Transaction Rules reordering - is this a good idea? - genexus

If you have a Transaction with complex rules, it can difficult to 'manage' them logically inside the rules section because the order they execute is most likely not the order in which they appear in the rules. You can turn on Detailed Navigation and see the Evaluation Tree, but I was thinking there could be an improvement in this area.
What if there was a model Preference or object Preference that you could set that would, after specification, reorder the rules in the code to match the Evaluation tree? There could be some clear comments about when things happen, and I would be fine with seeing these 'timing comments' with nothing in them so I knew when rules would fire and when they would not.
We use a Pattern for our KBs and manipulation of rules, events, etc, is already happening, so in this case those would not be changed. But the manually added rules (outside the pattern's rules) could be reordered.
Also, if the 'timing comments' are inserted, this could be helpful for developers in exposing the time slots that are available instead of having to refer to the wiki repeatedly.
Is this a good idea?

I don't think so. There are almost two reasons for that, the first one is technical: GeneXus executes the rules "in order" (how they were placed in rules) when they match the triggering criteria. So, maybe reordening the rules will produce unexpected behaviour in your application. You could argue that GeneXus would let those rules where they were placed, but, it is still dangerous.
The second one has to do with our "way of programming". I put a lot of comments in the code, I like comments, even in the rules. If GeneXus reorders the rules, how do it knows which comments belongs to which rule. At least for me, I don't like that a "tool" reorganize/reorder my code. And I bet I'm not the only one.

Related

Autofix order of selectors

We use SonarQube against our application. One of the SonarQube rules says:
Selectors of lower specificity should come before overriding selectors of higher specificity
The details are here. As my application has many violations, changing the order by hand isn't really feasible. I'm wondering if there's a way to use scss-lint, stylelint or something else in a "fix" mode that could change the order of the selectors. I looked but couldn't find anything in stylelint. Maybe it can't safely be done automatically, as changing the order could affect specificity and therefore change the application behaviour...
As I personal! know there is no Linter which provide that. (I am curious about it.) But just some thoughts about the need of following that 'rule':
Indeed: writing SASS/CSS the way Selectors with lower specifity comes first is a good practicse. The CSS structure becomes more readable and it is easier to build up your code structure as there is a clearer systematic in your head (and the code).
But just up from the mechanic CSS works there is REALLY NO NEED to do it this way. The code simply doesn't become safer doing so or less safe and the pages don't load slower not doing it. That is what the mechanic of specifity has been done for: as of the specifity not the order of the selectors counts and you are able to write your code in the order you need it. Only if the specifity is the same the order counts.
So, maybe this rule leads to 'better' code. But: NOT ALL RULES NEEDS TO BE FULLFILLED. Not all rules Google tries to establish with their best practice rules they offer in their browser, nor all rules other analysis tools provide needs to be followed.
And if not in this project as it needs resources to correct it ... it maybe could but has not be a target for next project ;-)

Why do we need to separate or breakdown one Use Case into two or more use cases?

Why do you need to, in many instances, separate or breakdown one Use Case into two or more use cases?
The only reason to split a use case in multiple use cases is to share a significant piece of functionality among multiple use cases by isolating that piece of functionality in a separate use case.
Example: 'search product information' may be a separate use case included by use cases 'buy product' and 'hire product'.
Apart from 'include' there are also examples of the same principle using 'extend' or 'generalize'.
By doing so, you prevent that the shared behaviour is copied in multiple use cases, with the chance of growing inconsistencies.
In the previous example: We want to make sure that customers don't get a different way to search for product information when buying compared to when hiring products. With an included use case, people who read the use cases are immediately aware of that fact.
First of all: you don't. Starting to do that means you are doing functional analysis. The point in use case synthesis is to find the goal(s) (aka. added value) the different actors have when interacting with the system under consideration. It's quite futile to separate a goal into sub-goals at that level. Either you have some added value or you don't have it. So if someone has settled a use case and tries to break it down then the use case is either wrong (no use case) or it's useless since the use case already shows the added value.
My personal opinion about include and extend: they are basically evil and a wrong concept introduced by techies (which most of the UML designers are) with no business background. Using them means you are already starting functional analysis. But UCs are synthesized from requirements. That is, you drag your net through that requirements soup and fish out those that fit together to build a story which makes sense - and which delivers added value: a use case.
And as always: read Bittner/Spence about use cases.

Complicated Algorithm - How to store rules separate from processing code?

I'm working on a project which will do some complicated analyzing on some user-supplied input. There will be 3 parts of the code:
1) Input supplied by user, such as keywords
2) Rules, such as if keyword 1 is repeated 3 times in keyword 5, do this, etc.
3) And the analyzing itself which executes the rules and processes the user input, and generates the output necessary based on the processing.
Naturally this will lead to a lot of spaghetti code and many, many if statements in the processing code. I want to avoid that, and keep the rules (i.e. the if statements) separately from the code which loops through the user input and generates the output.
How can I do that, i.e. what is the best way?
If you have enough rules that you want to externalize, you could try using a business rules engines, like Drools in Java.
A business rules engine is a software system that executes one or more business rules in a runtime production environment. The rules might come from legal regulation ("An employee can be fired for any reason or no reason but not for an illegal reason"), company policy ("All customers that spend more than $100 at one time will receive a 10% discount"), or other sources. (Wikipedia)
It could be a little bit overhead depending of what you're trying to do. In my company we're using such kind of tools for our quality analysis tool.
Store it in XML. Easy to parse and update.
I had designed a code generator, which can be controllable from a xml file.
For each command I had a entry in the xml. I was processing the node to generate the opcode for that command. Node itself contains the actions I need to do for getting the opcode. For some commands I had to look into database, all those things I had put in this xml file.
Well, i doubt that it is necessary to have hughe if statements if polymorphism is applied correctly.
Actually, you need a proper domain model for your rules. This goes somehow into the direction of the command pattern, depending on the complexitiy of your code maybe in combination with the state machine pattern.
Once you have your model, defining rules is instantiate them correctly.
This could be done by having an xml definition, which is parsed and transformed into your model. But the new modern and even more fancy way would be using DSLs. If you program in Java and have a certain freedom about your libraries, this would be a proper use case for Embedded DSLs with Groovy. Basically you would need a Builder which constructs your model, that's all.
You always can implement factory that will create certain strategies according to passed parameters. And then you will use those strategies in your code without any if.
If it's just detecting keywords, a finite state machine or similar. If it's doing more, then other pattern matching systems, such as rules engines.
Adding an embedded scripting language to your application might help. The rules would then be expressed in scripts, executed by the applications on processing.
The idea is that scripts are easy to change and contain high level logic that will be executed by your application in details.
There are a lot of scripting languages available to do this : lua, Python, Falcon, squirrel, angelscript, etc.
Have a look at rule engines!
The approach from Lars may also be arguable.

Standards Document

I am writing a coding standards document for a team of about 15 developers with a project load of between 10 and 15 projects a year. Amongst other sections (which I may post here as I get to them) I am writing a section on code formatting. So to start with, I think it is wise that, for whatever reason, we establish some basic, consistent code formatting/naming standards.
I've looked at roughly 10 projects written over the last 3 years from this team and I'm, obviously, finding a pretty wide range of styles. Contractors come in and out and at times, and sometimes even double the team size.
I am looking for a few suggestions for code formatting and naming standards that have really paid off ... but that can also really be justified. I think consistency and shared-patterns go a long way to making the code more maintainable ... but, are there other things I ought to consider when defining said standards?
How do you lineup parenthesis? Do you follow the same parenthesis guidelines when dealing with classes, methods, try catch blocks, switch statements, if else blocks, etc.
Do you line up fields on a column? Do you notate/prefix private variables with an underscore? Do you follow any naming conventions to make it easier to find particulars in a file? How do you order the members of your class?
What about suggestions for namespaces, packaging or source code folder/organization standards? I tend to start with something like:
<com|org|...>.<company>.<app>.<layer>.<function>.ClassName
I'm curious to see if there are other, more accepted, practices than what I am accustomed to -- before I venture off dictating these standards. Links to standards already published online would be great too -- even though I've done a bit of that already.
First find a automated code-formatter that works with your language. Reason: Whatever the document says, people will inevitably break the rules. It's much easier to run code through a formatter than to nit-pick in a code review.
If you're using a language with an existing standard (e.g. Java, C#), it's easiest to use it, or at least start with it as a first draft. Sun put a lot of thought into their formatting rules; you might as well take advantage of it.
In any case, remember that much research has shown that varying things like brace position and whitespace use has no measurable effect on productivity or understandability or prevalence of bugs. Just having any standard is the key.
Coming from the automotive industry, here's a few style standards used for concrete reasons:
Always used braces in control structures, and place them on separate lines. This eliminates problems with people adding code and including it or not including it mistakenly inside a control structure.
if(...)
{
}
All switches/selects have a default case. The default case logs an error if it's not a valid path.
For the same reason as above, any if...elseif... control structures MUST end with a default else that also logs an error if it's not a valid path. A single if statement does not require this.
In the occasional case where a loop or control structure is intentionally empty, a semicolon is always placed within to indicate that this is intentional.
while(stillwaiting())
{
;
}
Naming standards have very different styles for typedefs, defined constants, module global variables, etc. Variable names include type. You can look at the name and have a good idea of what module it pertains to, its scope, and type. This makes it easy to detect errors related to types, etc.
There are others, but these are the top off my head.
-Adam
I'm going to second Jason's suggestion.
I just completed a standards document for a team of 10-12 that work mostly in perl. The document says to use "perltidy-like indentation for complex data structures." We also provided everyone with example perltidy settings that would clean up their code to meet this standard. It was very clear and very much industry-standard for the language so we had great buyoff on it by the team.
When setting out to write this document, I asked around for some examples of great code in our repository and googled a bit to find other standards documents that smarter architects than I to construct a template. It was tough being concise and pragmatic without crossing into micro-manager territory but very much worth it; having any standard is indeed key.
Hope it works out!
It obviously varies depending on languages and technologies. By the look of your example name space I am going to guess java, in which case http://java.sun.com/docs/codeconv/ is a really good place to start. You might also want to look at something like maven's standard directory structure which will make all your projects look similar.

How do you feel about code folding? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 7 years ago.
Improve this question
For those of you in the Visual Studio environment, how do you feel about wrapping any of your code in #regions? (or if any other IDE has something similar...)
9 out of 10 times, code folding means that you have failed to use the SoC principle for what its worth.
I more or less feel the same thing about partial classes. If you have a piece of code you think is too big you need to chop it up in manageable (and reusable) parts, not hide or split it up.It will bite you the next time someone needs to change it, and cannot see the logic hidden in a 250 line monster of a method.
Whenever you can, pull some code out of the main class, and into a helper or factory class.
foreach (var item in Items)
{
//.. 100 lines of validation and data logic..
}
is not as readable as
foreach (var item in Items)
{
if (ValidatorClass.Validate(item))
RepositoryClass.Update(item);
}
My $0.02 anyways.
This was talked about on Coding Horror.
My personal belief is that is that they are useful, but like anything in excess can be too much.
I use it to order my code blocks into:
Enumerations
Declarations
Constructors
Methods
Event Handlers
Properties
Sometimes you might find yourself working on a team where #regions are encouraged or required. If you're like me and you can't stand messing around with folded code you can turn off outlining for C#:
Options -> Text Editor -> C# -> Advanced Tab
Uncheck "Enter outlining mode when files open"
I use #Region to hide ugly and useless automatically generated code, which really belongs in the automatically generated part of the partial class. But, when working with old projects or upgraded projects, you don't always have that luxury.
As for other types of folding, I fold Functions all the time. If you name the function well, you will never have to look inside unless you're testing something or (re-)writing it.
While I understand the problem that Jeff, et. al. have with regions, what I don't understand is why hitting CTRL+M,CTRL+L to expand all regions in a file is so difficult to deal with.
I use Textmate (Mac only) which has Code folding and I find it really useful for folding functions, I know what my "getGet" function does, I don't need it taking up 10 lines of oh so valuable screen space.
I never use it to hide a for loop, if statement or similar unless showing the code to someone else where I will hide code they have seen to avoid showing the same code twice.
I prefer partial classes as opposed to regions.
Extensive use of regions by others also give me the impression that someone, somewhere, is violating the Single Responsibility Principle and is trying to do too many things with one object.
#Tom
Partial classes are provided so that you can separate tool auto-generated code from any customisations you may need to make after the code gen has done its bit. This means your code stays intact after you re-run the codegen and doesn't get overwritten. This is a good thing.
I'm not a fan of partial classes - I try to develop my classes such that each class has a very clear, single issue for which it's responsible. To that end, I don't believe that something with a clear responsibility should be split across multiple files. That's why I don't like partial classes.
With that said, I'm on the fence about regions. For the most part, I don't use them; however, I work with code every day that includes regions - some people go really heavy on them (folding up private methods into a region and then each method folded into its own region), and some people go light on them (folding up enums, folding up attributes, etc). My general rule of thumb, as of now, is that I only put code in regions if (a) the data is likely to remain static or will not be touched very often (like enums), or (b) if there are methods that are implemented out of necessity because of subclassing or abstract method implementation, but, again, won't be touched very often.
Regions must never be used inside methods. They may be used to group methods but this must be handled with extreme caution so that the reader of the code does not go insane. There is no point in folding methods by their modifiers. But sometimes folding may increase readability. For e.g. grouping some methods that you use for working around some issues when using an external library and you won't want to visit too often may be helpful. But the coder must always seek for solutions like wrapping the library with appropriate classes in this particular example. When all else fails, use folding for improving readibility.
This is just one of those silly discussions that lead to nowhere. If you like regions, use them. If you don't, configure your editor to turn them off. There, everybody is happy.
I generally find that when dealing with code like Events in C# where there's about 10 lines of code that are actually just part of an event declaration (the EventArgs class the delegate declaration and the event declaration) Putting a region around them and then folding them out of the way makes it a little more readable.
Region folding would be fine if I didn't have to manually maintain region groupings based on features of my code that are intrinsic to the language. For example, the compiler already knows it's a constructor. The IDE's code model already knows it's a constructor. But if I want to see a view of the code where the constructors are grouped together, for some reason I have to restate the fact that these things are constructors, by physically placing them together and then putting a group around them. The same goes for any other way of slicing up a class/struct/interface. What if I change my mind and want to see the public/protected/private stuff separated out into groups first, and then grouped by member kind?
Using regions to mark out public properties (for example) is as bad as entering a redundant comment that adds nothing to what is already discernible from the code itself.
Anyway, to avoid having to use regions for that purpose, I wrote a free, open source Visual Studio 2008 IDE add-in called Ora. It provides a grouped view automatically, making it far less necessary to maintain physical grouping or to use regions. You may find it useful.
I think that it's a useful tool, when used properly. In many cases, I feel that methods and enumerations and other things that are often folded should be little black boxes. Unless you must look at them for some reason, their contents don't matter and should be as hidden as possible. However, I never fold private methods, comments, or inner classes. Methods and enums are really the only things I fold.
My approach is similar to a few others here, using regions to organize code blocks into constructors, properties, events, etc.
There's an excellent set of VS.NET macros by Roland Weigelt available from his blog entry, Better Keyboard Support for #region ... #endregion. I've been using these for years, mapping ctrl+. to collapse the current region and ctrl++ to expand it. Find that it works a lot better that the default VS.NET functionality which folds/unfolds everything.
I personally use #Regions all the time. I find that it helps me to keep things like properties, declarations, etc separated from each other.
This is probably a good answer, too!
Coding Horror
Edit: Dang, Pat beat me to this!
The Coding Horror article actual got me thinking about this as well.
Generally, I large classes I will put a region around the member variables, constants, and properties to reduce the amount of text I have to scroll through and leave everything else outside of a region. On forms I will generally group things into "member variables, constants, and properties", form functions, and event handlers. Once again, this is more so I don't have to scroll through a lot of text when I just want to review some event handlers.
I prefer #regions myself, but an old coworker couldn't stand to have things hidden. I understood his point once I worked on a page with 7 #regions, at least 3 of which had been auto-generated and had the same name, but in general I think they're a useful way of splitting things up and keeping everything less cluttered.
I really don't have a problem with using #region to organize code. Personally, I'll usually setup different regions for things like properties, event handlers, and public/private methods.
Eclipse does some of this in Java (or PHP with plugins) on its own. Allows you to fold functions and such. I tend to like it. If I know what a function does and I am not working on it, I dont need to look at it.
Emacs has a folding minor mode, but I only fire it up occasionally. Mostly when I'm working on some monstrosity inherited from another physicist who evidently had less instruction or took less care about his/her coding practices.
Using regions (or otherwise folding code) should have nothing to do with code smells (or hiding them) or any other idea of hiding code you don't want people to "easily" see.
Regions and code folding is really all about providing a way to easily group sections of code that can be collapsed/folded/hidden to minimize the amount of extraneous "noise" around what you are currently working on. If you set things up correctly (meaning actually name your regions something useful, like the name of the method contained) then you can collapse everything except for the function you are currently editing and still maintain some level of context without having to actually see the other code lines.
There probably should be some best practice type guidelines around these ideas, but I use regions extensively to provide a standard structure to my code files (I group events, class-wide fields, private properties/methods, public properties/methods). Each method or property also has a region, where the region name is the method/property name. If I have a bunch of overloaded methods, the region name is the full signature and then that entire group is wrapped in a region that is just the function name.
I personally hate regions. The only code that should be in regions in my opinion is generated code.
When I open file I always start with Ctrl+M+O. This folds to method level. When you have regions you see nothing but region names.
Before checking in I group methods/fields logically so that it looks ok after Ctrl+M+O.
If you need regions you have to much lines in your class. I also find that this is very common.
region ThisLooksLikeWellOrganizedCodeBecauseIUseRegions
// total garbage, no structure here
endregion
Enumerations
Properties
.ctors
Methods
Event Handlers
That's all I use regions for. I had no idea you could use them inside of methods.
Sounds like a terrible idea :)

Resources