MergeSort in scala - algorithm

I came across another codechef problem which I am attempting to solve in Scala. The problem statement is as follows:
Stepford Street was a dead end street. The houses on Stepford Street
were bought by wealthy millionaires. They had them extensively altered
so that as one progressed along the street, the height of the
buildings increased rapidly. However, not all millionaires were
created equal. Some refused to follow this trend and kept their houses
at their original heights. The resulting progression of heights was
thus disturbed. A contest to locate the most ordered street was
announced by the Beverly Hills Municipal Corporation. The criteria for
the most ordered street was set as follows: If there exists a house
with a lower height later in the street than the house under
consideration, then the pair (current house, later house) counts as 1
point towards the disorderliness index of the street. It is not
necessary that the later house be adjacent to the current house. Note:
No two houses on a street will be of the same height For example, for
the input: 1 2 4 5 3 6 The pairs (4,3), (5,3) form disordered pairs.
Thus the disorderliness index of this array is 2. As the criteria for
determining the disorderliness is complex, the BHMC has requested your
help to automate the process. You need to write an efficient program
that calculates the disorderliness index of a street.
A sample input output provided is as follows:
Input: 1 2 4 5 3 6
Output: 2
The output is 2 because of two pairs (4,3) and (5,3)
To solve this problem I thought I should use a variant of MergeSort,incrementing by 1 when the left element is greater than the right element.
My scala code is as follows:
def dysfunctionCalc(input:List[Int]):Int = {
val leftHalf = input.size/2
println("HalfSize:"+leftHalf)
val isOdd = input.size%2
println("Is odd:"+isOdd)
val leftList = input.take(leftHalf+isOdd)
println("LeftList:"+leftList)
val rightList = input.drop(leftHalf+isOdd)
println("RightList:"+rightList)
if ((leftList.size <= 1) && (rightList.size <= 1)){
println("Entering input where both lists are <= 1")
if(leftList.size == 0 || rightList.size == 0){
println("One of the lists is less than 0")
0
}
else if(leftList.head > rightList.head)1 else 0
}
else{
println("Both lists are greater than 1")
dysfunctionCalc(leftList) + dysfunctionCalc(rightList)
}
}
First off, my logic is wrong,it doesn't have a merge stage and I am not sure what would be the best way to percolate the result of the base-case up the stack and compare it with the other values. Also, using recursion to solve this problem may not be the most optimal way to go since for large lists, I maybe blowing up the stack. Also, there might be stylistic issues with my code as well.
I would be great if somebody could point out other flaws and the right way to solve this problem.
Thanks

Suppose you split your list into three pieces: the item you are considering, those on the left, and those on the right. Suppose further that those on the left are in a sorted set. Now you just need to walk through the list, moving items from "right" to "considered" and from "considered" to "left"; at each point, you look at the size of the subset of the sorted set that is greater than your item. In general, the size lookup can be done in O(log(N)) as can the add-element (with a Red-Black or AVL tree, for instance). So you have O(N log N) performance.
Now the question is how to implement this in Scala efficiently. It turns out that Scala has a Red-Black tree used for its TreeSet sorted set, and the implementation is actually quite simple (here in tail-recursive form):
import collection.immutable.TreeSet
final def calcDisorder(xs: List[Int], left: TreeSet[Int] = TreeSet.empty, n: Int = 0): Int = xs match {
case Nil => n
case x :: rest => calcDisorder(rest, left + x, n + left.from(x).size)
}
Unfortunately, left.from(x).size takes O(N) time (I believe), which yields a quadratic execution time. That's no good--what you need is an IndexedTreeSet which can do indexOf(x) in O(log(n)) (and then iterate with n + left.size - left.indexOf(x) - 1). You can build your own implementation or find one on the web. For instance, I found one here (API here) for Java that does exactly the right thing.
Incidentally, the problem with doing a mergesort is that you cannot easily work cumulatively. With merging a pair, you can keep track of how out-of-order it is. But when you merge in a third list, you must see how out of order it is with respect to both other lists, which spoils your divide-and-conquer strategy. (I am not sure whether there is some invariant one could find that would allow you to calculate directly if you kept track of it.)

Here is my try, I don't use MergeSort but it seems to solve the problem:
def calcDisorderness(myList:List[Int]):Int = myList match{
case Nil => 0
case t::q => q.count(_<t) + calcDisorderness(q)
}
scala> val input = List(1,2,4,5,3,6)
input: List[Int] = List(1, 2, 4, 5, 3, 6)
scala> calcDisorderness(input)
res1: Int = 2
The question is, is there a way to have a lower complexity?
Edit: tail recursive version of the same function and cool usage of default values in function arguments.
def calcDisorderness(myList:List[Int], disorder:Int=0):Int = myList match{
case Nil => disorder
case t::q => calcDisorderness(q, disorder + q.count(_<t))
}

A solution based on Merge Sort. Not super fast, potential slowdown could be in "xs.length".
def countSwaps(a: Array[Int]): Long = {
var disorder: Long = 0
def msort(xs: List[Int]): List[Int] = {
import Stream._
def merge(left: List[Int], right: List[Int], inc: Int): Stream[Int] = {
(left, right) match {
case (x :: xs, y :: ys) if x > y =>
cons(y, merge(left, ys, inc + 1))
case (x :: xs, _) => {
disorder += inc
cons(x, merge(xs, right, inc))
}
case _ => right.toStream
}
}
val n = xs.length / 2
if (n == 0)
xs
else {
val (ys, zs) = xs splitAt n
merge(msort(ys), msort(zs), 0).toList
}
}
msort(a.toList)
disorder
}

Another solution based on Merge Sort. Very fast: no FP or for-loop.
def countSwaps(a: Array[Int]): Count = {
var swaps: Count = 0
def mergeRun(begin: Int, run_len: Int, src: Array[Int], dst: Array[Int]) = {
var li = begin
val lend = math.min(begin + run_len, src.length)
var ri = begin + run_len
val rend = math.min(begin + run_len * 2, src.length)
var ti = begin
while (ti < rend) {
if (ri >= rend) {
dst(ti) = src(li); li += 1
swaps += ri - begin - run_len
} else if (li >= lend) {
dst(ti) = src(ri); ri += 1
} else if (a(li) <= a(ri)) {
dst(ti) = src(li); li += 1
swaps += ri - begin - run_len
} else {
dst(ti) = src(ri); ri += 1
}
ti += 1
}
}
val b = new Array[Int](a.length)
var run = 0
var run_len = 1
while (run_len < a.length) {
var begin = 0
while (begin < a.length) {
val (src, dst) = if (run % 2 == 0) (a, b) else (b, a)
mergeRun(begin, run_len, src, dst)
begin += run_len * 2
}
run += 1
run_len *= 2
}
swaps
}
Convert the above code to Functional style: no mutable variable, no loop.
All recursions are tail calls, thus the performance is good.
def countSwaps(a: Array[Int]): Count = {
def mergeRun(li: Int, lend: Int, rb: Int, ri: Int, rend: Int, di: Int, src: Array[Int], dst: Array[Int], swaps: Count): Count = {
if (ri >= rend && li >= lend) {
swaps
} else if (ri >= rend) {
dst(di) = src(li)
mergeRun(li + 1, lend, rb, ri, rend, di + 1, src, dst, ri - rb + swaps)
} else if (li >= lend) {
dst(di) = src(ri)
mergeRun(li, lend, rb, ri + 1, rend, di + 1, src, dst, swaps)
} else if (src(li) <= src(ri)) {
dst(di) = src(li)
mergeRun(li + 1, lend, rb, ri, rend, di + 1, src, dst, ri - rb + swaps)
} else {
dst(di) = src(ri)
mergeRun(li, lend, rb, ri + 1, rend, di + 1, src, dst, swaps)
}
}
val b = new Array[Int](a.length)
def merge(run: Int, run_len: Int, lb: Int, swaps: Count): Count = {
if (run_len >= a.length) {
swaps
} else if (lb >= a.length) {
merge(run + 1, run_len * 2, 0, swaps)
} else {
val lend = math.min(lb + run_len, a.length)
val rb = lb + run_len
val rend = math.min(rb + run_len, a.length)
val (src, dst) = if (run % 2 == 0) (a, b) else (b, a)
val inc_swaps = mergeRun(lb, lend, rb, rb, rend, lb, src, dst, 0)
merge(run, run_len, lb + run_len * 2, inc_swaps + swaps)
}
}
merge(0, 1, 0, 0)
}

It seems to me that the key is to break the list into a series of ascending sequences. For example, your example would be broken into (1 2 4 5)(3 6). None of the items in the first list can end a pair. Now you do a kind of merge of these two lists, working backwards:
6 > 5, so 6 can't be in any pairs
3 < 5, so its a pair
3 < 4, so its a pair
3 > 2, so we're done
I'm not clear from the definition on how to handle more than 2 such sequences.

Related

How to divide a set into two sets such that the difference of the average is minimum?

As I understand, it is related to the partition problem.
But I would like to ask a slightly different problem which I don't care about the sum but the average. In this case, it needs to optimize 2 constraints (sum and number of items) at the same time. It seems to be a harder problem and I cannot see any solutions online.
Are there any solutions for this variant? Or how does it relate to the partition problem?
Example:
input X = [1,1,1,1,1,6]
output based on sum: A = [1,1,1,1,1], B=[6]
output based on average: A = [1], B=[1,1,1,1,6]
On some inputs, a modification of the dynamic program for the usual partition problem will give a speedup. We have to classify each partial solution by its count and sum instead of just sum, which slows things down a bit. Python 3 below (note that the use of dictionaries implicitly collapses functionally identical partial solutions):
def children(ab, x):
a, b = ab
yield a + [x], b
yield a, b + [x]
def proper(ab):
a, b = ab
return a and b
def avg(lst):
return sum(lst) / len(lst)
def abs_diff_avg(ab):
a, b = ab
return abs(avg(a) - avg(b))
def min_abs_diff_avg(lst):
solutions = {(0, 0): ([], [])}
for x in lst:
solutions = {
(sum(a), len(a)): (a, b)
for ab in solutions.values()
for (a, b) in children(ab, x)
}
return min(filter(proper, solutions.values()), key=abs_diff_avg)
print(min_abs_diff_avg([1, 1, 1, 1, 1, 6]))
let S_i the sum of a subset of v of size i
let S be the total sum of v, n the length of v
the err to minimize is
err_i = |avg(S_i) - avg(S-S_i)|
err_i = |S_i/i - (S-S_i)/(n-i)|
err_i = |(nS_i - iS)/(i(n-i))|
algorithm below does:
for all tuple sizes (1,...,n/2) as i
- for all tuples of size i-1 as t_{i-1}
- generate all possible tuple of size i from t_{i-1} by adjoining one elem from v
- track best tuple in regard of err_i
The only cut I found being:
for two tuples of size i having the same sum, keep the one whose last element's index is the smallest
e.g given tuples A, B (where X is some taken element from v)
A: [X,....,X....]
B: [.,X,.....,X..]
keep A because its right-most element has the minimal index
(idea being that at size 3, A will offer the same candidates as B plus some more)
function generateTuples (v, tuples) {
const nextTuples = new Map()
for (const [, t] of tuples) {
for (let l = t.l + 1; l < v.length; ++l) {
const s = t.s + v[l]
if (!nextTuples.has(s) || nextTuples.get(s).l > l) {
const nextTuple = { v: t.v.concat(l), s, l }
nextTuples.set(s, nextTuple)
}
}
}
return nextTuples
}
function processV (v) {
const fErr = (() => {
const n = v.length
const S = v.reduce((s, x) => s + x, 0)
return ({ s: S_i, v }) => {
const i = v.length
return Math.abs((n * S_i - i * S) / (i * (n - i)))
}
})()
let tuples = new Map([[0, { v: [], s: 0, l: -1 }]])
let best = null
let err = 9e3
for (let i = 0; i < Math.ceil(v.length / 2); ++i) {
const nextTuples = generateTuples(v, tuples)
for (const [, t] of nextTuples) {
if (fErr(t) <= err) {
best = t
err = fErr(t)
}
}
tuples = nextTuples
}
const s1Indices = new Set(best.v)
return {
sol: v.reduce(([v1, v2], x, i) => {
(s1Indices.has(i) ? v1 : v2).push(x)
return [v1, v2]
}, [[], []]),
err
}
}
console.log('best: ', processV([1, 1, 1, 1, 1, 6]))
console.log('best: ', processV([1, 2, 3, 4, 5]))
console.log('best: ', processV([1, 3, 5, 7, 7, 8]))

Single Number 2 Scala solution

Given an array of integers, every element appears three times except for one, which appears exactly once. Find that single one. This is what I have now. But I don't know how to break the for loop once I get the single number "b". Any solution in scala please?
for(Array(a,b) <- nums.sorted.sliding(2))
{
if (a == b){j = j+1}
else
{
if (j < 3) j =1
b
}
}
This will do it.
nums.groupBy(identity).find(_._2.length == 1).get._1
It's a bit unsafe in that it will throw if there is no single-count element. It can be made safer if a default value is returned when no single-count element is found.
nums.groupBy(identity).find(_._2.length == 1).fold(-1)(_._1)
Another way is to sum the array by adding digits of two numbers in base 3 modulo 3 (in other words XOR in base 3). The elements that appear 3 times will become zero, so the result of this sum will be the single number.
def findSingleNumber(numbers: Array[Int]) = {
def add3(a: String, b: String): String = a.zipAll(b, '0', '0').map {
case (i, j) => ((i.toInt + j.toInt) % 3 + '0').toChar
}(collection.breakOut)
val numbersInBase3 = numbers.map(n => Integer.toString(n, 3).reverse)
Integer.parseInt(numbersInBase3.fold("0")(add3).reverse, 3)
}
scala> findSingleNumber(Array(10, 20, 30, 100, 20, 100, 10, 10, 20, 100))
res1: Int = 30
Or representing base 3 numbers as digit arrays:
def findSingleNumber(numbers: Array[Int]) = {
def toBase3(int: Int): Array[Int] =
Iterator.iterate(int)(_ / 3).takeWhile(_ != 0).map(_ % 3).toArray
def toBase10(arr: Array[Int]): Int =
arr.reverseIterator.foldLeft(0)(_ * 3 + _)
def add3(a: Array[Int], b: Array[Int]): Array[Int] = a.zipAll(b, 0, 0).map {
case (i, j) => (i + j) % 3
}
toBase10(numbers.map(toBase3).fold(Array.empty[Int])(add3))
}

Split a random value into four that sum up to it

I have one value like 24, and I have four textboxes. How can I dynamically generate four values that add up to 24?
All the values must be integers and can't be negative, and the result cannot be 6, 6, 6, 6; they must be different like: 8, 2, 10, 4. (But 5, 6, 6, 7 would be okay.)
For your stated problem, it is possible to generate an array of all possible solutions and then pick one randomly. There are in fact 1,770 possible solutions.
var solutions = [[Int]]()
for i in 1...21 {
for j in 1...21 {
for k in 1...21 {
let l = 24 - (i + j + k)
if l > 0 && !(i == 6 && j == 6 && k == 6) {
solutions.append([i, j, k, l])
}
}
}
}
// Now generate 20 solutions
for _ in 1...20 {
let rval = Int(arc4random_uniform(UInt32(solutions.count)))
println(solutions[rval])
}
This avoids any bias at the cost of initial setup time and storage.
This could be improved by:
Reducing storage space by only storing the first 3 numbers. The 4th one is always 24 - (sum of first 3)
Reducing storage space by storing each solution as a single integer: (i * 10000 + j * 100 + k)
Speeding up the generation of solutions by realizing that each loop doesn't need to go to 21.
Here is the solution that stores each solution as a single integer and optimizes the loops:
var solutions = [Int]()
for i in 1...21 {
for j in 1...22-i {
for k in 1...23-i-j {
if !(i == 6 && j == 6 && k == 6) {
solutions.append(i * 10000 + j * 100 + k)
}
}
}
}
// Now generate 20 solutions
for _ in 1...20 {
let rval = Int(arc4random_uniform(UInt32(solutions.count)))
let solution = solutions[rval]
// unpack the values
let i = solution / 10000
let j = (solution % 10000) / 100
let k = solution % 100
let l = 24 - (i + j + k)
// print the solution
println("\([i, j, k, l])")
}
Here is a Swift implementation of the algorithm given in https://stackoverflow.com/a/8064754/1187415, with a slight
modification because all numbers are required to be positive.
The method to producing N positive random integers with sum M is
Build an array containing the number 0, followed by N-1 different
random numbers in the range 1 .. M-1, and finally the number M.
Compute the differences of subsequent array elements.
In the first step, we need a random subset of N-1 elements out of
the set { 1, ..., M-1 }. This can be achieved by iterating over this
set and choosing each element with probability n/m, where
m is the remaining number of elements we can choose from and
n is the remaining number of elements to choose.
Instead of storing the chosen random numbers in an array, the
difference to the previously chosen number is computed immediately
and stored.
This gives the following function:
func randomNumbers(#count : Int, withSum sum : Int) -> [Int] {
precondition(sum >= count, "`sum` must not be less than `count`")
var diffs : [Int] = []
var last = 0 // last number chosen
var m = UInt32(sum - 1) // remaining # of elements to choose from
var n = UInt32(count - 1) // remaining # of elements to choose
for i in 1 ..< sum {
// Choose this number `i` with probability n/m:
if arc4random_uniform(m) < n {
diffs.append(i - last)
last = i
n--
}
m--
}
diffs.append(sum - last)
return diffs
}
println(randomNumbers(count: 4, withSum: 24))
If a solution with all elements equal (e.g 6+6+6+6=24) is not
allowed, you can repeat the method until a valid solution is found:
func differentRandomNumbers(#count : Int, withSum sum : Int) -> [Int] {
precondition(count >= 2, "`count` must be at least 2")
var v : [Int]
do {
v = randomNumbers(count: count, withSum: sum)
} while (!contains(v, { $0 != v[0]} ))
return v
}
Here is a simple test. It computes 1,000,000 random representations
of 7 as the sum of 3 positive integers, and counts the distribution
of the results.
let set = NSCountedSet()
for i in 1 ... 1_000_000 {
let v = randomNumbers(count: 3, withSum: 7)
set.addObject(v)
}
for (_, v) in enumerate(set) {
let count = set.countForObject(v)
println("\(v as! [Int]) \(count)")
}
Result:
[1, 4, 2] 66786
[1, 5, 1] 67082
[3, 1, 3] 66273
[2, 2, 3] 66808
[2, 3, 2] 66966
[5, 1, 1] 66545
[2, 1, 4] 66381
[1, 3, 3] 67153
[3, 3, 1] 67034
[4, 1, 2] 66423
[3, 2, 2] 66674
[2, 4, 1] 66418
[4, 2, 1] 66292
[1, 1, 5] 66414
[1, 2, 4] 66751
Update for Swift 3:
func randomNumbers(count : Int, withSum sum : Int) -> [Int] {
precondition(sum >= count, "`sum` must not be less than `count`")
var diffs : [Int] = []
var last = 0 // last number chosen
var m = UInt32(sum - 1) // remaining # of elements to choose from
var n = UInt32(count - 1) // remaining # of elements to choose
for i in 1 ..< sum {
// Choose this number `i` with probability n/m:
if arc4random_uniform(m) < n {
diffs.append(i - last)
last = i
n -= 1
}
m -= 1
}
diffs.append(sum - last)
return diffs
}
print(randomNumbers(count: 4, withSum: 24))
Update for Swift 4.2 (and later), using the unified random API:
func randomNumbers(count : Int, withSum sum : Int) -> [Int] {
precondition(sum >= count, "`sum` must not be less than `count`")
var diffs : [Int] = []
var last = 0 // last number chosen
var m = sum - 1 // remaining # of elements to choose from
var n = count - 1 // remaining # of elements to choose
for i in 1 ..< sum {
// Choose this number `i` with probability n/m:
if Int.random(in: 0..<m) < n {
diffs.append(i - last)
last = i
n -= 1
}
m -= 1
}
diffs.append(sum - last)
return diffs
}
func getRandomValues(amountOfValues:Int, totalAmount:Int) -> [Int]?{
if amountOfValues < 1{
return nil
}
if totalAmount < 1{
return nil
}
if totalAmount < amountOfValues{
return nil
}
var values:[Int] = []
var valueLeft = totalAmount
for i in 0..<amountOfValues{
if i == amountOfValues - 1{
values.append(valueLeft)
break
}
var value = Int(arc4random_uniform(UInt32(valueLeft - (amountOfValues - i))) + 1)
valueLeft -= value
values.append(value)
}
var shuffledArray:[Int] = []
for i in 0..<values.count {
var rnd = Int(arc4random_uniform(UInt32(values.count)))
shuffledArray.append(values[rnd])
values.removeAtIndex(rnd)
}
return shuffledArray
}
getRandomValues(4, 24)
This is not a final answer, but it should be a (good) starting point.
How it works: It takes 2 parameters. The amount of random values (4 in your case) and the total amount (24 in your case).
It takes a random value between the total Amount and 0, stores this in an array and it subtracts this from a variable which stores the amount that is left and stores the new value.
Than it takes a new random value between the amount that is left and 0, stores this in an array and it again subtracts this from the amount that is left and stores the new value.
When it is the last number needed, it sees what amount is left and adds that to the array
EDIT:
Adding a +1 to the random value removes the problem of having 0 in your array.
EDIT 2:
Shuffling the array does remove the increased chance of having a high value as the first value.
One solution that is unfortunatly non-deterministic but completely random is as follows:
For a total of 24 in 4 numbers:
pick four random numbers between 1 and 21
repeat until the total of the numbers equals 24 and they are not all 6.
This will, on average, loop about 100 times before finding a solution.
Here's a solution which should have significantly* less bias than some of the other methods. It works by generating the requested number of random floating point numbers, multiplying or dividing all of them until they add up to the target total, and then rounding them into integers. The rounding process changes the total, so we need to correct for that by adding or subtracting from random terms until they add up to the right amount.
func getRandomDoubles(#count: Int, #total: Double) -> [Double] {
var nonNormalized = [Double]()
nonNormalized.reserveCapacity(count)
for i in 0..<count {
nonNormalized.append(Double(arc4random()) / 0xFFFFFFFF)
}
let nonNormalizedSum = reduce(nonNormalized, 0) { $0 + $1 }
let normalized = nonNormalized.map { $0 * total / nonNormalizedSum }
return normalized
}
func getRandomInts(#count: Int, #total: Int) -> [Int] {
let doubles = getRandomDoubles(count: count, total: Double(total))
var ints = [Int]()
ints.reserveCapacity(count)
for double in doubles {
if double < 1 || double % 1 >= 0.5 {
// round up
ints.append(Int(ceil(double)))
} else {
// round down
ints.append(Int(floor(double)))
}
}
let roundingErrors = total - (reduce(ints, 0) { $0 + $1 })
let directionToAdjust: Int = roundingErrors > 0 ? 1 : -1
var corrections = abs(roundingErrors)
while corrections > 0 {
let index = Int(arc4random_uniform(UInt32(count)))
if directionToAdjust == -1 && ints[index] <= 1 { continue }
ints[index] += directionToAdjust
corrections--
}
return ints
}
*EDIT: Martin R has correctly pointed out that this is not nearly as uniform as one might expect, and is in fact highly biased towards numbers in the middle of the 1-24 range. I would not recommend using this solution, but I'm leaving it up so that others can know not to make the same mistake.
As a recursive function the algorithm is very nice:
func getRandomValues(amount: Int, total: Int) -> [Int] {
if amount == 1 { return [total] }
if amount == total { return Array(count: amount, repeatedValue: 1) }
let number = Int(arc4random()) % (total - amount + 1) + 1
return [number] + getRandomValues(amount - 1, total - number)
}
And with safety check:
func getRandomValues(amount: Int, total: Int) -> [Int]? {
if !(1...total ~= amount) { return nil }
if amount == 1 { return [total] }
if amount == total { return Array(count: amount, repeatedValue: 1) }
let number = Int(arc4random()) % (total - amount + 1) + 1
return [number] + getRandomValues(amount - 1, total - number)!
}
As #MartinR pointed out the code above is extremely biased. So in order to have a uniform distribution of the output values you should use this piece of code:
func getRandomValues(amount: Int, total: Int) -> [Int] {
var numberSet = Set<Int>()
// add splitting points to numberSet
for _ in 1...amount - 1 {
var number = Int(arc4random()) % (total - 1) + 1
while numberSet.contains(number) {
number = Int(arc4random()) % (total - 1) + 1
}
numberSet.insert(number)
}
// sort numberSet and return the differences between the splitting points
let sortedArray = (Array(numberSet) + [0, total]).sort()
return sortedArray.enumerate().flatMap{
indexElement in
if indexElement.index == amount { return nil }
return sortedArray[indexElement.index + 1] - indexElement.element
}
}
A javascript implementation for those who may be looking for such case:
const numbersSumTo = (length, value) => {
const fourRandomNumbers = Array.from({ length: length }, () => Math.floor(Math.random() * 6) + 1);
const res = fourRandomNumbers.map(num => (num / fourRandomNumbers.reduce((a, b) => a + b, 0)) * value).map(num => Math.trunc(num));
res[0] += Math.abs(res.reduce((a, b) => a + b, 0) - value);
return res;
}
// Gets an array with 4 items which sum to 100
const res = numbersSumTo(4, 100);
const resSum = res.reduce((a, b) => a + b, 0);
console.log({
res,
resSum
});
Also plenty of different methods of approach can be found here on this question: https://math.stackexchange.com/questions/1276206/method-of-generating-random-numbers-that-sum-to-100-is-this-truly-random

Pouring water using Scala

I am trying to solve the pouring water problem from codechef using scala. The problem statement is as follows:
Given two vessels, one of which can accommodate a liters of water and
the other which can accommodate b liters of water, determine the
number of steps required to obtain exactly c liters of water in one of
the vessels.
At the beginning both vessels are empty. The following operations are
counted as 'steps':
emptying a vessel,
filling a vessel,
pouring water from one vessel to the other, without spilling, until one of the vessels is either full or empty.
Input
An integer t, 1<=t<=100, denoting the number of test cases, followed
by t sets of input data, each consisting of three positive integers a
(the number of liters the first container can hold), b (the number of
liters the second container can hold), and c (the final amount of
liters of water one vessel should contain), not larger than 40000,
given in separate lines.
Output
For each set of input data, output the minimum number of steps
required to obtain c liters, or -1 if this is impossible.
Example Sample input:
2
5
2
3
2
3
4
Sample output:
2
-1
I am approaching this problem as a graph theory problem. Given the initial configuration of containers to be (0, 0), I get the next state of the containers by applying the operations:
FillA, FillB, PourAtoB, PourBtoA, EmptyA, EmptyB recursively until the target is reached.
My code is as follows:
import scala.collection.mutable.Queue
def pour(initA:Int, initB:Int, targetCapacity:Int) {
var pourCombinations = new scala.collection.mutable.HashMap[(Int, Int),Int]
val capacityA = initA
val capacityB = initB
val processingQueue = new Queue[(Int, Int, Int, Int)]
def FillA(a:Int, b:Int) = {
(capacityA, b)
}
def FillB(b:Int, a:Int) = {
(a, capacityB)
}
def PourAtoB(a:Int, b:Int): (Int, Int) = {
if((a == 0) || (b == capacityB)) (a, b)
else PourAtoB(a - 1, b + 1)
}
def PourBtoA(b:Int, a:Int): (Int, Int) = {
if((b == 0) || (a == capacityA)) (a, b)
else PourBtoA(b - 1, a + 1)
}
def EmptyA(a:Int, b:Int) = {
(0, b)
}
def EmptyB(a:Int, b:Int) = {
(a, 0)
}
processingQueue.enqueue((0, 0, targetCapacity, 0))
pourCombinations((0, 0)) = 0
def pourwater(a:Int, b:Int, c:Int, numSteps:Int): Int = {
println(a + ":" + b + ":" + c + ":" + numSteps)
if((a == c) || (b == c)) {return numSteps}
if(processingQueue.isEmpty && (pourCombinations((a,b)) == 1)) {return -1}
//Put all the vals in a List of tuples
val pStateList = scala.List(FillA(a, b), FillB(a, b), PourAtoB(a, b), PourBtoA(b, a), EmptyA(a, b), EmptyB(a, b))
pStateList.foreach{e =>
{
if(!pourCombinations.contains(e)) {
pourCombinations(e) = 0
processingQueue.enqueue((e._1, e._2, c, numSteps + 1))
}
}
}
pourCombinations((a, b)) = 1
val processingTuple = processingQueue.dequeue()
pourwater(processingTuple._1, processingTuple._2, processingTuple._3, processingTuple._4)
}
val intialvalue = processingQueue.dequeue()
pourwater(intialvalue._1, intialvalue._2, intialvalue._3, intialvalue._4)
}
There are a couple of issues with this, first of all I am not sure if I have my base cases of my recursive step set-up properly. Also, it might be that I am not using the proper Scala conventions to solve this problem. Also, I want the pour function to return the numSteps once it is finished executing. It is not doing that at the moment.
It will be great if somebody can go through my code and point out the mistakes with my approach.
Thanks

Why is my algorithm for Project Euler Problem 12 so slow?

I have created solution for PE P12 in Scala but is very very slow. Can somebody can tell me why? How to optimize this? calculateDevisors() - naive approach and calculateNumberOfDivisors() - divisor function has the same speed :/
import annotation.tailrec
def isPrime(number: Int): Boolean = {
if (number < 2 || (number != 2 && number % 2 == 0) || (number != 3 && number % 3 == 0))
false
else {
val sqrtOfNumber = math.sqrt(number) toInt
#tailrec def isPrimeInternal(divisor: Int, increment: Int): Boolean = {
if (divisor > sqrtOfNumber)
true
else if (number % divisor == 0)
false
else
isPrimeInternal(divisor + increment, 6 - increment)
}
isPrimeInternal(5, 2)
}
}
def generatePrimeNumbers(count: Int): List[Int] = {
#tailrec def generatePrimeNumbersInternal(number: Int = 3, index: Int = 0,
primeNumbers: List[Int] = List(2)): List[Int] = {
if (index == count)
primeNumbers
else if (isPrime(number))
generatePrimeNumbersInternal(number + 2, index + 1, primeNumbers :+ number)
else
generatePrimeNumbersInternal(number + 2, index, primeNumbers)
}
generatePrimeNumbersInternal();
}
val primes = Stream.cons(2, Stream.from(3, 2) filter {isPrime(_)})
def calculateDivisors(number: Int) = {
for {
divisor <- 1 to number
if (number % divisor == 0)
} yield divisor
}
#inline def decomposeToPrimeNumbers(number: Int) = {
val sqrtOfNumber = math.sqrt(number).toInt
#tailrec def decomposeToPrimeNumbersInternal(number: Int, primeNumberIndex: Int = 0,
factors: List[Int] = List.empty[Int]): List[Int] = {
val primeNumber = primes(primeNumberIndex)
if (primeNumberIndex > sqrtOfNumber)
factors
else if (number % primeNumber == 0)
decomposeToPrimeNumbersInternal(number / primeNumber, primeNumberIndex, factors :+ primeNumber)
else
decomposeToPrimeNumbersInternal(number, primeNumberIndex + 1, factors)
}
decomposeToPrimeNumbersInternal(number) groupBy {n => n} map {case (n: Int, l: List[Int]) => (n, l size)}
}
#inline def calculateNumberOfDivisors(number: Int) = {
decomposeToPrimeNumbers(number) map {case (primeNumber, exponent) => exponent + 1} product
}
#tailrec def calculate(number: Int = 12300): Int = {
val triangleNumber = ((number * number) + number) / 2
val startTime = System.currentTimeMillis()
val numberOfDivisors = calculateNumberOfDivisors(triangleNumber)
val elapsedTime = System.currentTimeMillis() - startTime
printf("%d: V: %d D: %d T: %dms\n", number, triangleNumber, numberOfDivisors, elapsedTime)
if (numberOfDivisors > 500)
triangleNumber
else
calculate(number + 1)
}
println(calculate())
You could first check what is slow. Your prime calculation, for instance, is very, very slow. For each number n, you try to divide n by each each number from 5 to sqrt(n), skipping multiples of 2 and 3. Not only you do not skip numbers you already know are not primes, but even if you fix this, the complexity of this algorithm is much worse than the traditional Sieve of Eratosthenes. See one Scala implementation for the Sieve here.
That is not to say that the rest of your code isn't suboptimal as well, but I'll leave that for others.
EDIT
Indeed, indexed access to Stream is terrible. Here's a rewrite that works with Stream, instead of converting everything to Array. Also, note the remark before the first if for a possible bug in your code.
#tailrec def decomposeToPrimeNumbersInternal(number: Int, primes: Stream[Int],
factors: List[Int] = List.empty[Int]): List[Int] = {
val primeNumber = primes.head
// Comparing primeNumberIndex with sqrtOfNumber didn't make any sense
if (primeNumber > sqrtOfNumber)
factors
else if (number % primeNumber == 0)
decomposeToPrimeNumbersInternal(number / primeNumber, primes, factors :+ primeNumber)
else
decomposeToPrimeNumbersInternal(number, primes.tail, factors)
}
Slow compared to....? How do you know it's an issue with Scala, and not with your algorithm?
An admittedly quick read of the code suggests you might be recalculating primes and other values over and over. isPrimeInternal jumps out as a possible case where this might be a problem.
Your code is not compilable, some parts are missing, so I'm guessing here. Some thing that frequently hurts performance is boxing/unboxing taking place in collections. Another thing that I noted is that you cunstruct your primes as a Stream - which is a good thing - but don't take advantage of this in your isPrime function, which uses a primitive 2,3-wheel (1 and 5 mod 6) instead. I might be wrong, but try to replace it by
def isPrime(number: Int): Boolean = {
val sq = math.sqrt(number + 0.5).toInt
! primes.takeWhile(_ <= sq).exists(p => number % p == 0)
}
My scala algorithm that calculates divisors of a given number. It worked fine in the solution of
Project Euler Problem 12.
def countDivisors(numberToFindDivisor: BigInt): Int = {
def countWithAcc(numberToFindDivisor: BigInt, currentCandidate: Int, currentCountOfDivisors: Int,limit: BigInt): Int = {
if (currentCandidate >= limit) currentCountOfDivisors
else {
if (numberToFindDivisor % currentCandidate == 0)
countWithAcc(numberToFindDivisor, currentCandidate + 1, currentCountOfDivisors + 2, numberToFindDivisor / currentCandidate)
else
countWithAcc(numberToFindDivisor, currentCandidate + 1, currentCountOfDivisors, limit)
}
}
countWithAcc(numberToFindDivisor, 1, 0, numberToFindDivisor + 1)
}
calculateDivisors can be greatly improved by only checking for divisors up to the square root of the number. Each time you find a divisor below the sqrt, you also find one above.
def calculateDivisors(n: Int) = {
var res = 1
val intSqrt = Math.sqrt(n).toInt
for (i <- 2 until intSqrt) {
if (n % i == 0) {
res += 2
}
}
if (n == intSqrt * intSqrt) {
res += 1
}
res
}

Resources