to install it).
If that has problems, you are probably looking at a hardware issue.
If a CD distribution works, then yep, it's something wrong with your installation.
happens to me occasionally:
I start my program in visual studio and due to some bug my program goes into 100% cpu usage and basically freezes windows completely.
Only by utter patience requesting the task manager (takes forever to come up and paint itself) I can kill my process.
Do others encounter this too sometimes? Is there a clever trick to get this process down (other than pulling the plug and possible ruining files on the HD)? It now takes 5-10 minutes to kill it properly if the task manager is not accidentally present and I have to request this first
R
p.s. weird that a 'multitasking os' can still allow processes to eat up so much time that nothing else can be done anymore. My program doesn't even bump up it's thread priorities or anything
Check out Process Lasso
"Process Lasso is a unique new technology that will, amongst other things, improve your PC's responsiveness and stability. Windows, by design, allows programs to monopolize your CPU without restraint -- leading to freezes and hangs. Process Lasso's ProBalance (Process Balance) technology intelligently adjusts the priority of running programs so that badly behaved or overly active processes won't interfere with your ability to use the computer!"
http://www.bitsum.com/prolasso.php
I am not affiliated with Bitsum, just a user of their product, and it helps me solve this type of problems.
For what it's worth, I've never see this on either XP 64 or Vista 64, developing C++ apps in Visual Studio. Perhaps an OS upgrade is in order?
Edit: I use Process Explorer as a replacement Task Manager - it wouldn't surprise me if it did a better job of appearing in good time even when there's a rogue process running. And you can use it to boost its own priority.
I usually hit ctrl-alt-delete start the task manager sort by cpu find the offending process and right click and end the process..
task manager usually has enough priority to do this although it may be slow.
I think a shotgun to the head is the only way to be sure.
I generally don't see anything like this happen strictly as a function of an app that's eating 100% CPU. As part of stability / performance testing, I've gotten apps to cause Windows to get very slow, but this is usually done by writing heavily threaded apps (thus causing the O/S scheduler to thrash), or by writing apps that consume all available system memory or resources (much more impactful to the GUI apps than simply one thread that consumes its full share of processor time during its slices).
You say you get this behavior under Visual Studio? VS has a "Pause" button...
When Mac OS X goes to sleep, due to closing a laptop or selecting "Sleep" from the Apple menu, how does it suspend an executing process?
I suppose non-windowed processes are simply suspended at an arbitrary point of execution. Is that also true for Cocoa apps, or does the OS wait until control returns to the run loop dispatcher, and goes to sleep in a "known" location? Does any modern OS do that, or is it usually safe enough to simply suspend an app no matter what it is doing?
I'm curious, because allowing sleep to occur at any moment means, from the app's perspective, the system clock could suddenly leap forward by a significant amount. That's a possibility I don't usually consider while coding.
Your app is interrupted exactly where it is that moment if the CPU is actually currently executing code of your app. Your app constantly gets execution time by the task scheduler, that decides which app gets CPU time, on which core, and for how long. Once the system really goes to sleep, the scheduler simply gives no time to your app any longer, thus it will stop execution wherever it is at that moment, which can happen pretty much everywhere. However, the kernel must be in a clean state. That means if you just made a call into the kernel (many libC functions do) and this call is not at some safe-point (e.g. sleeping, waiting for a condition to become true, etc.) or possibly holding critical kernel locks (e.g. funnels), the kernel may suspend sleep till this call returns back to user space or execution reaches such a safe-point before it finally cancels your app from the task scheduler.
You can open a kernel port and register for sleep/wake-up events. In that case, your app will receive an event, when the system wants to go to sleep. You have several possibilities. One is to reply to it, that the system may progress. Another one is to suspend sleep; however, Apple says certain events can be suspended at most 30 seconds, after that, the system will just continue, whether your app likes it or not. And finally, you can cancel it; though not all events can be canceled. If the system already decided it will go to sleep, you can only suspend this by at most 30 seconds or allow it at once, you cannot cancel it. However, you can also listen to an event, where the system asks apps, if it is okay to go to sleep now and there you can reply "no", causing a sleep to be canceled.
The difference between "Is it okay to sleep" and "I'm planing on going to sleep" is: The first one is sent if the power saving settings are applied, that is, if the user has not moved the mouse or typed anything for the time configured there. In that case the system will just ask, if sleep is okay. An app like Apple's DVD Player will say "no", because most likely the user watches a DVD and thus doesn't interact with the computer, still no reason to go to sleep. OTOH, if the user closes his Mac Book, apps are not asked, the system will go to sleep for sure and just informs apps, that have now up to 30 seconds to react to it.
Wake-up events can also be quite interesting to catch. E.g. if your system wakes up, open files might be inaccessible (an external drive has been unplugged) or network sockets won't work any longer (network has changed). So you may re-init certain app parts before using them and running into errors that are more or less expected.
Apple's page regarding catching these events.
It depends on your app.
If you are interacting with external systems (think networking or doing something over usb/firewire,etc) then it might be affected. An application running on OSX gets to run for a limited time ( max 10ms ) , after which it is interrupted by the kernel which schedules a new process from the process queue to run on the CPU. This is transparent for the application , which "thinks" that it runs all the time on the CPU. Thus , a transition to sleep is no different - apart from the time jumping ahead.
If you need to be aware that there was a transition to sleep mode please refer to this tech note which details how to receive notifications about the state change : Registering and unregistering for sleep and wake notifications
I believe it will just suspend all apps wherever they happen to be.
Remember, this happens all the time anyway. Applications are constantly suspended and resumed due to context switching. So, really, the clock could jump between any 2 instructions in your app, though usually not in a noticable/significant way.
If the OS waited for the app to return to some main loop you could run into situations where applications cause the sleep to hang. If they're doing a lot of work and not returning to the run loop dispatcher they would prevent the machine from going to sleep. That wouldn't be very good. :)
And if you set the time it also appears to leap forward to the running programs. Nothing special either.
Check out this Wikipedia article. Cavver is correct in stating that things like network connections may time out, and thus those services may be interrupted.