Tail recursive solution in Scala for Linked-List chaining - algorithm

I wanted to write a tail-recursive solution for the following problem on Leetcode -
You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order and each of their nodes contains a single digit. Add the two numbers and return it as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
Example:
*Input: (2 -> 4 -> 3) + (5 -> 6 -> 4)*
*Output: 7 -> 0 -> 8*
*Explanation: 342 + 465 = 807.*
Link to the problem on Leetcode
I was not able to figure out a way to call the recursive function in the last line.
What I am trying to achieve here is the recursive calling of the add function that adds the heads of the two lists with a carry and returns a node. The returned node is chained with the node in the calling stack.
I am pretty new to scala, I am guessing I may have missed some useful constructs.
/**
* Definition for singly-linked list.
* class ListNode(_x: Int = 0, _next: ListNode = null) {
* var next: ListNode = _next
* var x: Int = _x
* }
*/
import scala.annotation.tailrec
object Solution {
def addTwoNumbers(l1: ListNode, l2: ListNode): ListNode = {
add(l1, l2, 0)
}
//#tailrec
def add(l1: ListNode, l2: ListNode, carry: Int): ListNode = {
var sum = 0;
sum = (if(l1!=null) l1.x else 0) + (if(l2!=null) l2.x else 0) + carry;
if(l1 != null || l2 != null || sum > 0)
ListNode(sum%10,add(if(l1!=null) l1.next else null, if(l2!=null) l2.next else null,sum/10))
else null;
}
}

You have a couple of problems, which can mostly be reduced as being not idiomatic.
Things like var and null are not common in Scala and usually, you would use a tail-recursive algorithm to avoid that kind of things.
Finally, remember that a tail-recursive algorithm requires that the last expression is either a plain value or a recursive call. For doing that, you usually keep track of the remaining job as well as an accumulator.
Here is a possible solution:
type Digit = Int // Refined [0..9]
type Number = List[Digit] // Refined NonEmpty.
def sum(n1: Number, n2: Number): Number = {
def aux(d1: Digit, d2: Digit, carry: Digit): (Digit, Digit) = {
val tmp = d1 + d2 + carry
val d = tmp % 10
val c = tmp / 10
d -> c
}
#annotation.tailrec
def loop(r1: Number, r2: Number, acc: Number, carry: Digit): Number =
(r1, r2) match {
case (d1 :: tail1, d2 :: tail2) =>
val (d, c) = aux(d1, d2, carry)
loop(r1 = tail1, r2 = tail2, d :: acc, carry = c)
case (Nil, d2 :: tail2) =>
val (d, c) = aux(d1 = 0, d2, carry)
loop(r1 = Nil, r2 = tail2, d :: acc, carry = c)
case (d1 :: tail1, Nil) =>
val (d, c) = aux(d1, d2 = 0, carry)
loop(r1 = tail1, r2 = Nil, d :: acc, carry = c)
case (Nil, Nil) =>
acc
}
loop(r1 = n1, r2 = n2, acc = List.empty, carry = 0).reverse
}
Now, this kind of recursions tends to be very verbose.
Usually, the stdlib provide ways to make this same algorithm more concise:
// This is a solution that do not require the numbers to be already reversed and the output is also in the correct order.
def sum(n1: Number, n2: Number): Number = {
val (result, carry) = n1.reverseIterator.zipAll(n2.reverseIterator, 0, 0).foldLeft(List.empty[Digit] -> 0) {
case ((acc, carry), (d1, d2)) =>
val tmp = d1 + d2 + carry
val d = tmp % 10
val c = tmp / 10
(d :: acc) -> c
}
if (carry > 0) carry :: result else result
}

Scala is less popular on LeetCode, but this Solution (which is not the best) would get accepted by LeetCode's online judge:
import scala.collection.mutable._
object Solution {
def addTwoNumbers(listA: ListNode, listB: ListNode): ListNode = {
var tempBufferA: ListBuffer[Int] = ListBuffer.empty
var tempBufferB: ListBuffer[Int] = ListBuffer.empty
tempBufferA.clear()
tempBufferB.clear()
def listTraversalA(listA: ListNode): ListBuffer[Int] = {
if (listA == null) {
return tempBufferA
} else {
tempBufferA += listA.x
listTraversalA(listA.next)
}
}
def listTraversalB(listB: ListNode): ListBuffer[Int] = {
if (listB == null) {
return tempBufferB
} else {
tempBufferB += listB.x
listTraversalB(listB.next)
}
}
val resultA: ListBuffer[Int] = listTraversalA(listA)
val resultB: ListBuffer[Int] = listTraversalB(listB)
val resultSum: BigInt = BigInt(resultA.reverse.mkString) + BigInt(resultB.reverse.mkString)
var listNodeResult: ListBuffer[ListNode] = ListBuffer.empty
val resultList = resultSum.toString.toList
var lastListNode: ListNode = null
for (i <-0 until resultList.size) {
if (i == 0) {
lastListNode = new ListNode(resultList(i).toString.toInt)
listNodeResult += lastListNode
} else {
lastListNode = new ListNode(resultList(i).toString.toInt, lastListNode)
listNodeResult += lastListNode
}
}
return listNodeResult.reverse(0)
}
}
References
For additional details, you can see the Discussion Board. There are plenty of accepted solutions, explanations, efficient algorithms with a variety of languages, and time/space complexity analysis in there.

Related

How to divide a set into two sets such that the difference of the average is minimum?

As I understand, it is related to the partition problem.
But I would like to ask a slightly different problem which I don't care about the sum but the average. In this case, it needs to optimize 2 constraints (sum and number of items) at the same time. It seems to be a harder problem and I cannot see any solutions online.
Are there any solutions for this variant? Or how does it relate to the partition problem?
Example:
input X = [1,1,1,1,1,6]
output based on sum: A = [1,1,1,1,1], B=[6]
output based on average: A = [1], B=[1,1,1,1,6]
On some inputs, a modification of the dynamic program for the usual partition problem will give a speedup. We have to classify each partial solution by its count and sum instead of just sum, which slows things down a bit. Python 3 below (note that the use of dictionaries implicitly collapses functionally identical partial solutions):
def children(ab, x):
a, b = ab
yield a + [x], b
yield a, b + [x]
def proper(ab):
a, b = ab
return a and b
def avg(lst):
return sum(lst) / len(lst)
def abs_diff_avg(ab):
a, b = ab
return abs(avg(a) - avg(b))
def min_abs_diff_avg(lst):
solutions = {(0, 0): ([], [])}
for x in lst:
solutions = {
(sum(a), len(a)): (a, b)
for ab in solutions.values()
for (a, b) in children(ab, x)
}
return min(filter(proper, solutions.values()), key=abs_diff_avg)
print(min_abs_diff_avg([1, 1, 1, 1, 1, 6]))
let S_i the sum of a subset of v of size i
let S be the total sum of v, n the length of v
the err to minimize is
err_i = |avg(S_i) - avg(S-S_i)|
err_i = |S_i/i - (S-S_i)/(n-i)|
err_i = |(nS_i - iS)/(i(n-i))|
algorithm below does:
for all tuple sizes (1,...,n/2) as i
- for all tuples of size i-1 as t_{i-1}
- generate all possible tuple of size i from t_{i-1} by adjoining one elem from v
- track best tuple in regard of err_i
The only cut I found being:
for two tuples of size i having the same sum, keep the one whose last element's index is the smallest
e.g given tuples A, B (where X is some taken element from v)
A: [X,....,X....]
B: [.,X,.....,X..]
keep A because its right-most element has the minimal index
(idea being that at size 3, A will offer the same candidates as B plus some more)
function generateTuples (v, tuples) {
const nextTuples = new Map()
for (const [, t] of tuples) {
for (let l = t.l + 1; l < v.length; ++l) {
const s = t.s + v[l]
if (!nextTuples.has(s) || nextTuples.get(s).l > l) {
const nextTuple = { v: t.v.concat(l), s, l }
nextTuples.set(s, nextTuple)
}
}
}
return nextTuples
}
function processV (v) {
const fErr = (() => {
const n = v.length
const S = v.reduce((s, x) => s + x, 0)
return ({ s: S_i, v }) => {
const i = v.length
return Math.abs((n * S_i - i * S) / (i * (n - i)))
}
})()
let tuples = new Map([[0, { v: [], s: 0, l: -1 }]])
let best = null
let err = 9e3
for (let i = 0; i < Math.ceil(v.length / 2); ++i) {
const nextTuples = generateTuples(v, tuples)
for (const [, t] of nextTuples) {
if (fErr(t) <= err) {
best = t
err = fErr(t)
}
}
tuples = nextTuples
}
const s1Indices = new Set(best.v)
return {
sol: v.reduce(([v1, v2], x, i) => {
(s1Indices.has(i) ? v1 : v2).push(x)
return [v1, v2]
}, [[], []]),
err
}
}
console.log('best: ', processV([1, 1, 1, 1, 1, 6]))
console.log('best: ', processV([1, 2, 3, 4, 5]))
console.log('best: ', processV([1, 3, 5, 7, 7, 8]))

Algorithm to generate a sequence proportional to specified percentage

Given a Map of objects and designated proportions (let's say they add up to 100 to make it easy):
val ss : Map[String,Double] = Map("A"->42, "B"->32, "C"->26)
How can I generate a sequence such that for a subset of size n there are ~42% "A"s, ~32% "B"s and ~26% "C"s? (Obviously, small n will have larger errors).
(Work language is Scala, but I'm just asking for the algorithm.)
UPDATE: I resisted a random approach since, for instance, there's ~16% chance that the sequence would start with AA and ~11% chance it would start with BB and there would be very low odds that for n precisely == (sum of proportions) the distribution would be perfect. So, following #MvG's answer, I implemented as follows:
/**
Returns the key whose achieved proportions are most below desired proportions
*/
def next[T](proportions : Map[T, Double], achievedToDate : Map[T,Double]) : T = {
val proportionsSum = proportions.values.sum
val desiredPercentages = proportions.mapValues(v => v / proportionsSum)
//Initially no achieved percentages, so avoid / 0
val toDateTotal = if(achievedToDate.values.sum == 0.0){
1
}else{
achievedToDate.values.sum
}
val achievedPercentages = achievedToDate.mapValues(v => v / toDateTotal)
val gaps = achievedPercentages.map{ case (k, v) =>
val gap = desiredPercentages(k) - v
(k -> gap)
}
val maxUnder = gaps.values.toList.sortWith(_ > _).head
//println("Max gap is " + maxUnder)
val gapsForMaxUnder = gaps.mapValues{v => Math.abs(v - maxUnder) < Double.Epsilon }
val keysByHasMaxUnder = gapsForMaxUnder.map(_.swap)
keysByHasMaxUnder(true)
}
/**
Stream of most-fair next element
*/
def proportionalStream[T](proportions : Map[T, Double], toDate : Map[T, Double]) : Stream[T] = {
val nextS = next(proportions, toDate)
val tailToDate = toDate + (nextS -> (toDate(nextS) + 1.0))
Stream.cons(
nextS,
proportionalStream(proportions, tailToDate)
)
}
That when used, e.g., :
val ss : Map[String,Double] = Map("A"->42, "B"->32, "C"->26)
val none : Map[String,Double] = ss.mapValues(_ => 0.0)
val mySequence = (proportionalStream(ss, none) take 100).toList
println("Desired : " + ss)
println("Achieved : " + mySequence.groupBy(identity).mapValues(_.size))
mySequence.map(s => print(s))
println
produces :
Desired : Map(A -> 42.0, B -> 32.0, C -> 26.0)
Achieved : Map(C -> 26, A -> 42, B -> 32)
ABCABCABACBACABACBABACABCABACBACABABCABACABCABACBA
CABABCABACBACABACBABACABCABACBACABABCABACABCABACBA
For a deterministic approach, the most obvious solution would probably be this:
Keep track of the number of occurrences of each item in the sequence so far.
For the next item, choose that item for which the difference between intended and actual count (or proportion, if you prefer that) is maximal, but only if the intended count (resp. proportion) is greater than the actual one.
If there is a tie, break it in an arbitrary but deterministic way, e.g. choosing the alphabetically lowest item.
This approach would ensure an optimal adherence to the prescribed ratio for every prefix of the infinite sequence generated in this way.
Quick & dirty python proof of concept (don't expect any of the variable “names” to make any sense):
import sys
p = [0.42, 0.32, 0.26]
c = [0, 0, 0]
a = ['A', 'B', 'C']
n = 0
while n < 70*5:
n += 1
x = 0
s = n*p[0] - c[0]
for i in [1, 2]:
si = n*p[i] - c[i]
if si > s:
x = i
s = si
sys.stdout.write(a[x])
if n % 70 == 0:
sys.stdout.write('\n')
c[x] += 1
Generates
ABCABCABACABACBABCAABCABACBACABACBABCABACABACBACBAABCABCABACABACBABCAB
ACABACBACABACBABCABACABACBACBAABCABCABACABACBABCAABCABACBACABACBABCABA
CABACBACBAABCABCABACABACBABCABACABACBACBAACBABCABACABACBACBAABCABCABAC
ABACBABCABACABACBACBAACBABCABACABACBACBAABCABCABACABACBABCABACABACBACB
AACBABCABACABACBACBAABCABCABACABACBABCAABCABACBACBAACBABCABACABACBACBA
For every item of the sequence, compute a (pseudo-)random number r equidistributed between 0 (inclusive) and 100 (exclusive).
If 0 ≤ r < 42, take A
If 42 ≤ r < (42+32), take B
If (42+32) ≤ r < (42+32+26)=100, take C
The number of each entry in your subset is going to be the same as in your map, but with a scaling factor applied.
The scaling factor is n/100.
So if n was 50, you would have { Ax21, Bx16, Cx13 }.
Randomize the order to your liking.
The simplest "deterministic" [in terms of #elements of each category] solution [IMO] will be: add elements in predefined order, and then shuffle the resulting list.
First, add map(x)/100 * n elements from each element x chose how you handle integer arithmetics to avoid off by one element], and then shuffle the resulting list.
Shuffling a list is simple with fisher-yates shuffle, which is implemented in most languages: for example java has Collections.shuffle(), and C++ has random_shuffle()
In java, it will be as simple as:
int N = 107;
List<String> res = new ArrayList<String>();
for (Entry<String,Integer> e : map.entrySet()) { //map is predefined Map<String,Integer> for frequencies
for (int i = 0; i < Math.round(e.getValue()/100.0 * N); i++) {
res.add(e.getKey());
}
}
Collections.shuffle(res);
This is nondeterministic, but gives a distribution of values close to MvG's. It suffers from the problem that it could give AAA right at the start. I post it here for completeness' sake given how it proves my dissent with MvG was misplaced (and I don't expect any upvotes).
Now, if someone has an idea for an expand function that is deterministic and won't just duplicate MvG's method (rendering the calc function useless), I'm all ears!
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>ErikE's answer</title>
</head>
<body>
<div id="output"></div>
<script type="text/javascript">
if (!Array.each) {
Array.prototype.each = function(callback) {
var i, l = this.length;
for (i = 0; i < l; i += 1) {
callback(i, this[i]);
}
};
}
if (!Array.prototype.sum) {
Array.prototype.sum = function() {
var sum = 0;
this.each(function(i, val) {
sum += val;
});
return sum;
};
}
function expand(counts) {
var
result = "",
charlist = [],
l,
index;
counts.each(function(i, val) {
char = String.fromCharCode(i + 65);
for ( ; val > 0; val -= 1) {
charlist.push(char);
}
});
l = charlist.length;
for ( ; l > 0; l -= 1) {
index = Math.floor(Math.random() * l);
result += charlist[index];
charlist.splice(index, 1);
}
return result;
}
function calc(n, proportions) {
var percents = [],
counts = [],
errors = [],
fnmap = [],
errorSum,
worstIndex;
fnmap[1] = "min";
fnmap[-1] = "max";
proportions.each(function(i, val) {
percents[i] = val / proportions.sum() * n;
counts[i] = Math.round(percents[i]);
errors[i] = counts[i] - percents[i];
});
errorSum = counts.sum() - n;
while (errorSum != 0) {
adjust = errorSum < 0 ? 1 : -1;
worstIndex = errors.indexOf(Math[fnmap[adjust]].apply(0, errors));
counts[worstIndex] += adjust;
errors[worstIndex] = counts[worstIndex] - percents[worstIndex];
errorSum += adjust;
}
return expand(counts);
}
document.body.onload = function() {
document.getElementById('output').innerHTML = calc(99, [25.1, 24.9, 25.9, 24.1]);
};
</script>
</body>
</html>

MergeSort in scala

I came across another codechef problem which I am attempting to solve in Scala. The problem statement is as follows:
Stepford Street was a dead end street. The houses on Stepford Street
were bought by wealthy millionaires. They had them extensively altered
so that as one progressed along the street, the height of the
buildings increased rapidly. However, not all millionaires were
created equal. Some refused to follow this trend and kept their houses
at their original heights. The resulting progression of heights was
thus disturbed. A contest to locate the most ordered street was
announced by the Beverly Hills Municipal Corporation. The criteria for
the most ordered street was set as follows: If there exists a house
with a lower height later in the street than the house under
consideration, then the pair (current house, later house) counts as 1
point towards the disorderliness index of the street. It is not
necessary that the later house be adjacent to the current house. Note:
No two houses on a street will be of the same height For example, for
the input: 1 2 4 5 3 6 The pairs (4,3), (5,3) form disordered pairs.
Thus the disorderliness index of this array is 2. As the criteria for
determining the disorderliness is complex, the BHMC has requested your
help to automate the process. You need to write an efficient program
that calculates the disorderliness index of a street.
A sample input output provided is as follows:
Input: 1 2 4 5 3 6
Output: 2
The output is 2 because of two pairs (4,3) and (5,3)
To solve this problem I thought I should use a variant of MergeSort,incrementing by 1 when the left element is greater than the right element.
My scala code is as follows:
def dysfunctionCalc(input:List[Int]):Int = {
val leftHalf = input.size/2
println("HalfSize:"+leftHalf)
val isOdd = input.size%2
println("Is odd:"+isOdd)
val leftList = input.take(leftHalf+isOdd)
println("LeftList:"+leftList)
val rightList = input.drop(leftHalf+isOdd)
println("RightList:"+rightList)
if ((leftList.size <= 1) && (rightList.size <= 1)){
println("Entering input where both lists are <= 1")
if(leftList.size == 0 || rightList.size == 0){
println("One of the lists is less than 0")
0
}
else if(leftList.head > rightList.head)1 else 0
}
else{
println("Both lists are greater than 1")
dysfunctionCalc(leftList) + dysfunctionCalc(rightList)
}
}
First off, my logic is wrong,it doesn't have a merge stage and I am not sure what would be the best way to percolate the result of the base-case up the stack and compare it with the other values. Also, using recursion to solve this problem may not be the most optimal way to go since for large lists, I maybe blowing up the stack. Also, there might be stylistic issues with my code as well.
I would be great if somebody could point out other flaws and the right way to solve this problem.
Thanks
Suppose you split your list into three pieces: the item you are considering, those on the left, and those on the right. Suppose further that those on the left are in a sorted set. Now you just need to walk through the list, moving items from "right" to "considered" and from "considered" to "left"; at each point, you look at the size of the subset of the sorted set that is greater than your item. In general, the size lookup can be done in O(log(N)) as can the add-element (with a Red-Black or AVL tree, for instance). So you have O(N log N) performance.
Now the question is how to implement this in Scala efficiently. It turns out that Scala has a Red-Black tree used for its TreeSet sorted set, and the implementation is actually quite simple (here in tail-recursive form):
import collection.immutable.TreeSet
final def calcDisorder(xs: List[Int], left: TreeSet[Int] = TreeSet.empty, n: Int = 0): Int = xs match {
case Nil => n
case x :: rest => calcDisorder(rest, left + x, n + left.from(x).size)
}
Unfortunately, left.from(x).size takes O(N) time (I believe), which yields a quadratic execution time. That's no good--what you need is an IndexedTreeSet which can do indexOf(x) in O(log(n)) (and then iterate with n + left.size - left.indexOf(x) - 1). You can build your own implementation or find one on the web. For instance, I found one here (API here) for Java that does exactly the right thing.
Incidentally, the problem with doing a mergesort is that you cannot easily work cumulatively. With merging a pair, you can keep track of how out-of-order it is. But when you merge in a third list, you must see how out of order it is with respect to both other lists, which spoils your divide-and-conquer strategy. (I am not sure whether there is some invariant one could find that would allow you to calculate directly if you kept track of it.)
Here is my try, I don't use MergeSort but it seems to solve the problem:
def calcDisorderness(myList:List[Int]):Int = myList match{
case Nil => 0
case t::q => q.count(_<t) + calcDisorderness(q)
}
scala> val input = List(1,2,4,5,3,6)
input: List[Int] = List(1, 2, 4, 5, 3, 6)
scala> calcDisorderness(input)
res1: Int = 2
The question is, is there a way to have a lower complexity?
Edit: tail recursive version of the same function and cool usage of default values in function arguments.
def calcDisorderness(myList:List[Int], disorder:Int=0):Int = myList match{
case Nil => disorder
case t::q => calcDisorderness(q, disorder + q.count(_<t))
}
A solution based on Merge Sort. Not super fast, potential slowdown could be in "xs.length".
def countSwaps(a: Array[Int]): Long = {
var disorder: Long = 0
def msort(xs: List[Int]): List[Int] = {
import Stream._
def merge(left: List[Int], right: List[Int], inc: Int): Stream[Int] = {
(left, right) match {
case (x :: xs, y :: ys) if x > y =>
cons(y, merge(left, ys, inc + 1))
case (x :: xs, _) => {
disorder += inc
cons(x, merge(xs, right, inc))
}
case _ => right.toStream
}
}
val n = xs.length / 2
if (n == 0)
xs
else {
val (ys, zs) = xs splitAt n
merge(msort(ys), msort(zs), 0).toList
}
}
msort(a.toList)
disorder
}
Another solution based on Merge Sort. Very fast: no FP or for-loop.
def countSwaps(a: Array[Int]): Count = {
var swaps: Count = 0
def mergeRun(begin: Int, run_len: Int, src: Array[Int], dst: Array[Int]) = {
var li = begin
val lend = math.min(begin + run_len, src.length)
var ri = begin + run_len
val rend = math.min(begin + run_len * 2, src.length)
var ti = begin
while (ti < rend) {
if (ri >= rend) {
dst(ti) = src(li); li += 1
swaps += ri - begin - run_len
} else if (li >= lend) {
dst(ti) = src(ri); ri += 1
} else if (a(li) <= a(ri)) {
dst(ti) = src(li); li += 1
swaps += ri - begin - run_len
} else {
dst(ti) = src(ri); ri += 1
}
ti += 1
}
}
val b = new Array[Int](a.length)
var run = 0
var run_len = 1
while (run_len < a.length) {
var begin = 0
while (begin < a.length) {
val (src, dst) = if (run % 2 == 0) (a, b) else (b, a)
mergeRun(begin, run_len, src, dst)
begin += run_len * 2
}
run += 1
run_len *= 2
}
swaps
}
Convert the above code to Functional style: no mutable variable, no loop.
All recursions are tail calls, thus the performance is good.
def countSwaps(a: Array[Int]): Count = {
def mergeRun(li: Int, lend: Int, rb: Int, ri: Int, rend: Int, di: Int, src: Array[Int], dst: Array[Int], swaps: Count): Count = {
if (ri >= rend && li >= lend) {
swaps
} else if (ri >= rend) {
dst(di) = src(li)
mergeRun(li + 1, lend, rb, ri, rend, di + 1, src, dst, ri - rb + swaps)
} else if (li >= lend) {
dst(di) = src(ri)
mergeRun(li, lend, rb, ri + 1, rend, di + 1, src, dst, swaps)
} else if (src(li) <= src(ri)) {
dst(di) = src(li)
mergeRun(li + 1, lend, rb, ri, rend, di + 1, src, dst, ri - rb + swaps)
} else {
dst(di) = src(ri)
mergeRun(li, lend, rb, ri + 1, rend, di + 1, src, dst, swaps)
}
}
val b = new Array[Int](a.length)
def merge(run: Int, run_len: Int, lb: Int, swaps: Count): Count = {
if (run_len >= a.length) {
swaps
} else if (lb >= a.length) {
merge(run + 1, run_len * 2, 0, swaps)
} else {
val lend = math.min(lb + run_len, a.length)
val rb = lb + run_len
val rend = math.min(rb + run_len, a.length)
val (src, dst) = if (run % 2 == 0) (a, b) else (b, a)
val inc_swaps = mergeRun(lb, lend, rb, rb, rend, lb, src, dst, 0)
merge(run, run_len, lb + run_len * 2, inc_swaps + swaps)
}
}
merge(0, 1, 0, 0)
}
It seems to me that the key is to break the list into a series of ascending sequences. For example, your example would be broken into (1 2 4 5)(3 6). None of the items in the first list can end a pair. Now you do a kind of merge of these two lists, working backwards:
6 > 5, so 6 can't be in any pairs
3 < 5, so its a pair
3 < 4, so its a pair
3 > 2, so we're done
I'm not clear from the definition on how to handle more than 2 such sequences.

Why doesn't tail recursion results in better performance in this code?

I was creating a faster string splitter method. First, I wrote a non-tail recursive version returning List. Next, a tail recursive one using ListBuffer and then calling toList (+= and toList are O(1)). I fully expected the tail recursive version to be faster, but that is not the case.
Can anyone explain why?
Original version:
def split(s: String, c: Char, i: Int = 0): List[String] = if (i < 0) Nil else {
val p = s indexOf (c, i)
if (p < 0) s.substring(i) :: Nil else s.substring(i, p) :: split(s, c, p + 1)
}
Tail recursive one:
import scala.annotation.tailrec
import scala.collection.mutable.ListBuffer
def split(s: String, c: Char): Seq[String] = {
val buffer = ListBuffer.empty[String]
#tailrec def recurse(i: Int): Seq[String] = {
val p = s indexOf (c, i)
if (p < 0) {
buffer += s.substring(i)
buffer.toList
} else {
buffer += s.substring(i, p)
recurse(p + 1)
}
}
recurse(0)
}
This was benchmarked with code here, with results here, by #scala's jyxent.
You're simply doing more work in the second case. In the first case, you might overflow your stack, but every operation is really simple, and :: is as small of a wrapper as you can get (all you have to do is create the wrapper and point it to the head of the other list). In the second case, not only do you create an extra collection initially and have to form a closure around s and buffer for the nested method to use, but you also use the heavierweight ListBuffer which has to check for each += whether it's already been copied out to a list, and uses different code paths depending on whether it's empty or not (in order to get the O(1) append to work).
You expect the tail recursive version to be faster due to the tail call optimization and I think this is right, if you compare apples to apples:
def split3(s: String, c: Char): Seq[String] = {
#tailrec def recurse(i: Int, acc: List[String] = Nil): Seq[String] = {
val p = s indexOf (c, i)
if (p < 0) {
s.substring(i) :: acc
} else {
recurse(p + 1, s.substring(i, p) :: acc)
}
}
recurse(0) // would need to reverse
}
I timed this split3 to be faster, except of course to get the same result it would need to reverse the result.
It does seem ListBuffer introduces inefficiencies that the tail recursion optimization cannot make up for.
Edit: thinking about avoiding the reverse...
def split3(s: String, c: Char): Seq[String] = {
#tailrec def recurse(i: Int, acc: List[String] = Nil): Seq[String] = {
val p = s lastIndexOf (c, i)
if (p < 0) {
s.substring(0, i + 1) :: acc
} else {
recurse(p - 1, s.substring(p + 1, i + 1) :: acc)
}
}
recurse(s.length - 1)
}
This has the tail call optimization and avoids ListBuffer.

Why is my algorithm for Project Euler Problem 12 so slow?

I have created solution for PE P12 in Scala but is very very slow. Can somebody can tell me why? How to optimize this? calculateDevisors() - naive approach and calculateNumberOfDivisors() - divisor function has the same speed :/
import annotation.tailrec
def isPrime(number: Int): Boolean = {
if (number < 2 || (number != 2 && number % 2 == 0) || (number != 3 && number % 3 == 0))
false
else {
val sqrtOfNumber = math.sqrt(number) toInt
#tailrec def isPrimeInternal(divisor: Int, increment: Int): Boolean = {
if (divisor > sqrtOfNumber)
true
else if (number % divisor == 0)
false
else
isPrimeInternal(divisor + increment, 6 - increment)
}
isPrimeInternal(5, 2)
}
}
def generatePrimeNumbers(count: Int): List[Int] = {
#tailrec def generatePrimeNumbersInternal(number: Int = 3, index: Int = 0,
primeNumbers: List[Int] = List(2)): List[Int] = {
if (index == count)
primeNumbers
else if (isPrime(number))
generatePrimeNumbersInternal(number + 2, index + 1, primeNumbers :+ number)
else
generatePrimeNumbersInternal(number + 2, index, primeNumbers)
}
generatePrimeNumbersInternal();
}
val primes = Stream.cons(2, Stream.from(3, 2) filter {isPrime(_)})
def calculateDivisors(number: Int) = {
for {
divisor <- 1 to number
if (number % divisor == 0)
} yield divisor
}
#inline def decomposeToPrimeNumbers(number: Int) = {
val sqrtOfNumber = math.sqrt(number).toInt
#tailrec def decomposeToPrimeNumbersInternal(number: Int, primeNumberIndex: Int = 0,
factors: List[Int] = List.empty[Int]): List[Int] = {
val primeNumber = primes(primeNumberIndex)
if (primeNumberIndex > sqrtOfNumber)
factors
else if (number % primeNumber == 0)
decomposeToPrimeNumbersInternal(number / primeNumber, primeNumberIndex, factors :+ primeNumber)
else
decomposeToPrimeNumbersInternal(number, primeNumberIndex + 1, factors)
}
decomposeToPrimeNumbersInternal(number) groupBy {n => n} map {case (n: Int, l: List[Int]) => (n, l size)}
}
#inline def calculateNumberOfDivisors(number: Int) = {
decomposeToPrimeNumbers(number) map {case (primeNumber, exponent) => exponent + 1} product
}
#tailrec def calculate(number: Int = 12300): Int = {
val triangleNumber = ((number * number) + number) / 2
val startTime = System.currentTimeMillis()
val numberOfDivisors = calculateNumberOfDivisors(triangleNumber)
val elapsedTime = System.currentTimeMillis() - startTime
printf("%d: V: %d D: %d T: %dms\n", number, triangleNumber, numberOfDivisors, elapsedTime)
if (numberOfDivisors > 500)
triangleNumber
else
calculate(number + 1)
}
println(calculate())
You could first check what is slow. Your prime calculation, for instance, is very, very slow. For each number n, you try to divide n by each each number from 5 to sqrt(n), skipping multiples of 2 and 3. Not only you do not skip numbers you already know are not primes, but even if you fix this, the complexity of this algorithm is much worse than the traditional Sieve of Eratosthenes. See one Scala implementation for the Sieve here.
That is not to say that the rest of your code isn't suboptimal as well, but I'll leave that for others.
EDIT
Indeed, indexed access to Stream is terrible. Here's a rewrite that works with Stream, instead of converting everything to Array. Also, note the remark before the first if for a possible bug in your code.
#tailrec def decomposeToPrimeNumbersInternal(number: Int, primes: Stream[Int],
factors: List[Int] = List.empty[Int]): List[Int] = {
val primeNumber = primes.head
// Comparing primeNumberIndex with sqrtOfNumber didn't make any sense
if (primeNumber > sqrtOfNumber)
factors
else if (number % primeNumber == 0)
decomposeToPrimeNumbersInternal(number / primeNumber, primes, factors :+ primeNumber)
else
decomposeToPrimeNumbersInternal(number, primes.tail, factors)
}
Slow compared to....? How do you know it's an issue with Scala, and not with your algorithm?
An admittedly quick read of the code suggests you might be recalculating primes and other values over and over. isPrimeInternal jumps out as a possible case where this might be a problem.
Your code is not compilable, some parts are missing, so I'm guessing here. Some thing that frequently hurts performance is boxing/unboxing taking place in collections. Another thing that I noted is that you cunstruct your primes as a Stream - which is a good thing - but don't take advantage of this in your isPrime function, which uses a primitive 2,3-wheel (1 and 5 mod 6) instead. I might be wrong, but try to replace it by
def isPrime(number: Int): Boolean = {
val sq = math.sqrt(number + 0.5).toInt
! primes.takeWhile(_ <= sq).exists(p => number % p == 0)
}
My scala algorithm that calculates divisors of a given number. It worked fine in the solution of
Project Euler Problem 12.
def countDivisors(numberToFindDivisor: BigInt): Int = {
def countWithAcc(numberToFindDivisor: BigInt, currentCandidate: Int, currentCountOfDivisors: Int,limit: BigInt): Int = {
if (currentCandidate >= limit) currentCountOfDivisors
else {
if (numberToFindDivisor % currentCandidate == 0)
countWithAcc(numberToFindDivisor, currentCandidate + 1, currentCountOfDivisors + 2, numberToFindDivisor / currentCandidate)
else
countWithAcc(numberToFindDivisor, currentCandidate + 1, currentCountOfDivisors, limit)
}
}
countWithAcc(numberToFindDivisor, 1, 0, numberToFindDivisor + 1)
}
calculateDivisors can be greatly improved by only checking for divisors up to the square root of the number. Each time you find a divisor below the sqrt, you also find one above.
def calculateDivisors(n: Int) = {
var res = 1
val intSqrt = Math.sqrt(n).toInt
for (i <- 2 until intSqrt) {
if (n % i == 0) {
res += 2
}
}
if (n == intSqrt * intSqrt) {
res += 1
}
res
}

Resources