Parity of permutation with parallelism - algorithm

I have an integer array of length N containing the values 0, 1, 2, .... (N-1), representing a permutation of integer indexes.
What's the most efficient way to determine if the permutation has odd or even parity, given I have parallel compute of O(N) as well?
For example, you can sum N numbers in log(N) with parallel computation. I expect to find the parity of permutations in log(N) as well, but cannot seem to find an algorithm. I also do not know how this "complexity order with parallel computation" is called.

The number in each array slot is the proper slot for that item. Think of it as a direct link from the "from" slot to the "to" slot. An array like this is very easy to sort in O(N) time with a single CPU just by following the links, so it would be a shame to have to use a generic sorting algorithm to solve this problem. Thankfully...
You can do this easily in O(log N) time with Ω(N) CPUs.
Let A be your array. Since each array slot has a single link out (the number in that slot) and a single link in (that slot's number is in some slot), the links break down into some number of cycles.
The parity of the permutation is the oddness of N-m, where N is the length of the array and m is the number of cycles, so we can get your answer by counting the cycles.
First, make an array S of length N, and set S[i] = i.
Then:
Repeat ceil(log_2(N)) times:
foreach i in [0,N), in parallel:
if S[i] < S[A[i]] then:
S[A[i]] = S[i]
A[i] = A[A[i]]
When this is finished, every S[i] will contain the smallest index in the cycle containing i. The first pass of the inner loop propagates the smallest S[i] to the next slot in the cycle by following the link in A[i]. Then each link is made twice as long, so the next pass will propagate it to 2 new slots, etc. It takes at most ceil(log_2(N)) passes to propagate the smallest S[i] around the cycle.
Let's call the smallest slot in each cycle the cycle's "leader". The number of leaders is the number of cycles. We can find the leaders just like this:
foreach i in [0,N), in parallel:
if (S[i] == i) then:
S[i] = 1 //leader
else
S[i] = 0 //not leader
Finally, we can just add up the elements of S to get the number of cycles in the permutation, from which we can easily calculate its parity.

You didn't specify a machine model, so I'll assume that we're working with an EREW PRAM. The complexity measure you care about is called "span", the number of rounds the computation takes. There is also "work" (number of operations, summed over all processors) and "cost" (span times number of processors).
From the point of view of theory, the obvious answer is to modify an O(log n)-depth sorting network (AKS or Goodrich's Zigzag Sort) to count swaps, then return (number of swaps) mod 2. The code is very complex, and the constant factors are quite large.
A more practical algorithm is to use Batcher's bitonic sorting network instead, which raises the span to O(log2 n) but has reasonable constant factors (such that people actually use it in practice to sort on GPUs).
I can't think of a practical deterministic algorithm with span O(log n), but here's a randomized algorithm with span O(log n) with high probability. Assume n processors and let the (modifiable) input be Perm. Let Coin be an array of n Booleans.
In each of O(log n) passes, the processors do the following in parallel, where i ∈ {0…n-1} identifies the processor, and swaps ← 0 initially. Lower case variables denote processor-local variables.
Coin[i] ← true with probability 1/2, false with probability 1/2
(barrier synchronization required in asynchronous models)
if Coin[i]
j ← Perm[i]
if not Coin[j]
Perm[i] ← Perm[j]
Perm[j] ← j
swaps ← swaps + 1
end if
end if
(barrier synchronization required in asynchronous models)
Afterwards, we sum up the local values of swaps and mod by 2.
Each pass reduces the number of i such that Perm[i] ≠ i by 1/4 of the current total in expectation. Thanks to the linearity of expectation, the expected total is at most n(3/4)r, so after r = 2 log4/3 n = O(log n) passes, the expected total is at most 1/n, which in turn bounds the probability that the algorithm has not converged to the identity permutation as required. On failure, we can just switch to the O(n)-span serial algorithm without blowing up the expected span, or just try again.

Related

Uniform sampling of k integers from [0:n)

My goal is to sample k integers from 0, ... n-1 without duplication. The order of sampled integers doesn't matter. At every each call (which occurs very often), n and k will slightly vary but not much (n is about 250,000 and k is about 2,000). I've come up with the following amortized O(k) algorithm:
Prepare an array A with items 0, 1, 2, ... , n-1. This takes O(n) but since n is relatively stable, the cost can be made amortized constant.
Sample a random number r from [0:i] where i = n - 1. Here the cost is in fact related to n, but as n is not VERY BIG, this dependency is not critical.
Swap the rth item and the ith item in the array A.
Decrease i by 1.
Repeat k times the steps 2~4; now we have a random permutation of length k at the tail of A. Copy this.
We should roll back A to its initial state (0, ... , n-1) to keep the cost of the step 1 constant. This can be done by push r to a stack of length k at each pass of step 2. Preparation of the stack requires amortized constant cost.
I think uniform sampling of permutation/combination should be an exhaustively studied problem, so either (1) there is a much better solution, or at least (2) my solution is a (minor modification of) a well-known solution. Thus,
In case (1), I want to know that better solution.
In case (2), I want to find a reference.
Please help me. Thanks.
If k is much less than n -- say, less than half of n -- then the most efficient solution is to keep the numbers generated in a hash table (actually, a hash set, since there is no value associated with a key). If the random number happens to already be in the hash table, reject it and generate another one in its place. With the actual values of k and n suggested (k ∼ 2000; n ∼ 250,000) the expected number of rejections to generate k unique samples is less than 10, so it will hardly be noticeable. The size of the hash table is O(k), and it can simply be deleted at the end of the sample generation.
It is also possible to simulate the FYK shuffle algorithm using a hash table instead of a vector of n values, thereby avoiding having to reject generated random numbers. If you were using a vector A, you would start by initializing A[i] to i, for every 0 ≤ i < k. With the hash table H, you start with an empty hash table, and use the convention that H[i] is considered to be i if the key i is not in the hash table. Step 3 in your algorithm -- "swap A[r] with A[i]" -- becomes "add H[r] as the next element of the sample and set H[r] to H[i]". Note that it is unnecessary to set H[i] because that element will never be referred to again: all subsequent random numbers r are generate from a range which does not include i.
Because the hash table in this case contains both keys and values, it is larger than the hash set used in alternative 1, above, and the increased size (and consequent increase in memory cache misses) is likely to cause more overhead than is saved by eliminating rejections. However, it has the advantage of working even if k is occasionally close to n.
Finally, in your proposed algorithm, it is actually quite easy to restore A in O(k) time. A value A[j] will have been modified by the algorithm only if:
a. n − k ≤ j < n, or
b. there is some i such that n − k ≤ i < n and A[i] &equals; j.
Consequently, you can restore the vector A by looking at each A[i] for n − k ≤ i < n: first, if A[i] < n−k, set A[A[i]] to A[i]; then, unconditionally set A[i] to i.

Place "sum" and "multiply" operators between the elements of a given list of integers so that the expression results in a specified value

I was given a tricky question.
Given:
A = [a1,a2,...an] (list of positive integers with length "n")
r (positive integer)
Find a list of { *, + } operators
O = [o1,o2,...on-1]
so that if we placed those operators between the elements of "A", the resulting expression would evaluate to "r". Only one solution is required.
So for example if
A = [1,2,3,4]
r = 14
then
O = [*, +, *]
I've implemented a simple recursive solution with some optimisation, but of course it's exponential O(2^n) time, so for an input with length 40, it works for ages.
I wanted to ask if any of you know a sub-exponential solution for this?
Update
Elements of A are between 0-10000,
r can be arbitrarily big
Let A and B be positive integers. Then A + B ≤ A × B + 1.
This little fact can be used to construct a very efficient algorithm.
Let's define a graph. The graph nodes correspond to operations lists, for example, [+, ×, +, +, ×]. There is an edge from graph node X to graph node Y if the Y can be obtained by changing a single + to a × in X. The graph has a source at the node corresponding to [+, +, ..., +].
Now perform a breadth-first search from the source node, constructing the graph as you go. When expanding a node [+, ×, +, +, ×], for example, you (optionally construct then) connect to the nodes [×, ×, +, +, ×], [+, ×, ×, +, ×], and [+, ×, +, ×, ×]. Do not expand to a node if the result of evaluating it is greater than r + k(O), where k(O) is the number of +'s in the operation list O. This is because of the "+ 1" in the fact at the beginning of the answer - consider the case of a = [1, 1, 1, 1, 1], r = 1.
This approach uses O(n 2n) time and O(2n) space (where both are potentially very-loose worst case bounds). This is still an exponential algorithm, however I think you will find it performs very reasonably for non-sinister inputs. (I suspect this problem is NP-complete, which is why I am happy with this "non-sinister inputs" escape clause.)
Here's an O(rn^2)-time, O(rn)-space DP approach. If r << 2^n then this will have better worst-case behaviour than exponential-time branch-and-bound approaches, though even then the latter may still be faster on many instances. This is pseudo-polynomial time, because it takes time proportional to the value of part of its input (r), not its size (which would be log2(r)). Specifically it needs rn bits of memory, so it should give answers in a few seconds for up to around rn < 1,000,000,000 and n < 1000 (e.g. n = 100, r = 10,000,000).
The key observation is that any formula involving all n numbers has a final term that consists of some number i of factors, where 1 <= i <= n. That is, any formula must be in one of the following n cases:
(a formula on the first n-1 terms) + a[n]
(a formula on the first n-2 terms) + a[n-1] * a[n]
(a formula on the first n-3 terms) + a[n-2] * a[n-1] * a[n]
...
a[1] * a[2] * ... * a[n]
Let's call the "prefix" of a[] consisting of the first i numbers P[i]. If we record, for each 0 <= i <= n-1, the complete set of values <= r that can be reached by some formula on P[i], then based on the above, we can quite easily compute the complete set of values <= r that can be reached by P[n]. Specifically, let X[i][j] be a true or false value that indicates whether the prefix P[i] can achieve the value j. (X[][] could be stored as an array of n size-(r+1) bitmaps.) Then what we want to do is compute X[n][r], which will be true if r can be reached by some formula on a[], and false otherwise. (X[n][r] isn't quite the full answer yet, but it can be used to get the answer.)
X[1][a[1]] = true. X[1][j] = false for all other j. For any 2 <= i <= n and 0 <= j <= r, we can compute X[i][j] using
X[i][j] = X[i - 1][j - a[i]] ||
X[i - 2][j - a[i-1]*a[i]] ||
X[i - 3][j - a[i-2]*a[i-1]*a[i]] ||
... ||
X[1][j - a[2]*a[3]*...*a[i]] ||
(a[1]*a[2]*...*a[i] == j)
Note that the last line is an equality test that compares the product of all i numbers in P[i] to j, and returns true or false. There are i <= n "terms" (rows) in the expression for X[i][j], each of which can be computed in constant time (note in particular that the multiplications can be built up in constant time per row), so computing a single value X[i][j] can be done in O(n) time. To find X[n][r], we need to calculate X[i][j] for every 1 <= i <= n and every 0 <= j <= r, so there is O(rn^2) overall work to do. (Strictly speaking we may not need to compute all of these table entries if we use memoization instead of a bottom-up approach, but many inputs will require us to compute a large fraction of them anyway, so it's likely that the latter is faster by a small constant factor. Also a memoization approach requires keeping an "already processed" flag for each DP cell -- which doubles the memory usage when each cell is just 1 bit!)
Reconstructing a solution
If X[n][r] is true, then the problem has a solution (satisfying formula), and we can reconstruct one in O(n^2) time by tracing back through the DP table, starting from X[n][r], at each location looking for any term that enabled the current location to assume the value "true" -- that is, any true term. (We could do this reconstruction step faster by storing more than a single bit per (i, j) combination -- but since r is allowed to be "arbitrarily big", and this faster reconstruction won't improve the overall time complexity, it probably makes more sense to go with the approach that uses the fewest bits per DP table entry.) All satisfying solutions can be reconstructed this way, by backtracking through all true terms instead of just picking any one -- but there may be an exponential number of them.
Speedups
There are two ways that calculation of an individual X[i][j] value can be sped up. First, because all the terms are combined with ||, we can stop as soon as the result becomes true, since no later term can make it false again. Second, if there is no zero anywhere to the left of i, we can stop as soon as the product of the final numbers becomes larger than r, since there's no way for that product to be decreased again.
When there are no zeroes in a[], that second optimisation is likely to be very important in practice: it has the potential to make the inner loop much smaller than the full i-1 iterations. In fact if a[] contains no zeroes, and its average value is v, then after k terms have been computed for a particular X[i][j] value the product will be around v^k -- so on average, the number of inner loop iterations (terms) needed drops from n to log_v(r) = log(r)/log(v). That might be much smaller than n, in which case the average time complexity for this model drops to O(rn*log(r)/log(v)).
[EDIT: We actually can save multiplications with the following optimisation :)]
8/32/64 X[i][j]s at a time: X[i][j] is independent of X[i][k] for k != j, so if we are using bitsets to store these values, we can calculate 8, 32 or 64 of them (or maybe more, with SSE2 etc.) in parallel using simple bitwise OR operations. That is, we can calculate the first term of X[i][j], X[i][j+1], ..., X[i][j+31] in parallel, OR them into the results, then calculate their second terms in parallel and OR them in, etc. We still need to perform the same number of subtractions this way, but the products are all the same, so we can reduce the number of multiplications by a factor of 8/32/64 -- as well as, of course, the number of memory accesses. OTOH, this makes the first optimisation from the previous paragraph harder to accomplish -- you have to wait until an entire block of 8/32/64 bits have become true before you can stop iterating.
Zeroes: Zeroes in a[] may allow us to stop early. Specifically, if we have just computed X[i][r] for some i < n and found it to be true, and there is a zero anywhere to the right of position i in a[], then we can stop: we already have a formula on the first i numbers that evaluates to r, and we can use that zero to "kill off" all numbers to the right of position i by creating one big product term that includes all of them.
Ones: An interesting property of any a[] entry containing the value 1 is that it can be moved to any other position in a[] without affecting whether or not there is a solution. This is because every satisfying formula either has a * on at least one side of this 1, in which case it multiplies some other term and has no effect there, and would likewise have no effect anywhere else; or it has a + on both sides (imagine extra + signs before the first position and after the last), in which case it might as well be added in anywhere.
So, we can safely shunt all 1 values to the end of a[] before doing anything else. The point of doing this is that now we don't have to evaluate these rows of X[][] at all, because they only influence the outcome in a very simple way. Suppose there are m < n ones in a[], which we have moved to the end. Then after computing the m+1 values X[n-m][r-m], X[n-m][r-m+1], X[n-m][r-m+2], ..., X[n-m][r], we already know what X[n][r] must be: if any of them are true, then X[n][r] must be true, otherwise (if they are all false) it must be false. This is because the final m ones can add anywhere from 0 up to m to a formula on the first n-m values. (But if a[] consists entirely of 1s, then at least 1 must be "added" -- they can't all multiply some other term.)
Here is another approach that might be helpful. It is sometimes known as a "meet-in-the-middle" algorithm and runs in O(n * 2^(n/2)). The basic idea is this. Suppose n = 40 and you know that the middle slot is a +. Then, you can brute force all N := 2^20 possibilities for each side. Let A be a length N array storing the possible values of the left side, and similarly let B be a length N array storing the values for the right side.
Then, after sorting A and B, it is not hard to efficiently check for whether any two of them sum to r (e.g. for each value in A, do a binary search on B, or you can even do it in linear time if both arrays are sorted). This part takes O(N * log N) = O(n * 2^(n/2)) time.
Now, this was all assuming the middle slot is a +. If not, then it has to be a *, and you can combine the middle two elements into one (their product), reducing the problem to n = 39. Then you try the same thing, and so on. If you analyze it carefully, you should get O(n * 2^(n/2)) as the asymptotic complexity, since actually the largest term dominates.
You need to do some bookkeeping to actually recover the +'s and *'s, which I have left out to simplify the explanation.

Selection i'th smallest number algorithm

I'm reading Introduction to Algorithms book, second edition, the chapter about Medians and Order statistics. And I have a few questions about randomized and non-randomized selection algorithms.
The problem:
Given an unordered array of integers, find i'th smallest element in the array
a. The Randomized_Select algorithm is simple. But I cannot understand the math that explains it's work time. Is it possible to explain that without doing deep math, in more intuitive way? As for me, I'd think that it should work for O(nlog n), and in worst case it should be O(n^2), just like quick sort. In avg randomizedPartition returns near middle of the array, and array is divided into two each call, and the next recursion call process only half of the array. The RandomizedPartition costs (p-r+1)<=n, so we have O(n*log n). In the worst case it would choose every time the max element in the array, and divide the array into two parts - (n-1) and (0) each step. That's O(n^2)
The next one (Select algorithm) is more incomprehensible then previous:
b. What it's difference comparing to previous. Is it faster in avg?
c. The algorithm consists of five steps. In first one we divide the array into n/5 parts each one with 5 elements (beside the last one). Then each part is sorted using insertion sort, and we select 3rd element (median) of each. Because we have sorted these elements, we can be sure that previous two <= this pivot element, and the last two are >= then it. Then we need to select avg element among medians. In the book stated that we recursively call Select algorithm for these medians. How we can do that? In select algorithm we are using insertion sort, and if we are swapping two medians, we need to swap all four (or even more if it is more deeper step) elements that are "children" for each median. Or do we create new array that contain only previously selected medians, and are searching medians among them? If yes, how can we fill them in original array, as we changed their order previously.
The other steps are pretty simple and look like in the randomized_partition algorithm.
The randomized select run in O(n). look at this analysis.
Algorithm :
Randomly choose an element
split the set in "lower than" set L and "bigger than" set B
if the size of "lower than" is j-1 we found it
if the size is bigger, then Lookup in L
or lookup in B
The total cost is the sum of :
The cost of splitting the array of size n
The cost of lookup in L or the cost of looking up in B
Edited: I Tried to restructure my post
You can notice that :
We always go next in the set with greater amount of elements
The amount of elements in this set is n - rank(xj)
1 <= rank(xi) <= n So 1 <= n - rank(xj) <= n
The randomness of the element xj directly affect the randomness of the number of element which
are greater xj(and which are smaller than xj)
if xj is the element chosen , then you know that the cost is O(n) + cost(n - rank(xj)). Let's call rank(xj) = rj.
To give a good estimate we need to take the expected value of the total cost, which is
T(n) = E(cost) = sum {each possible xj}p(xj)(O(n) + T(n - rank(xj)))
xj is random. After this it is pure math.
We obtain :
T(n) = 1/n *( O(n) + sum {all possible values of rj when we continue}(O(n) + T(n - rj))) )
T(n) = 1/n *( O(n) + sum {1 < rj < n, rj != i}(O(n) + T(n - rj))) )
Here you can change variable, vj = n - rj
T(n) = 1/n *( O(n) + sum { 0 <= vj <= n - 1, vj!= n-i}(O(n) + T(vj) ))
We put O(n) outside the sum , gain a factor
T(n) = 1/n *( O(n) + O(n^2) + sum {1 <= vj <= n -1, vj!= n-i}( T(vj) ))
We put O(n) and O(n^2) outside, loose a factor
T(n) = O(1) + O(n) + 1/n *( sum { 0 <= vj <= n -1, vj!= n-i} T(vj) )
Check the link on how this is computed.
For the non-randomized version :
You say yourself:
In avg randomizedPartition returns near middle of the array.
That is exactly why the randomized algorithm works and that is exactly what it is used to construct the deterministic algorithm. Ideally you want to pick the pivot deterministically such that it produces a good split, but the best value for a good split is already the solution! So at each step they want a value which is good enough, "at least 3/10 of the array below the pivot and at least 3/10 of the array above". To achieve this they split the original array in 5 at each step, and again it is a mathematical choice.
I once created an explanation for this (with diagram) on the Wikipedia page for it... http://en.wikipedia.org/wiki/Selection_algorithm#Linear_general_selection_algorithm_-_Median_of_Medians_algorithm

Why is merge sort worst case run time O (n log n)?

Can someone explain to me in simple English or an easy way to explain it?
The Merge Sort use the Divide-and-Conquer approach to solve the sorting problem. First, it divides the input in half using recursion. After dividing, it sort the halfs and merge them into one sorted output. See the figure
It means that is better to sort half of your problem first and do a simple merge subroutine. So it is important to know the complexity of the merge subroutine and how many times it will be called in the recursion.
The pseudo-code for the merge sort is really simple.
# C = output [length = N]
# A 1st sorted half [N/2]
# B 2nd sorted half [N/2]
i = j = 1
for k = 1 to n
if A[i] < B[j]
C[k] = A[i]
i++
else
C[k] = B[j]
j++
It is easy to see that in every loop you will have 4 operations: k++, i++ or j++, the if statement and the attribution C = A|B. So you will have less or equal to 4N + 2 operations giving a O(N) complexity. For the sake of the proof 4N + 2 will be treated as 6N, since is true for N = 1 (4N +2 <= 6N).
So assume you have an input with N elements and assume N is a power of 2. At every level you have two times more subproblems with an input with half elements from the previous input. This means that at the the level j = 0, 1, 2, ..., lgN there will be 2^j subproblems with an input of length N / 2^j. The number of operations at each level j will be less or equal to
2^j * 6(N / 2^j) = 6N
Observe that it doens't matter the level you will always have less or equal 6N operations.
Since there are lgN + 1 levels, the complexity will be
O(6N * (lgN + 1)) = O(6N*lgN + 6N) = O(n lgN)
References:
Coursera course Algorithms: Design and Analysis, Part 1
On a "traditional" merge sort, each pass through the data doubles the size of the sorted subsections. After the first pass, the file will be sorted into sections of length two. After the second pass, length four. Then eight, sixteen, etc. up to the size of the file.
It's necessary to keep doubling the size of the sorted sections until there's one section comprising the whole file. It will take lg(N) doublings of the section size to reach the file size, and each pass of the data will take time proportional to the number of records.
After splitting the array to the stage where you have single elements i.e. call them sublists,
at each stage we compare elements of each sublist with its adjacent sublist. For example, [Reusing #Davi's image
]
At Stage-1 each element is compared with its adjacent one, so n/2 comparisons.
At Stage-2, each element of sublist is compared with its adjacent sublist, since each sublist is sorted, this means that the max number of comparisons made between two sublists is <= length of the sublist i.e. 2 (at Stage-2) and 4 comparisons at Stage-3 and 8 at Stage-4 since the sublists keep doubling in length. Which means the max number of comparisons at each stage = (length of sublist * (number of sublists/2)) ==> n/2
As you've observed the total number of stages would be log(n) base 2
So the total complexity would be == (max number of comparisons at each stage * number of stages) == O((n/2)*log(n)) ==> O(nlog(n))
Algorithm merge-sort sorts a sequence S of size n in O(n log n)
time, assuming two elements of S can be compared in O(1) time.
This is because whether it be worst case or average case the merge sort just divide the array in two halves at each stage which gives it lg(n) component and the other N component comes from its comparisons that are made at each stage. So combining it becomes nearly O(nlg n). No matter if is average case or the worst case, lg(n) factor is always present. Rest N factor depends on comparisons made which comes from the comparisons done in both cases. Now the worst case is one in which N comparisons happens for an N input at each stage. So it becomes an O(nlg n).
Many of the other answers are great, but I didn't see any mention of height and depth related to the "merge-sort tree" examples. Here is another way of approaching the question with a lot of focus on the tree. Here's another image to help explain:
Just a recap: as other answers have pointed out we know that the work of merging two sorted slices of the sequence runs in linear time (the merge helper function that we call from the main sorting function).
Now looking at this tree, where we can think of each descendant of the root (other than the root) as a recursive call to the sorting function, let's try to assess how much time we spend on each node... Since the slicing of the sequence and merging (both together) take linear time, the running time of any node is linear with respect to the length of the sequence at that node.
Here's where tree depth comes in. If n is the total size of the original sequence, the size of the sequence at any node is n/2i, where i is the depth. This is shown in the image above. Putting this together with the linear amount of work for each slice, we have a running time of O(n/2i) for every node in the tree. Now we just have to sum that up for the n nodes. One way to do this is to recognize that there are 2i nodes at each level of depth in the tree. So for any level, we have O(2i * n/2i), which is O(n) because we can cancel out the 2is! If each depth is O(n), we just have to multiply that by the height of this binary tree, which is logn. Answer: O(nlogn)
reference: Data Structures and Algorithms in Python
The recursive tree will have depth log(N), and at each level in that tree you will do a combined N work to merge two sorted arrays.
Merging sorted arrays
To merge two sorted arrays A[1,5] and B[3,4] you simply iterate both starting at the beginning, picking the lowest element between the two arrays and incrementing the pointer for that array. You're done when both pointers reach the end of their respective arrays.
[1,5] [3,4] --> []
^ ^
[1,5] [3,4] --> [1]
^ ^
[1,5] [3,4] --> [1,3]
^ ^
[1,5] [3,4] --> [1,3,4]
^ x
[1,5] [3,4] --> [1,3,4,5]
x x
Runtime = O(A + B)
Merge sort illustration
Your recursive call stack will look like this. The work starts at the bottom leaf nodes and bubbles up.
beginning with [1,5,3,4], N = 4, depth k = log(4) = 2
[1,5] [3,4] depth = k-1 (2^1 nodes) * (N/2^1 values to merge per node) == N
[1] [5] [3] [4] depth = k (2^2 nodes) * (N/2^2 values to merge per node) == N
Thus you do N work at each of k levels in the tree, where k = log(N)
N * k = N * log(N)
MergeSort algorithm takes three steps:
Divide step computes mid position of sub-array and it takes constant time O(1).
Conquer step recursively sort two sub arrays of approx n/2 elements each.
Combine step merges a total of n elements at each pass requiring at most n comparisons so it take O(n).
The algorithm requires approx logn passes to sort an array of n elements and so total time complexity is nlogn.
lets take an example of 8 element{1,2,3,4,5,6,7,8} you have to first divide it in half means n/2=4({1,2,3,4} {5,6,7,8}) this two divides section take 0(n/2) and 0(n/2) times so in first step it take 0(n/2+n/2)=0(n)time.
2. Next step is divide n/22 which means (({1,2} {3,4} )({5,6}{7,8})) which would take
(0(n/4),0(n/4),0(n/4),0(n/4)) respectively which means this step take total 0(n/4+n/4+n/4+n/4)=0(n) time.
3. next similar as previous step we have to divide further second step by 2 means n/222 ((({1},{2},{3},{4})({5},{6},{7},{8})) whose time is 0(n/8+n/8+n/8+n/8+n/8+n/8+n/8+n/8)=0(n)
which means every step takes 0(n) times .lets steps would be a so time taken by merge sort is 0(an) which mean a must be log (n) because step will always divide by 2 .so finally TC of merge sort is 0(nlog(n))

random merge sort

I was given the following question in an algorithms book:
Suppose a merge sort is implemented to split a file at a random position, rather then exactly in the middle. How many comparisons would be used by such method to sort n elements on average?
Thanks.
To guide you to the answer, consider these more specific questions:
Assume the split is always at 10%, or 25%, or 75%, or 90%. In each case: what's the impact on recursion depths? How many comparisons need to be per recursion level?
I'm partially agree with #Armen, they should be comparable.
But: consider the case when they are split in the middle. To merge two lists of lengths n we would need 2*n - 1 comparations (sometimes less, but we'll consider it fixed for simplicity), each of them producing the next value. There would be log2(n) levels of merges, that gives us approximately n*log2(n) comparations.
Now considering the random-split case: The maximum number of comparations needed to merge a list of length n1 with one of length n2 will be n1 + n2 - 1. Howerer, the average number will be close to it, because even for the most unhappy split 1 and n-1 we'll need an average of n/2 comparations. So we can consider that the cost of merging per level will be the same as in even case.
The difference is that in random case the number of levels will be larger, and we can consider that n for next level would be max(n1, n2) instead of n/2. This max(n1, n2) will tend to be 3*n/4, that gives us the approximate formula
n*log43(n) // where log43 is log in base 4/3
that gives us
n * log2(n) / log2(4/3) ~= 2.4 * n * log2(n)
This result is still larger than the correct one because we ignored that the small list will have fewer levels, but it should be close enough. I suppose that the correct answer will be the number of comparations on average will double
You can get an upper bound of 2n * H_{n - 1} <= 2n ln n using the fact that merging two lists of total length n costs at most n comparisons. The analysis is similar to that of randomized quicksort (see http://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0123.pdf).
First, suppose we split a list of length n into 2 lists L and R. We will charge the first element of R for a comparison against all of the elements of L, and the last element of L for a comparison against all elements of R. Even though these may not be the exact comparisons that are executed, the total number of comparisons we are charging for is n as required.
This handles one level of recursion, but what about the rest? We proceed by concentrating only on the "right-to-left" comparisons that occur between the first element of R and every element of L at all levels of recursion (by symmetry, this will be half the actual expected total). The probability that the jth element is compared to the ith element is 1/(j - i) where j > i. To see this, note that element j is compared with element i exactly when it is the first element chosen as a "splitting element" from among the set {i + 1,..., j}. That is, elements i and j are split into two lists as soon as the list they are in is split at some element from {i + 1,..., j}, and element j is charged for a comparison with i exactly when element j is the element that is chosen from this set.
Thus, the expected total number of comparisons involving j is at most H_n (i.e., 1 + 1/2 + 1/3..., where the number of terms is at most n - 1). Summing across all possible j gives n * H_{n - 1}. This only counted "right-to-left" comparisons, so the final upper bound is 2n * H_{n - 1}.

Resources