Algorithm to determine the global minima of a blackbox function - algorithm

I recently got this question in an interview, and it's kind of making me mad thinking about it.
Suppose you have a family of functions that each take a fixed number of parameters (different functions can take different numbers of parameters), each with the following properties:
Each input is between 0-1
Each output is between 0-1
The function is continuous
The function is a blackbox (i.e you cannot look at the equation for it)
He then asked me to create an algorithm to find the global minima of this function.
To me, looking at this question was like trying to answer the basis of machine learning. Obviously if there was some way to guarantee to find the global minima of a function, then we'd have perfect machine learning algorithms. Obviously we don't, so this question seems kind of impossible.
Anyways, the answer I gave was a mixture of divide and conquer with stochastic gradient descent. Since all functions are continuous, you'll always be able to calculate the partial gradient with respect to a certain dimension. You split each dimension in half and once you've reached a certain granularity, you apply stochastic gradient descent. In gradient descent, you initialize a certain start point, and evaluate the left and right side of that point based on a small delta with respect to every dimension to get the slope at that point. Then you update your point based on a certain learning rate and recalculate your partial derivatives until you've reached a point where the distance between old and new point is below a certain threshold. Then you re-merge and return the minimum of the two sections until you return the minimum value from all your divisions. My hope was to get around the fact that SGD can get stuck in local minima, so I thought dividing the dimension space would reduce the chance of that happening.
He seemed pretty unimpressed with my algorithm in the end. Does anybody have a faster/more accurate way of solving this problem?

The range is [0, 1], therefore f(x) = 0, where x on R^n, is the global minima. Moreover, it's not guaranteed that the function will be a convex, by knowing the domain, range, and continuity holds.
ex. f(x) = sqrt(x), it's a concave function (i.e. has no minimum), and x - [0, 1] belongs to its domain.

Related

Finding optimal solution to multivariable function with non-negligible solution time?

So I have this issue where I have to find the best distribution that, when passed through a function, matches a known surface. I have written a script that creates the distribution given some parameters and spits out a metric that compares the given surface to the known, but this script takes a non-negligible time, so I can't just run through a very large set of parameters to find the optimal set of parameters. I looked into the simplex method, and it seems to be the right path, but its not quite what I need, because I dont exactly have a set of linear equations, and dont know the constraints for the parameters, but rather one method that gives a single output (an thats all). Can anyone point me in the right direction to how to solve this problem? Thanks!
To quickly go over my process / problem again, I have a set of parameters (at this point 2 but will be expanded to more later) that defines a distribution. This distribution is used to create a surface, which is compared to a known surface, and an error metric is produced. I want to find the optimal set of parameters, but cannot run through an arbitrarily large number of parameters due to the time constraint.
One situation consistent with what you have asked is a model in which you have a reasonably tractable probability distribution which generates an unknown value. This unknown value goes through a complex and not mathematically nice process and generates an observation. Your surface corresponds to the observed probability distribution on the observations. You would be happy finding the parameters that give a good least squares fit between the theoretical and real life surface distribution.
One approximation for the fitting process is that you compute a grid of values in the space output by the probability distribution. Each set of parameters gives you a probability for each point on this grid. The not nice process maps each grid point here to a nearest grid point in the space of the surface. The least squares fit is a quadratic in the probabilities calculated for the first grid, because the probabilities calculated for a grid point in the surface are the sums of the probabilities calculated for values in the first grid that map to something nearer to that point in the surface than any other point in the surface. This means that it has first (and even second) derivatives that you can calculate. If your probability distribution is nice enough you can use the chain rule to calculate derivatives for the least squares fit in the initial parameters. This means that you can use optimization methods to calculate the best fit parameters which require not just a means to calculate the function to be optimized but also its derivatives, and these are generally more efficient than optimization methods which require only function values, such as Nelder-Mead or Torczon Simplex. See e.g. http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math4/optim/package-summary.html.
Another possible approach is via something called the EM Algorithm. Here EM stands for Expectation-Maximization. It can be used for finding maximum likelihood fits in cases where the problem would be easy if you could see some hidden state that you cannot actually see. In this case the output produced by the initial distribution might be such a hidden state. One starting point is http://www-prima.imag.fr/jlc/Courses/2002/ENSI2.RNRF/EM-tutorial.pdf.

Computational Complexity of Finding Area Under Discrete Curve

I apologize if my questions are extremely misguided or loosely scoped. Math is not my strongest subject. For context, I am trying to figure out the computational complexity of calculating the area under a discrete curve. In the particular use case that I am interested in, the y-axis is the length of a queue and the x-axis is time. The curve will always have the following bounds: it begins at zero, it is composed of multiple timestamped samples that are greater than zero, and it eventually shrinks to zero. My initial research has yielded two potential mathematical approaches to this problem. The first is a Reimann sum over domain [a, b] where a is initially zero and b eventually becomes zero (not sure if my understanding is completely correct there). I think the mathematical representation of this the formula found here:
https://en.wikipedia.org/wiki/Riemann_sum#Connection_with_integration.
The second is a discrete convolution. However, I am unable to tell the difference between, and applicability of, a discrete convolution and a Reimann sum over domain [a, b] where a is initially zero and b eventually becomes zero.
My questions are:
Is there are difference between the two?
Which approach is most applicable/efficient for what I am trying to figure out?
Is it even appropriate ask the computation complexity of either mathematical approach? If so, what are the complexities of each in this particular application?
Edit:
For added context, there will be a function calculating average queue length by taking the sum of the area under two separate curves and dividing it by the total time interval spanning those two curves. The particular application can be seen on page 168 of this paper: https://www.cse.wustl.edu/~jain/cv/raj_jain_paper4_decbit.pdf
Is there are difference between the two?
A discrete convolution requires two functions. If the first one corresponds to the discrete curve, what is the second one?
Which approach is most applicable/efficient for what I am trying to figure out?
A Riemann sum is an approximation of an integral. It's typically used to approximate the area under a continuous curve. You can of course use it on a discrete curve, but it's not an approximation anymore, and I'm not sure you can call it a "Riemann" sum.
Is it even appropriate ask the computation complexity of either mathematical approach? If so, what are the complexities of each in this particular application?
In any case, the complexity of computing the area under a dicrete curve is linear in the number of samples, and it's pretty straightforward to find why: you need to do something with each sample, once or twice.
What you probably want looks like a Riemann sum with the trapezoidal rule. Pick the first two samples, calculate their average, and multiply that by the distance between two samples. Repeat for every adjacent pair and sum it all.
So, this is for the router feedback filter in the referenced paper...
That algorithm is specifically designed so that you can implement it without storing a lot of samples and timestamps.
It works by accumulating total queue_length * time during each cycle.
At the start of each "cycle", record the current queue length and current clock time and set the current cycle's total to 0. (The paper defines the cycle so that the queue length is 0 at the start, but that's not important here)
every time the queue length changes, get the new current clock time and add (new_clock_time - previous_clock_time) * previous_queue_length to the total. Also do this at the end of the cycle. Then, record new new current queue length and current clock time.
When you need to calculate the current "average queue length", it's just (previous_cycle_total + current_cycle_total + (current_clock_time - previous_clock_time)*previous_queue_length) / total_time_since_previous_cycle_start

Optimization algorithms for piecewise-constant and similar ill-defined functions

I have a function which takes as inputs n-dimensional (say n=10) vectors whose components are real numbers varying from 0 to a large positive number A say 50,000, ends included. For any such vector the function outputs an integer from 1 to say B=100. I have this function and want to find its global minima.
Broadly speaking there are algorithmic, iterative and heuristics based approaches to tackle such optimization problem. Which are the best techniques suggested to solve this problem? I am looking for suggestions to algorithms or active research papers that i can implement from scratch to solve such problems. I have already given up hope on existing optimization functions that ship with Matlab/python. I am hoping to read experience of others working with approximation/heuristic algorithms to optimize such ill-defined functions.
I ran fmincon, fminsearch, fminunc in Matlab but they fail to optimize the function. The function is ill-defined according to their definitions. Matlab says this for fmincon:
Initial point is a local minimum that satisfies the constraints.
Optimization completed because at the initial point, the objective function is non-decreasing
in feasible directions to within the selected value of the optimality tolerance, and
constraints are satisfied to within the selected value of the constraint tolerance.
Problem arises because this function has piecewise-constant behavior. If a vector V is assigned to a number say 65, changing its components very slightly may not have any change. Such ill-defined behavior is to be well-expected because of pigeon-hole principle. The domain of function is unlimited whereas range is just a bunch of numbers.
I also wish to clarify one issue that may arise. Suppose i do gradient descent on a starting point x0 and my next x that i get from GD-iteration has some components lie outside the domain [0,50000], then what happens? So actually the domain is circular. So a vector of size 3 like [30;5432;50432] becomes [30;5432;432]. This is automatically taken care of so that there is no worry about iterations finding a vector outside the domain.

Theory on how to find the equation of a curve given a variable number of data points

I have recently started working on a project. One of the problems I ran into was converting changing accelerations into velocity. Accelerations at different points in time are provided through sensors. If you get the equation of these data points, the derivative of a certain time (x) on that equation will be the velocity.
I know how to do this on the computer, but how would I get the equation to start with? I have searched around but I have not found any existing programs that can form an equation given a set of points. In the past, I have created a neural net algorithm to form an equation, but it takes an incredibly long time to run.
If someone can link me a program or explain the process of doing this, that would be fantastic.
Sorry if this is in the wrong forum. I would post into math, but a programming background will be needed to know the realm of possibility of what a computer can do quickly.
This started out as a comment but ended up being too big.
Just to make sure you're familiar with the terminology...
Differentiation takes a function f(t) and spits out a new function f'(t) that tells you how f(t) changes with time (i.e. f'(t) gives the slope of f(t) at time t). This takes you from displacement to velocity or from velocity to acceleration.
Integreation takes a function f(t) and spits out a new function F(t) which measures the area under the function f(t) from the beginning of time up until a given point t. What's not obvious at first is that integration is actually the reverse of differentiation, a fact called the The Fundamental Theorem of Calculus. So integration takes you from acceleration to velocity or velocity to displacement.
You don't need to understand the rules of calculus to do numerical integration. The simplest (and most naive) method for integrating a function numerically is just by approximating the area by dividing it up into small slices between time points and summing the area of rectangles. This approximating sum is called a Reimann sum.
As you can see, this tends to really overshoot and undershoot certain parts of the function. A more accurate but still very simple method is the trapezoid rule, which also approximates the function with a series of slices, except the tops of the slices are straight lines between the function values rather than constant values.
Still more complicated, but yet a better approximation, is Simpson's rules, which approximates the function with parabolas between time points.
(source: tutorvista.com)
You can think of each of these methods as getting a better approximation of the integral because they each use more information about the function. The first method uses just one data point per area (a constant flat line), the second method uses two data points per area (a straight line), and the third method uses three data points per area (a parabola).
You could read up on the math behind these methods here or in the first page of this pdf.
I agree with the comments that numerical integration is probably what you want. In case you still want a function going through your data, let me further argue against doing that.
It's usually a bad idea to find a curve that goes exactly through some given points. In almost any applied math context you have to accept that there is a little noise in the inputs, and a curve going exactly through the points may be very sensitive to noise. This can produce garbage outputs. Finding a curve going exactly through a set of points is asking for overfitting to get a function that memorizes rather than understands the data, and does not generalize.
For example, take the points (0,0), (1,1), (2,4), (3,9), (4,16), (5,25), (6,36). These are seven points on y=x^2, which is fine. The value of x^2 at x=-1 is 1. Now what happens if you replace (3,9) with (2.9,9.1)? There is a sixth order polynomial passing through all 7 points,
4.66329x - 8.87063x^2 + 7.2281x^3 - 2.35108x^4 + 0.349747x^5 - 0.0194304x^6.
The value of this at x=-1 is -23.4823, very far from 1. While the curve looks ok between 0 and 2, in other examples you can see large oscillations between the data points.
Once you accept that you want an approximation, not a curve going exactly through the points, you have what is known as a regression problem. There are many types of regression. Typically, you choose a set of functions and a way to measure how well a function approximates the data. If you use a simple set of functions like lines (linear regression), you just find the best fit. If you use a more complicated family of functions, you should use regularization to penalize overly complicated functions such as high degree polynomials with large coefficients that memorize the data. If you either use a simple family or regularization, the function tends not to change much when you add or withhold a few data points, which indicates that it is a meaningful trend in the data.
Unfortunately, integrating accelerometer data to get velocity is a numerically unstable problem. For most applications, your error will diverge far too soon to get results of any practical value.
Recall that:
So:
However well you fit a function to your accelerometer data, you will still essentially be doing a piecewise interpolation of the underlying acceleration function:
Where the error terms from each integration will add!
Typically you will see wildly inaccurate results after just a few seconds.

Fast find of all local maximums in C++

Problem
I have a formula for calculation of 1D polynomial, joint function. I want to find all local maximums of that function within a given range.
My approach
My current solution is that i evaluate my function in a certain number of points from the range and then I go through these points and remember points where function changed from rising to decline. Of cause I can change number of samples within the interval, but I want to find all maximums with as lowest number of samples as possible.
Question
Can you suggest any effetive algorithm to me?
Finding all the maxima of an unknown function is hard. You can never be sure that a maximum you found is really just one maximum or that you have not overlooked a maximum somewhere.
However, if something is known about the function, you can try to exploit that. The simplest one is, of course, is if the function is known to be rational and bounded in grade. Up to a rational function of grade five it is possible to derive all four extrema from a closed formula, see http://en.wikipedia.org/wiki/Quartic_equation#General_formula_for_roots for details. Most likely, you don't want to implement that, but for linear, square, and cubic roots, the closed formula is feasible and can be used to find maxima of a quartic function.
That is only the most simple information that might be known, other interesting information is whether you can give a bound to the second derivative. This would allow you to reduce the sampling density when you find a strong slope.
You may also be able to exploit information from how you intend to use the maxima you found. It can give you clues about how much precision you need. Is it sufficient to know that a point is near a maximum? Or that a point is flat? Is it really a problem if a saddle point is classified as a maximum? Or if a maximum right next to a turning point is overlooked? And how much is the allowable error margin?
If you cannot exploit information like this, you are thrown back to sampling your function in small steps and hoping you don't make too much of an error.
Edit:
You mention in the comments that your function is in fact a kernel density estimation. This gives you at least the following information:
Unless the kernel is not limited in extend, your estimated function will be a piecewise function: Any point on it will only be influenced by a precisely calculable number of measurement points.
If the kernel is based on a rational function, the resulting estimated function will be piecewise rational. And it will be of the same grade as the kernel!
If the kernel is the uniform kernel, your estimated function will be a step function.
This case needs special handling because there won't be any maxima in the mathematical sense. However, it also makes your job really easy.
If the kernel is the triangular kernel, your estimated function will be a piecewise linear function.
If the kernel is the Epanechnikov kernel, your estimated function will be a piecewise quadratic function.
In all these cases it is next to trivial to produce the piecewise functions and to find their maxima.
If the kernel is of too high grade or transcendental, you still know the measurements that your estimation is based on, and you know the kernel properties. This allows you to derive a heuristic on how dense your maxima can get.
At the very least, you know the first and second derivative of the kernel.
In principle, this allows you to calculate the first and second derivative of the estimated function at any point.
In the case of a local kernel, it might be more prudent to calculate the first derivative and an upper bound to the second derivative of the estimated function at any point.
With this information, it should be possible to constrain the search to the regions where there are maxima and avoid oversampling of the slopes.
As you see, there is a lot of useful information that you can derive from the knowledge of your function, and which you can use to your advantage.
The local maxima are among the roots of the first derivative. To isolate those roots in your working interval you can use the Sturm theorem, and proceed by dichotomy. In theory (using exact arithmetic) it gives you all real roots.
An equivalent approach is to express your polynomial in the Bezier/Bernstein basis and look for changes of signs of the coefficients (hull property). Dichotomic search can be efficiently implemented by recursive subdivision of the Bezier.
There are several classical algorithms available for polynomials, such as Laguerre, that usually look for the complex roots as well.

Resources