I have parent-child relation for Customer(Parent) and PromotionCustomer(Child).
Customer data:
{
"id": "b7818d4d-566e-24f5-89d2-3995bb97fd5e",
**"externalId": "9200191",**
"name": "LOBLAW NFLD",
"fullName": "LOBLAW NFLD",
"businessSystem": "EBJ/001"
}
PromotionCustomer data:
{
"id" : "31f2e065-a046-9c3a-808b-83545ddb07d1",
"externalId" : "T-000195542",
"businessSystem" : "EBJ/001",
"promotionDescription" : "PM-RT-LOBLAW NFLD-BB",
"promotionType" : "Bill Back",
"promotionStatus" : "Approved",
**"promotionCustomer" : "9200191",**
"validFrom" : "02/28/2019",
"validTo" : "03/20/2019",
"promotionDateTypeCode" : "1"
}
This the mapping details(schema)
{
"promotionsearch" : {
"mappings" : {
"properties" : {
"_class" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"customer" : {
"type" : "nested",
"include_in_parent" : true,
"properties" : {
"businessSystem" : {
"type" : "keyword"
},
"externalId" : {
"type" : "keyword"
},
"fullName" : {
"type" : "text"
},
"id" : {
"type" : "text"
},
"name" : {
"type" : "text"
}
}
},
"id" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"promotioncustomer" : {
"type" : "nested",
"include_in_parent" : true,
"properties" : {
"businessSystem" : {
"type" : "keyword"
},
"externalId" : {
"type" : "keyword"
},
"id" : {
"type" : "text"
},
"promotionCustomer" : {
"type" : "text"
},
"promotionDateTypeCode" : {
"type" : "keyword"
},
"promotionDescription" : {
"type" : "text"
},
"promotionProducts" : {
"type" : "text"
},
"promotionStatus" : {
"type" : "keyword"
},
"promotionType" : {
"type" : "keyword"
},
"validFrom" : {
"type" : "date",
"format" : "MM/dd/yyyy"
},
"validTo" : {
"type" : "date",
"format" : "MM/dd/yyyy"
}
}
},
"promotionjoin" : {
"type" : "join",
"eager_global_ordinals" : true,
"relations" : {
"customer" : "promotioncustomer"
}
},
"routing" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
}
}
}
I need to get the get the promotionCustomer data based on the externalId which is the customerId which maps to promotionCustomer along with the date range.
I've written a query as below.
GET /promotionsearch/_search
{
"query": {
"has_parent": {
"parent_type": "customer",
"inner_hits": {},
"query": {
"has_child": {
"type": "promotioncustomer",
"query": {
"bool": {
"must": [
{
"match": {
"customer.externalId": "9200191"
}
},
{
"range": {
"promotioncustomer.validFrom": {
"gte": "02/28/2019"
}
}
},
{
"range": {
"promotioncustomer.validTo": {
"lte": "03/20/2019"
}
}
}
]
}
}
}
}
}
}
}
But it's not yielding the result. I know the reason as well. In the has_child clause i'm making use of parent field i.e "customer.externalId". Is there a way to include/add this condition in the parent_type query and then based on the result apply range condition inside has_child
I was able to get the solution. Hope it helps others as well. No need make multiple query call to ES inorder get the desired result.
GET /promotionsearch/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"promotioncustomer.promotionDescription": "PM-RT"
}
},
{
"range": {
"promotioncustomer.validFrom": {
"gte": "02/28/2019"
}
}
},
{
"range": {
"promotioncustomer.validTo": {
"lte": "03/28/2019"
}
}
},
{
"has_parent": {
"parent_type": "customer",
"query": {
"match": {
"customer.fullName": "sdjhfb"
}
}
}
}
]
}
}
}
Related
In Elasticsearch, say I have the document like this:
{
"inputs": [
{
"id": "1234",
"value": "ABCD"
},
{
"id": "5678",
"value": "EFGH"
}
]
}
Say, now, I wanted to update value of all items where id is "1234" to "XYZA". How can I do that using script in elasticsearch? I am not sure if I can do some for loop in script?
Mapping:
{
"inputs" : {
"mappings" : {
"properties" : {
"inputs" : {
"type" : "nested",
"properties" : {
"id" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"value" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
}
}
}
}
}
Query:
You can use _update_by_query api. Query part will filter out documents and script will update the field
<1. When inputs is of nested type
POST inputs/_update_by_query
{
"script": {
"source": "for(a in ctx._source['inputs']){if(a.id=='1234') a.value=params.new_value; }",
"params": {
"new_value": "XYZA"
}
},
"query": {
"nested":{
"path":"inputs",
"query":{
"term":{
"inputs.id":1234
}
}
}
}
}
2. When inputs if of object type
POST inputs/_update_by_query
{
"script": {
"source": "for(a in ctx._source['inputs']){if(a.id=='1234') a.value=params.new_value; }",
"params": {
"new_value": "XYZA"
}
},
"query": {
"term": {
"inputs.id": 1234
}
}
}
Result:
"hits" : [
{
"_index" : "inputs",
"_type" : "_doc",
"_id" : "3uwrwHEBLcdvQ7OTrUmi",
"_score" : 1.0,
"_source" : {
"inputs" : [
{
"id" : "1234",
"value" : "XYZA"
},
{
"id" : "5678",
"value" : "EFGH"
}
]
}
}
]
I have a simple doc structure as follows.
{
"did" : "1",
"uid" : "user1",
"mid" : "pc-linux1",
"path" : "/tmp/path1"
}
I need to query elastic ,that matches all fields exactly
GET index2/_search
{
"query": {
"bool":{
"must": [
{
"term" : { "uid" : "user1"}
},
{
"term" : { "mid" : "pc-linux1"}
},
{
"term" : { "did" : "1"}
},
{
"term" : { "path" : "/tmp/path1"}
}
]
}
}
}
The matching should happen without any kind of elastic 'analysis' on keywords, so that "/tmp/path1" is matched as a full term.
I tried to use a custom mapping: with
"index" : false
which does not work.
PUT /index2?include_type_name=true
{
"mappings" : {
"_doc": {
"properties" : {
"did" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"index" : false,
"ignore_above" : 256
}
}
},
"mid" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"index" : false,
"ignore_above" : 256
}
}
},
"path" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"index" : false,
"ignore_above" : 256
}
}
},
"uid" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"index" : false,
"ignore_above" : 256
}
}
}
}
}
}
}
I am using elastic7.0 and few posts suggesting a custom mapping with
"index" : "not_analysed"
does not get accepted as a valid mapping in elastic 7.0
Any suggestions?
If you want to match exact terms, try this query:
GET index2/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"uid": "user1"
}
},
{
"match": {
"mid": "pc-linux1"
}
},
{
"match": {
"did": "1"
}
},
{
"match": {
"path": "/tmp/path1"
}
}
]
}
}
}
For example if name as P.Shanmukha Sharma and if user searches for Shanmukha will not be available for search result. its returning only for P.Shanmukha and Sharma, is there any way if i will search Shanmukha and it will return result?
"user" : {
"properties" : {
"city" : {
"type" : "string",
"analyzer" : "autocomplete",
"search_analyzer" : "standard"
},
"created" : {
"type" : "date",
"format" : "strict_date_optional_time||epoch_millis"
},
"id" : {
"type" : "long"
},
"latitude" : {
"type" : "double"
},
"longitude" : {
"type" : "double"
},
"profile_image" : {
"type" : "string"
},
"state" : {
"type" : "string",
"analyzer" : "autocomplete",
"search_analyzer" : "standard"
},
"super_verification" : {
"type" : "string"
},
"type" : {
"type" : "string"
},
"username" : {
"type" : "string",
"analyzer" : "autocomplete",
"search_analyzer" : "standard"
}
}
}
username is defined as a search analyzer
and search query is
def EsSearch(self, index, page, size, searchTerm):
body = {
'query': {
'match': searchTerm
},
'sort': {
'created': {
'order': 'desc'
}
},
'filter': {
'term': {
'super_verification': 'verified'
}
}
}
res = self.conn.search(index=index, body=body)
output = []
for doc in res['hits']['hits']:
output.append(doc['_source'])
return output
so doing so much of research on ES i Got this solution with wildcard. Thanks EveryOne
{
"query": {
"wildcard": {
"username": {
"value": "*Shanmukha*"
}
}
}
}
Basically, 2 way in to do so,
By GET method and URL:
http://localhost:9200/your_index/your_type/_search?q=username:*Shanmukha*&pretty=true
By Fuzzy Query
as given by #krrish this one:
I am tying to find all Videos with the name "The Shining"
but also with a parent_id = 189, and parent_type = "folder"
My query seams to connect all of the match statements with "OR" instead of "AND"
What am I doing wrong?
{
"fields": ["name","parent_id","parent_type"],
"query": {
"and": {
"must":[
{
"match": {
"name": "The Shining"
}
},
{
"match": {
"parent_id": 189
}
},
{
"match": {
"parent_type": "folder"
}
}
]
}
}
}
Mapping:
{"video" : {
"mappings" : {
"video" : {
"properties" : {
"homepage_tags" : {
"type" : "nested",
"properties" : {
"id" : {
"type" : "integer"
},
"metaType" : {
"type" : "string"
},
"tag_category_name" : {
"type" : "string"
},
"tag_category_order" : {
"type" : "integer"
},
"tag_name" : {
"type" : "string"
}
}
},
"id" : {
"type" : "integer"
},
"name" : {
"type" : "string"
},
"parent_id" : {
"type" : "integer"
},
"parent_type" : {
"type" : "string"
},
"provider" : {
"type" : "string"
},
"publish" : {
"type" : "string"
},
"query" : {
"properties" : {
"bool" : {
"properties" : {
"must" : {
"properties" : {
"match" : {
"properties" : {
"name" : {
"type" : "string"
},
"parent_id" : {
"type" : "long"
}
}
}
}
}
}
}
}
},
"source_id" : {
"type" : "string"
},
"subtitles" : {
"type" : "nested",
"include_in_root" : true,
"properties" : {
"content" : {
"type" : "string",
"store" : true,
"analyzer" : "no_stopwords"
},
"end_time" : {
"type" : "float"
},
"id" : {
"type" : "integer"
},
"parent_type" : {
"type" : "string"
},
"start_time" : {
"type" : "float"
},
"uid" : {
"type" : "integer"
},
"video_id" : {
"type" : "string"
},
"video_parent_id" : {
"type" : "integer"
},
"video_parent_type" : {
"type" : "string"
}
}
},
"tags" : {
"type" : "nested",
"properties" : {
"content" : {
"type" : "string"
},
"end_time" : {
"type" : "string"
},
"id" : {
"type" : "integer"
},
"metaType" : {
"type" : "string"
},
"parent_type" : {
"type" : "string"
},
"start_time" : {
"type" : "string"
}
}
},
"uid" : {
"type" : "integer"
},
"vid_url" : {
"type" : "string"
}
}
}
}}}
I was able to solve the problem by reading Volodymryrs answer above.
Aditional matches were being found because they were matching "the". I tried to add the operator argument, but that did not work unfortunately. What I did instead was to use "match_phrase" and also switched my two other match fields to "term" - see my answer below –
[
'query' => [
'bool' => [
'must' => [
[
'match_phrase' => [
'name' => $searchTerm
]
],
[
'term' => [
'parent_id' => intVal($parent_id)
]
],
[
'term' => [
'parent_type' => strtolower($parent_type)
]
]
]
]
]
];
You will get matches on the or shining because of match query, and depending on matches you will get score. One of the easiest fixes would be to add operator and:
{
"match": {
"name": "The Shining",
"operator": "and"
}
}
But it's not what you need since this will also match names "shining The" or "The sun is shining".
Other option is that if you need to do exact matches on name, then you would need to make field name as non-analyzed. In ES 5 you can set field type as a keyword
In addition I would recommend you to use bool query with term queries since they will do exact match.
{
"fields": ["name","parent_id","parent_type"],
"query": {
"bool": {
"must":[{
"term": {
"name": "The Shining"
}
},
{
"term": {
"parent_id": 189
}
},
{
"term": {
"parent_type": "folder"
}
}
]
}
}
}
I've spent the last 2 days investigating this mind-bending issue:I have an index with custom mappings on which I perform some aggregations. The problem is that in the results of the aggregation on numerical fields,it returns values that do not appear in the database from which the data was imported, even though the number of results is the same.
I found a similar issue here where the problem was inconsistent mapping of a field across an index, but in my case it is mapped as the same type. The problem happens with the fields: award.value.amount, award.value.x_amountEur, tender.value.x_amountEur as far as I have checked.This is my current mapping as stated by curl -XGET 'http://localhost:9200/documents/_mappings?pretty&human'
(the part that contains the target fields):
{
"documents" : {
"mappings" : {
"document" : {
"properties" : {
"additionalIdentifiers" : {
"type" : "string",
"index" : "not_analyzed"
},
"award" : {
"type" : "nested",
"properties" : {
"_id" : {
"properties" : {
"$oid" : {
"type" : "string"
}
}
},
"contract_number" : {
"type" : "string",
"index" : "not_analyzed"
},
"date" : {
"type" : "nested",
"properties" : {
"_id" : {
"properties" : {
"$oid" : {
"type" : "string"
}
}
},
"x_day" : {
"type" : "integer"
},
"x_month" : {
"type" : "integer"
},
"x_year" : {
"type" : "integer"
}
}
},
"description" : {
"type" : "string"
},
"initialValue" : {
"type" : "nested",
"properties" : {
"_id" : {
"properties" : {
"$oid" : {
"type" : "string"
}
}
},
"amount" : {
"type" : "float"
},
"currency" : {
"type" : "string"
},
"x_vat" : {
"type" : "float"
}
}
},
"minValue" : {
"type" : "nested",
"properties" : {
"_id" : {
"properties" : {
"$oid" : {
"type" : "string"
}
}
},
"amount" : {
"type" : "float"
},
"x_amountEur" : {
"type" : "float"
}
}
},
"title" : {
"type" : "string"
},
"value" : {
"type" : "nested",
"properties" : {
"_id" : {
"properties" : {
"$oid" : {
"type" : "string"
}
}
},
"amount" : {
"type" : "float"
},
"currency" : {
"type" : "string"
},
"x_amountEur" : {
"type" : "float"
},
"x_vat" : {
"type" : "float"
},
"x_vatbool" : {
"type" : "boolean"
}
}
},
"x_initialValue" : {
"type" : "nested",
"properties" : {
"_id" : {
"properties" : {
"$oid" : {
"type" : "string"
}
}
},
"x_amountEur" : {
"type" : "float"
},
"x_vatbool" : {
"type" : "boolean"
}
}
}
}
},
"awardCriteria" : {
"type" : "string"
},
"contract_number" : {
"type" : "string"
},
"document_id" : {
"type" : "string",
"index" : "not_analyzed"
},
"numberOfTenderers" : {
"type" : "string"
},
"procurementMethod" : {
"type" : "string"
},
"procuring_entity" : {
"type" : "nested",
"properties" : {
"_id" : {
"properties" : {
"$oid" : {
"type" : "string"
}
}
},
"address" : {
"type" : "nested",
"properties" : {
"_id" : {
"properties" : {
"$oid" : {
"type" : "string"
}
}
},
"country" : {
"type" : "string"
},
"countryName" : {
"type" : "string",
"index" : "not_analyzed"
},
"email" : {
"type" : "string"
},
"locality" : {
"type" : "string"
},
"postalCode" : {
"type" : "string"
},
"streetAddress" : {
"type" : "string"
},
"telephone" : {
"type" : "string"
},
"x_url" : {
"type" : "string"
}
}
},
"name" : {
"type" : "string"
},
"x_slug" : {
"type" : "string",
"index" : "not_analyzed"
}
}
},
"suppliers" : {
"type" : "nested",
"properties" : {
"_id" : {
"properties" : {
"$oid" : {
"type" : "string"
}
}
},
"address" : {
"properties" : {
"_id" : {
"properties" : {
"$oid" : {
"type" : "string"
}
}
},
"email" : {
"type" : "string"
},
"locality" : {
"type" : "string"
},
"postalCode" : {
"type" : "string"
},
"streetAddress" : {
"type" : "string"
},
"telephone" : {
"type" : "string"
},
"x_url" : {
"type" : "string"
}
}
},
"name" : {
"type" : "string"
},
"x_slug" : {
"type" : "string",
"index" : "not_analyzed"
}
}
},
"tender" : {
"type" : "nested",
"properties" : {
"_id" : {
"properties" : {
"$oid" : {
"type" : "string"
}
}
},
"value" : {
"type" : "nested",
"properties" : {
"_id" : {
"properties" : {
"$oid" : {
"type" : "string"
}
}
},
"amount" : {
"type" : "float"
},
"currency" : {
"type" : "string"
},
"x_amountEur" : {
"type" : "float"
},
"x_vat" : {
"type" : "float"
},
"x_vatbool" : {
"type" : "boolean"
}
}
}
}
}
This is the aggregation I am using in order to get the values of contracts between each pair of supplier - procuring_entity:
Document.es.search({
"search_type": "count" ,
"body":{
"aggregations": {
"entities":{
"nested": {
"path": "procuring_entity"
},
"aggs": {
"procuring_entity_names": {
"terms": {
"field": "procuring_entity.x_slug",
"size": 0
},
"aggs": {
"suppliers": {
"nested": {
"path": "suppliers"
},
"aggs": {
"suppliers_names": {
"terms":{
"field": "suppliers.x_slug",
"size": 0
},
"aggs": {
"awards": {
"nested": {
"path": "award.value"
},
"aggs": {
"award_amounts": {
"terms":{
"field": "award.value.x_amountEur",
"size": 0
}
}
}
}
}
}
}
}
}
}
}
}
}
}})
The result with type float is :
{"entities"=>
{"doc_count"=>24300,
"procuring_entity_names"=>
{"doc_count_error_upper_bound"=>0,
"sum_other_doc_count"=>0,
"buckets"=>
[{"key"=>"vsia-bernu-kliniska-universitates-slimnica",
"doc_count"=>1360,
"suppliers"=>
{"doc_count"=>1360,
"suppliers_names"=>
{"doc_count_error_upper_bound"=>0,
"sum_other_doc_count"=>0,
"buckets"=>
[{"key"=>"recipe-plus-as",
"doc_count"=>388,
"awards"=>
{"doc_count"=>388,
"awards"=>
{"doc_count_error_upper_bound"=>0,
"sum_other_doc_count"=>0,
"buckets"=>
[{"key"=>3679.086669921875, "doc_count"=>373},
{"key"=>0.0, "doc_count"=>12},
{"key"=>73610.3203125, "doc_count"=>1},
{"key"=>244000.0, "doc_count"=>1},
{"key"=>342348.9375, "doc_count"=>1}]}}}
The problem is that in MongoDB the same query returns 388 documents that all have award.value.x_amountEur = 3679.08661250056 , as presented by Mongoid query:
Document.where(:"procuring_entity.x_slug" => "vsia-bernu-kliniska-universitates-slimnica")
.keep_if{|doc| doc.suppliers.first.x_slug == "recipe-plus-as"}
.map{|doc| doc.award.value.x_amountEur}.uniq
=>[3679.08661250056]
A query directly into MongoDB returns the same.
I have also tried to map the targeted fields as double, which gave the same result and as long which returned the following (even more incorrect result):
{"entities"=>
{"doc_count"=>24300,
"procuring_entity_names"=>
{"doc_count_error_upper_bound"=>0,
"sum_other_doc_count"=>0,
"buckets"=>
[{"key"=>"vsia-bernu-kliniska-universitates-slimnica",
"doc_count"=>1360,
"suppliers"=>
{"doc_count"=>1360,
"suppliers_names"=>
{"doc_count_error_upper_bound"=>0,
"sum_other_doc_count"=>0,
"buckets"=>
[{"key"=>"recipe-plus-as",
"doc_count"=>388,
"awards"=>
{"doc_count"=>388,
"awards"=>
{"doc_count_error_upper_bound"=>0,
"sum_other_doc_count"=>0,
"buckets"=>
[{"key"=>3679, "doc_count"=>371},
{"key"=>0, "doc_count"=>12},
{"key"=>44300, "doc_count"=>1},
{"key"=>80472, "doc_count"=>1},
{"key"=>331636, "doc_count"=>1},
{"key"=>342348, "doc_count"=>1},
{"key"=>1658805, "doc_count"=>1}]}}}
I'm using Elasticsearch 2.0, mongoid 5.0.1 and mongoid-elasticsearch for indexing. I can't think of anything else to do so any suggestion is welcomed and appreciated.
I tried to test your scenario with ES 2.0 and there is something that I'm missing. I cannot make it create buckets for the award.value.x_amountEur unless I use a reverse_nested aggregation to "get out" from one nested path and into another.
So, instead of the awards aggregation that you have I'm using the same aggregation but "wrapped" in a reverse_nested aggregation:
"aggs": {
"getting_back": {
"reverse_nested": {},
"aggs": {
"awards": {
"nested": {
"path": "award.value"
},
"aggs": {
"award_amounts": {
"terms": {
"field": "award.value.x_amountEur"
}
}
}
}
}
}
}
And for this one I am seeing something ok.
Later edit: following mine and more general #Val's suggestion, the complete solution was to use reverse_nested on both awards and suppliers aggregations.