Struggling terribly on how to start and complete a file - data-structures

I am unsure how to complete these 3 methods. 4 Reference classes are also given (at the bottom)
I know I have to first start building the tree from the array "a" but I am not sure how to do that. SOS pls help. :(
The data stored in the binary tree are doubles. The binary tree will store the data only on the
leaves. The internal nodes are used for searching only.
Your tree will work like a normal BST, to find a target element, your program will compare it to the root of the current subtree and if the target is less than the value of the root you will recursively search on the left subtree.Otherwise, you will search on the right subtree.
Your tree will allow duplicate values, by keeping track of the
number of times that a particular value appears (this data is kept only in the leaves).
Your binary tree is always created from scratch given a sorted array of doubles, in such a way
that the root of every subtree (not a leaf) contains the average of the maximum element in the
left subtree and the minimum element in the right subtree.
Example:
Suppose that you are given the following array:
1, 2.3, 5.8, 5.8, 7.2, 7.2, 7.2, 8, 9.1, 9.2, 10, 10.3, 10.3, 11.9, 12.1, 12.3, 12.5, 13
The tree that is generated has a root with a value of 10.15, which is the average of the maximum
value of the left subtree (which is 10) and the minimum value of the right subtree (which is 10.3),
so the root has a value of (10+10.3)/2 = 10.15
The leaves have the actual values and the number of times each value appears.
public static Queue<BTNode<dataNode>> makeQueue(double[] a){
// Each element of the given array a must be inserted into a BTNode,
// this method returns a queue of BTNodes, each node will contain a dataNode
// the dataNode will have the value equal to the element of the array
// count equal to the number of times that the element repeats
// min and max must be equal to value.
// the BTNode created must have its parent, right, and left references set to null
return null;
}
public static Queue<BTNode<dataNode>> join(Queue<BTNode<dataNode>> myQueue){
// For every two elements dequeued from myQueue create a new root element and
// make the two dequeued elements be the left and right child of that root.
// Each new root must contain the min value, obtained from the left subtree,
// the max value, obtained from the right subtree, and the value should be
// equal to the average of the maximum value of the left subtree and the
// minimum value of the right subtree, count should be set equal to 0 (internal node)
// Enqueue each new root node into another queue and return that queue.
// In case that only one element is left in myQueue, just enqueue it
// in the queue that will be returned.
return null;
}
public static int search(BTNode<dataNode> root,double target) {
// given a target value recursively search on the left or the right subtrees
// by comparing the value in root to the target. You know that you got to a
// leaf when the value count of the root is not equal to 0.
return 0;
}
---------------
public class dataNode implements Comparable<dataNode>{
public double value;
public int count;
public double max;
public double min;
public dataNode() {
value=0;
count=0;
}
public int compareTo(dataNode node2) {
return 0;
}
public String toString() {
return "("+value+","+count+")";
}
}
---------
public class BTNode<T extends Comparable<T>> {
private T data;
private BTNode<T> left,right,parent;
public BTNode(T data,BTNode<T> left,BTNode<T> right,BTNode<T> parent) {
this.data=data;
this.left=left;
this.right=right;
this.parent=parent;
}
public BTNode<T> getLeft(){
return this.left;
}
public BTNode<T> getRight(){
return this.right;
}
public BTNode<T> getParent(){
return this.parent;
}
public T getData(){
return this.data;
}
public void setLeft(BTNode<T> left) {
this.left=left;
}
public void setRight(BTNode<T> right) {
this.right=right;
}
public void setParent(BTNode<T> parent) {
this.parent=parent;
}
public void setData(T data) {
this.data=data;
}
public String toString() {
return this.data.toString();
}
}
----------
public class DLL<T> {
private Node<T> first;
private Node<T> last;
private int count;
private Node<T> current;
public DLL() {
this.first=null;
this.last=null;
count=0;
}
public T getFirst() {
current=first;
if (first!=null)
return first.getData();
return null;
}
public T getNext() {
if (current!=null) {
current=current.getNext();
return current.getData();
}
return null;
}
public T getLast() {
if (last!=null)
return last.getData();
return null;
}
public void addFirst(T data) {
Node<T> n=new Node<T>(data,null,first);
if (this.first!=null) {
this.first.setPrev(n);
}
else {
this.last=n;
}
this.first=n;
count++;
}
public void addLast(T data) {
Node<T> n=new Node<T>(data,last,null);
if (this.last!=null) {
this.last.setNext(n);
}
else {
this.first=n;
}
this.last=n;
count++;
}
public void deleteFirst() {
if (this.first!=null) {
Node<T> newFirst=this.first.getNext();
this.first=newFirst;
if (newFirst!=null) {
newFirst.setPrev(null);
}
else {
this.last=null;
}
count--;
}
}
public void deleteLast() {
if (this.last!=null) {
Node<T> newLast=this.last.getPrev();
this.last=newLast;
if (newLast!=null) {
newLast.setNext(null);
}
else {
this.first=null;
}
count--;
}
}
public void traverse() {
Node<T> current=this.first;
while (current!=null) {
System.out.print(current.getData()+" ");
current=current.getNext();
}
}
public int size() {
return count;
}
public String toString() {
String ret="";
Node<T> current=this.first;
while (current!=null) {
ret=ret+"+"+current.getData();
current=current.getNext();
}
return ret;
}
}
------------
public class Node<T> {
private T data;
private Node<T> prev;
private Node<T> next;
public Node(T data,Node<T> prev,Node<T> next) {
this.data=data;
this.prev=prev;
this.next=next;
}
public T getData() {
return data;
}
public Node<T> getPrev(){
return prev;
}
public Node<T> getNext(){
return next;
}
public void setPrev(Node<T> prev) {
this.prev=prev;
}
public void setNext(Node<T> next) {
this.next=next;
}
}
-----------
public class Queue<T> {
private DLL<T> myList;
public Queue() {
myList=new DLL<T>();
}
public void enqueue(T element) {
myList.addFirst(element);
}
public T dequeue() {
T element=null;
if (myList.size()>0) {
element = myList.getLast();
myList.deleteLast();
}
return element;
}
public int size() {
return myList.size();
}
public boolean isEmpty() {
return myList.size()==0;
}
public void traverse() {
myList.traverse();
}
public static void main(String[] args) {
Queue<String> myQueue=new Queue<String>();
myQueue.enqueue("the");
myQueue.enqueue("quick");
myQueue.enqueue("brown");
myQueue.enqueue("fox");
myQueue.enqueue("jumps");
myQueue.enqueue("over");
myQueue.traverse();
System.out.println("dequeue->"+myQueue.dequeue());
myQueue.traverse();
myQueue.enqueue("the");
myQueue.enqueue("lazy");
myQueue.traverse();
System.out.println("dequeue->"+myQueue.dequeue());
myQueue.traverse();
}
}

Related

LeetCode 155. Min Stack

I am trying to solve the problem using extra space. In the pop() function, when I compare the top of both the stacks inside the if condition, the following test case is failing:
["MinStack","push","push","push","push","pop","getMin","pop","getMin","pop","getMin"]\ [[],[512],[-1024],[-1024],[512],[],[],[],[],[],[]]
When I store the top of the first stack and then compare it with the top of the second stack, all the test cases pass.
Can someone please help me understand what is causing this?
The below code caused the test case to fail.
class MinStack {
Stack<Integer> s;
Stack<Integer> auxStack;
public MinStack() {
s = new Stack<Integer>();
auxStack = new Stack<Integer>();
}
public void push(int val) {
this.s.push(val);
if (this.auxStack.empty() || val <= this.auxStack.peek()) {
this.auxStack.push(val);
}
}
public void pop() {
if (this.s.peek() == this.auxStack.peek()) {
this.auxStack.pop();
}
this.s.pop();
}
public int top() {
return this.s.peek();
}
public int getMin() {
return this.auxStack.peek();
}
}
The below code worked for all the test cases.
class MinStack {
Stack<Integer> s;
Stack<Integer> auxStack;
public MinStack() {
s = new Stack<Integer>();
auxStack = new Stack<Integer>();
}
public void push(int val) {
this.s.push(val);
if (this.auxStack.empty() || val <= this.auxStack.peek()) {
this.auxStack.push(val);
}
}
public void pop() {
int ans = this.s.pop();
if (ans == this.auxStack.peek()) {
this.auxStack.pop();
}
}
public int top() {
return this.s.peek();
}
public int getMin() {
return this.auxStack.peek();
}
}
The problem is that you are comparing Integer objects, not int values. The data type stored on the stack is Integer. So the peek() method returns an Integer, not int, which means that the following comparison is always false:
this.s.peek() == this.auxStack.peek()
Fix this by explicitly converting at least one of those two Integer objects to an int:
this.s.peek().intValue() == this.auxStack.peek()
Or use the equals method:
this.s.peek().equals(this.auxStack.peek())

create an application that prompts the user for a set of five integer numbers using data structure

*Using the ArrayBoundedStack class,create an application named EditNumbers that prompts the user for a set of five integer numbers, push its content into a stack, and then repeatedly prompts the user for changes to numbers, until the user enters an X, indicating the end of changes. Legal change operations are: M, A, R, and C.
• Option M return the maximum value in the set
• Option A v1 means add v1 to each number in the set
• Option R means reverse the numbers in the set
• Option C v1 v2 means change all occurrences of v1 to v2
*
(arrayboundedstack) using this codes bellow
**1)** package stack;
public class ArrayBoundedStack <T> implements StackInterface <T> {
private final int DEFSIZE=100;
private int index=-1;
private T[] arr;
public ArrayBoundedStack()
{
arr=(T[])new Object[DEFSIZE];
}
public ArrayBoundedStack(int size)
{
arr=(T[])new Object[size];
}
public boolean isFull()
{
return index == (arr.length-1);
}
public boolean isEmpty()
{
return index == -1;
}
public void push(T element)
{
if(!isFull())
{
index++;
arr[index]=element;
}
else{
throw new OverflowStackException("The stack is fill , you cannot push");
}
}
public void pop()
{
if(!isEmpty())
{
arr[index]=null;
index--;
}
else{
throw new UnderflowStackException("The stack is empty , you cannot pop");
}
}
public T top()
{
T temp=null;
if (!isEmpty())
temp=arr[index];
else{
throw new UnderflowStackException("The stack is empty , there is no top");
}
return temp;
}
}
**2) ** package stack;
public class MyApp1 {
public static void printStack(ArrayBoundedStack<Integer> st)
{
ArrayBoundedStack<Integer> temp=new ArrayBoundedStack<>(10);
System.out.println("the stack contains:");
while(!st.isEmpty())
{
System.out.println(st.top());
temp.push(st.top());
st.pop();
}
while(!temp.isEmpty())
{
st.push(temp.top());
temp.pop();
}
}
public static void nonNegativeStack(ArrayBoundedStack<Integer> st)
{
ArrayBoundedStack<Integer> temp=new ArrayBoundedStack<>();
while(!st.isEmpty())
{
if(st.top()>=0)
temp.push(st.top());
st.pop();
}
while(!temp.isEmpty())
{
st.push(temp.top());
temp.pop();
}
}
public static void main(String[] args)
{
ArrayBoundedStack<Integer> st=new ArrayBoundedStack<>(10);
st.push(10);
st.push(15);
st.push(30);
printStack(st);
System.out.println("the top of stack is " + st.top());
st.pop();
st.pop();
st.pop();
System.out.println("the top of stack is " + st.top());
}
}
**3) ** package stack;
public class MyApp2 {
public static void main(String[] args)
{
System.out.println("This is a test for exception");
throw new OverflowStackException("the stack is full");
}
}
**4)** package stack;
public class OverflowStackException extends RuntimeException{
public OverflowStackException()
{
super();
}
public OverflowStackException(String msg)
{
super(msg);
}
}
**5) ** package stack;
public interface StackInterface <T> {
public void push(T element) throws OverflowStackException;
public void pop() throws UnderflowStackException;
public T top()throws UnderflowStackException;
public boolean isFull();
public boolean isEmpty();
}
**6)**package stack;
public class UnderflowStackException extends RuntimeException{
public UnderflowStackException()
{
super();
}
public UnderflowStackException(String msg)
{
super(msg);
}
}
i made all the class up and i didnt know how to make a main class

How to create a Binary Tree using a String array?

I am given an assignment where I need to do the following:
input your binary tree as an array, using the array representation and node labels A, ..., J, as Strings. Label null stands for a non-existent node, not for a node having a value of null.
Check the validity of your binary tree input: each node, excepting the root, should have a father.
Generate the dynamic memory implementation of the tree, using only the nodes with labels different than null.
So far I have:
public class Project1{
public static void main(String[] args){
String[] input = new String[]{"A","B","C","D","E","F","G","H","I","J"};
}
public class BinaryTree<T> implements java.io.Serializable{
private T data;
private BinaryTree<T> left;
private BinaryTree<T> right;
public BinaryTree(T data){
this.data = data;
left = null;
right = null;
}
public T getData(){
return data;
}
public void attachLeft(BinaryTree<T> tree){
if(tree != null){
left = tree;
}
}
public void attachRight(BinaryTree<T> tree){
if(tree != null){
right = tree;
}
}
public BinaryTree<T> detachLeft(){
BinaryTree<T> t = left;
left = null;
return t;
}
public BinaryTree<T> detachRight(){
BinaryTree<T> t = right;
right = null;
return t;
}
public boolean isEmpty(){
return data == null;
}
public void inOrder(BinaryTree<T> tree){
if (tree != null){
inOrder(tree.left);
System.out.println(tree.getData());
inOrder(tree.right);
}
}
public void preOrder(BinaryTree<T> tree){
if(tree != null){
System.out.println(tree.getData());
preOrder(tree.left);
preOrder(tree.right);
}
}
public void postOrder(BinaryTree<T> tree){
if(tree != null){
postOrder(tree.left);
postOrder(tree.right);
System.out.println(tree.getData());
}
}
}
What I don't understand is how to create a BinaryTree using my data from the string array

Longest consecutive sequence in Binary tree

I'm trying to implement the logic for "Longest consecutive sequence in Binary tree". The logic I have implemented inside the method { longestConsecutivePath } is not working as expected for the tree structure. It is giving me the lognest path length as 5.
Output:
curLength : 5
BSTNode node = new BSTNode(1);
node.setRight(new BSTNode(2));
node.getRight().setRight(new BSTNode(3));
node.getRight().getRight().setRight(new BSTNode(4));
node.getRight().getRight().getRight().setRight(new BSTNode(5));
node.getRight().setLeft(new BSTNode(7));
node.getRight().getLeft().setLeft(new BSTNode(8));
node.getRight().getLeft().getLeft().setLeft(new BSTNode(9));
node.getRight().getLeft().getLeft().getLeft().setLeft(new BSTNode(10));
node.getRight().getLeft().getLeft().getLeft().getLeft().setLeft(new BSTNode(11));
node.getRight().getLeft().getLeft().getLeft().getLeft().getLeft().setLeft(new BSTNode(12));
Class implementing the Longest Consecutive sequence logic:
public class LongestConsecutivePath {
static BSTNode root = null;
public LongestConsecutivePath() {
root = createBinaryTree();
System.out.println("Before finding the longest consecutive path:");
inorder();
}
public void inorder() {
if (null == root) {
return;
}
inorder(root);
}
private void inorder(BSTNode node) {
if (null != node) {
inorder(node.getLeft());
System.out.print(node.getData() + " ");
inorder(node.getRight());
}
}
public BSTNode createBinaryTree() {
BSTNode node = new BSTNode(1);
node.setRight(new BSTNode(2));
node.getRight().setRight(new BSTNode(3));
node.getRight().getRight().setRight(new BSTNode(4));
node.getRight().getRight().getRight().setRight(new BSTNode(5));
node.getRight().setLeft(new BSTNode(7));
node.getRight().getLeft().setLeft(new BSTNode(8));
node.getRight().getLeft().getLeft().setLeft(new BSTNode(9));
node.getRight().getLeft().getLeft().getLeft().setLeft(new BSTNode(10));
node.getRight().getLeft().getLeft().getLeft().getLeft().setLeft(new BSTNode(11));
node.getRight().getLeft().getLeft().getLeft().getLeft().getLeft().setLeft(new BSTNode(12));
return node;
}
public int longestConsecutivePath() {
if (null == root) {
return 0;
}
return longestConsecutivePath(root, 0, root.getData() + 1);
}
public int longestConsecutivePath(BSTNode node, int curLength,
int targetLength) {
if (null == node) {
return curLength;
}
if (node.getData() == targetLength) {
System.out.println("\nnode data value: "+node.getData());
curLength += 1;
longestPath = curLength;
} else {
curLength = 1;
}
longestLeft = longestConsecutivePath(node.getLeft(), curLength,
node.getData() + 1);
longestRight = longestConsecutivePath(node.getRight(), curLength,
node.getData() + 1);
return Math.max(curLength, Math.max(longestLeft, longestRight));
}
public static void main(String[] args) {
LongestConsecutivePath consecutivePath = new LongestConsecutivePath();
int curLength = consecutivePath.longestConsecutivePath();
System.out.println("\ncurLength : " + curLength);
}
}
BSTNode.java
public class BSTNode {
BSTNode left, right;
int data;
/* Default constructor */
public BSTNode() {
left = null;
right = null;
data = 0;
}
/* Constructor */
public BSTNode(int data) {
left = null;
right = null;
this.data = data;
}
public BSTNode getLeft() {
return left;
}
public void setLeft(BSTNode left) {
this.left = left;
}
public BSTNode getRight() {
return right;
}
public void setRight(BSTNode right) {
this.right = right;
}
public int getData() {
return data;
}
public void setData(int data) {
this.data = data;
}
}

get average value from a tree of nodes

I have to implement this method:
public int GetAverage(Node root){
//TODO implement
}
this method should get average value of all nodes of root tree. where :
public interface Node {
int getValue();
List<Node> getNodes();
}
do you have any ideas how to implement this method?
thank you
my attempt:
public static double value;
public static int count;
public static double getAverage(Node root) {
count++;
value += root.getValue();
for (Node node : root.getNodes()) {
getAverage(node);
}
return value / count;
}
but how to do it without the static fields outside of the method?
Simply traverse through all nodes and remember the count and the overall sum of all values. Then calculate the average. This is an example written in Java.
public interface INode {
int getValue();
List<INode> getNodes();
}
public class Node implements INode {
private List<INode> children = new ArrayList<INode>();
private int value;
#Override
public int getValue() {
return value;
}
#Override
public List<INode> getNodes() {
return children;
}
public static int getAverage(INode root) {
if (root == null)
return 0;
Counter c = new Counter();
calculateAverage(root, c);
return c.sum / c.count;
}
class Counter {
public int sum;
public int count;
}
private static void calculateAverage(INode root, Counter counter) {
if (root == null)
return;
counter.sum += root.getValue();
counter.count++;
// recursively through all children
for (INode child : root.getNodes())
calculateAverage(child, counter);
}
}
public static double getAverage(Node root) {
Pair p = new Pair(0,0);
algo(root, p);
return ((double) p.element1) / ((double) p.element2);
}
private static void algo(Node root, Pair acc) {
for(Node child : root.getNodes()) {
algo(child, acc);
}
acc.sum += root.getValue();
acc.nbNodes++;
}
With Pair defined as follows:
public class Pair {
public int sum;
public int nbNodes;
public Pair(int elt1, int elt2) {
this.sum = elt1;
this.nbNodes = elt2;
}
}

Resources