What is the purpose/use of a map in XPath 3.1? - xpath

I understand the need for an array type in XPath 3.1 as they're fundamental to JSON. And yes I understand you can create a literal map() in an XPath query.
But is there a way XML or JSON can be structured where a query would naturally return a map on an XPath query against the underlying document? Or does it exist solely for the case where converting results into a map to then operate on is of benefit?

Probably the main use cases I've seen for maps are
(a) to capture the result of parsing JSON input, when the input data is in JSON
(b) to construct a structure that can be serialized as JSON, when JSON output is required.
(c) to provide complex input parameters to functions (like the fn:transform() or fn:serialize() functions)
(d) to capture multiple results or compound results from functions, e.g. a function that computes both the min and max of a sequence. If maps had been available at the time, they could have been used to get the namespace context of an element much more elegantly than the in-scope-prefixes/namespace-uri-for-prefix mechanism.
(e) a map whose entries are functions can be used like an object in OO languages, to achieve polymorphism -- especially useful in XQuery which lacks XSLT's template rule despatch mechanism. The fn:random-number-generator() function design illustrates the idea.
(f) a map can act as a simple struct for compound values, e.g. complex numbers. (It could have been used for date/time/duration/QName if available, or for the error information available in a catch clause)

"is there a way [..] JSON can be structured where a query would naturally return a map?": anything in JSON being an "object"
https://www.json.org/json-en.html: "An object is an unordered set of
name/value pairs. An object begins with {left brace and ends with
}right brace")
maps (pun intended) to an XDM map.
So in JSON both arrays and objects are fundamental and in the XDM you can represent a JSON array as an XDM array and a JSON object as an XDM map.

Related

Is there a similar solution as Array#wrap for hashes?

I use Array.wrap(x) all the time in order to ensure that Array methods actually exist on an object before calling them.
What is the best way to similarly ensure a Hash?
Example:
def ensure_hash(x)
# TODO: this is what I'm looking for
end
values = [nil,1,[],{},'',:a,1.0]
values.all?{|x| ensure_hash(x).respond_to?(:keys) } # true
The best I've been able to come up with so far is:
Hash::try_convert(x) || {}
However, I would prefer something more elegant.
tl; dr: In an app with proper error handling, there is no "easy, care-free" way to handle something that may or may not be hashy.
From a conceptual standpoint, the answer is no. There is no similar solution as Array.wrap(x) for hashes.
An array is a collection of values. Single values can be stored outside of arrays (e.g. x = 42) , so it's a straight-forward task to wrap a value in an array (a = [42]).
A hash is a collection of key-value pairs. In ruby, single key-value pairs can't exist outside of a hash. The only way to express a key-value pair is with a hash: h = { v: 42 }
Of course, there are a thousand ways to express a key-value pair as a single value. You could use an array [k, v] or a delimited string `"k:v" or some more obscure method.
But at that point, you're no longer wrapping, you're parsing. Parsing relies on properly formatted data and has multiple points of failure. No matter how you look at it, if you find yourself in a situation where you may or may not have a hash, that means you need to write a proper chunk of code for data validation and parsing (or refactor your upstream code so that you can always expect a hash).

How to store objects dynamically created from a hash?

I'm new to ruby, and apologies in advance as I strongly suspect I'm missing something really obvious here. But..
I'm trying to create objects dynamically, based on an array of hashes. But how do I store the objects?
If I was creating just one, I'd do a variable assignment like so:
h = PuppetNode.new(hash)
print h.hostname # foo.bar.com
but what about here?:
array_of_hashes.each { | hash |
h = PuppetNode.new(hash)
}
This will result in the 'h' object being overwritten won't it?
I suppose I could try to extract something from the hash to name the variable dynamically, but it seems like it is unnecessary as various instance variables mark out the unique-ness of each object.
Do I really need to use a variable at all? If not, how do I create/store the objects. If so, how can I dynamically set the variable name without painful regex use?
Thanks in advance
If you want to store multiple objects, you can use a collection object to do that. Ruby comes with two kinds of collection objects built into the core library: Array (a linear sequence of elements addressable by numeric index) and Hash (a mapping from key objects to value objects, addressable by key). In the standard library, there are additional kinds of collection objects such as Set (a collection that tracks membership of values) and SortedSet.

Understanding immutable composite types with fields of mutable types in Julia

Initial note: I'm working in Julia, but this question probably applies to many languages.
Setup: I have a composite type as follows:
type MyType
x::Vector{String}
end
I write some methods to act on MyType. For example, I write a method that allows me to insert a new element in x, e.g. function insert!(d::MyType, itemToInsert::String).
Question: Should MyType be mutable or immutable?
My understanding: I've read the Julia docs on this, as well as more general (and highly upvoted) questions on Stackoverflow (e.g. here or here), but I still don't really have a good handle on what it means to be mutable/immutable from a practical perspective (especially for the case of an immutable composite type, containing a mutable array of immutable types!)
Nonetheless, here is my attempt: If MyType is immutable, then it means that the field x must always point to the same object. That object itself (a vector of Strings) is mutable, so it is perfectly okay for me to insert new elements into it. What I am not allowed to do is try and alter MyType so that the field x points to an entirely different object. For example, methods that do the following are okay:
MyType.x[1] = "NewValue"
push!(MyType.x, "NewElementToAdd")
But methods that do the following are not okay:
MyType.x = ["a", "different", "string", "array"]
Is this right? Also, is the idea that the object that an immutable types field values are locked to are those that are created within the constructor?
Final Point: I apologise if this appears to duplicate other questions on SO. As stated, I have looked through them and wasn't able to get the understanding that I was after.
So here is something mind bending to consider (at least to me):
julia> immutable Foo
data::Vector{Float64}
end
julia> x = Foo([1.0, 2.0, 4.0])
Foo([1.0,2.0,4.0])
julia> append!(x.data, x.data); pointer(x.data)
Ptr{Float64} #0x00007ffbc3332018
julia> append!(x.data, x.data); pointer(x.data)
Ptr{Float64} #0x00007ffbc296ac28
julia> append!(x.data, x.data); pointer(x.data)
Ptr{Float64} #0x00007ffbc34809d8
So the data address is actually changing as the vector grows and needs to be reallocated! But - you can't change data yourself, as you point out.
I'm not sure there is a 100% right answer is really. I primarily use immutable for simple types like the Complex example in the docs in some performance critical situations, and I do it for "defensive programming" reasons, e.g. the code has no need to write to the fields of this type so I make it an error to do so. They are a good choice IMO whenever the type is a sort of an extension of a number, e.g. Complex, RGBColor, and I use them in place of tuples, as a kind of named tuple (tuples don't seem to perform well with Julia right now anyway, wheres immutable types perform excellently).

XPath: opposite of string() function?

In XPath it is possible to convert an object to string using the string() function. Now I want to convert the string back to an object.
I do understand it is not possible in some cases (for example for elements), because some information was lost. But it should be possible for simple types, like int or boolean.
I know, for numbers I can use number() function, but I want general mechanism which will work for any simple type variable.
Going to string is easy, because you've told it that you want a string.
Similarly, going to number is easy, because you've told it that you want a number.
But there is no generic way to say 'turn it back into x', because you haven't told it what x is.
(In other words, string() is like a cast like Java/C/C++/C# have. But there is no uncast.)
string() isn't an object serializer, so you can't deserialize.
Why do you want this? Perhaps there is another way of solving your problem.
If your object $x is the number 1234, then string($x) will be the string "1234".
If your object $x is a nodeset of 1000 XML elements, the first one being
<wibble><wobble>1<ping/>2</wobble>34</wibble>
then string($x) will be the string "1234".
The function is not a bijection, you can't have an inverse as many different values map to the same string.
In no language (that I know of) you can cast A to B and then call a magical function that reverts it back to whatever it was before you casted it.
The process of converting some data type into something else is always an unidirectional one - you lose the information what type it was before. That's because the new data type has no way of storing what it was before.
So, what are you trying to do? I strongly suspect that you ask this question because you are tackling a problem from the wrong end.

How does coding with LINQ work? What happens behind the scenes?

For example:
m_lottTorqueTools = (From t In m_lottTorqueTools _
Where Not t.SlotNumber = toolTuple.SlotNumber _
And Not t.StationIndex = toolTuple.StationIndex).ToList
What algorithm occurs here? Is there a nested for loop going on in the background? Does it construct a hash table for these fields? I'm curious.
Query expressions are translated into extension method calls, usually. (They don't have to be, but 99.9% of queries use IEnumerable<T> or IQueryable<T>.)
The exact algorithm of what that method does varies from method to method. Your sample query wouldn't use any hash tables, but joins or grouping operations do, for example.
The simple Where call translates to something like this in C# (using iterator blocks, which aren't available in VB at the moment as far as I'm aware):
public static IEnumerable<T> Where(this IEnumerable<T> source,
Func<T, bool> predicate)
{
// Argument checking omitted
foreach (T element in source)
{
if (predicate(element))
{
yield return element;
}
}
}
The predicate is provided as a delegate (or an expression tree if you're using IQueryable<T>) and is called on each item in the sequence. The results are streamed and execution is deferred - in other words, nothing happens until you start asking for items from the result, and even then it only does as much as it needs to in order to provide the next result. Some operators aren't deferred (basically the ones which return a single value instead of a sequence) and some buffer the input (e.g. Reverse has to read to the end of the sequence before it can return any results, because the last result it reads is the first one it has to yield).
It's beyond the scope of a single answer to give details of every single LINQ operator I'm afraid, but if you have questions about specific ones I'm sure we can oblige.
I should add that if you're using LINQ to SQL or another provider that's based on IQueryable<T>, things are rather different. The Queryable class builds up the query (with the help of the provider, which implements IQueryable<T> to start with) and then the query is generally translated into a more appropriate form (e.g. SQL) by the provider. The exact details (including buffering, streaming etc) will entirely depend on the provider.
LINQ in general has a lot going on behind the scenes. With any query, it is first translated into an expression tree using an IQueryableProvider and from there the query is typically compiled into CIL code and a delegate is generated pointing to this function, which you are essentially using whenever you call the query. That's an extremely simplified overview - if you want to read a great article on the subject, I recommend you look at How LINQ Works - Creating Queries. Jon Skeet also posted a good answer on this site to this question.
What happens not only depends on the methods, but also depends on the LINQ provider in use. In the case where an IQueryable<T> is being returned, it is the LINQ provider that interprets the expression tree and processes it however it likes.

Resources