Mathematica: How to evaluate this function? - wolfram-mathematica

I need to evaluate a function in 2D but it has three unknowns, the two arguments (x, y) and alpha. I need to evaluate x and y between {0,100}, while alpha between {0,1}.
The function is: f(x, y) = x ^ (a) * y ^ (1-a)
Thank you!

Not sure what "evaluate a function in 2D" means. Some options
f[x_, y_, a_] := x^a y^(1 - a)
Generate plots for different values of a
Table[Plot3D[f[x, y, a], {x, 0, 100}, {y, 0, 100},
PlotLabel -> "a = " <> ToString#a], {a, 0, 1, .1}] //
Partition[#, UpTo[4]] & //
Grid
Generate contours
ContourPlot3D[f[x, y, a], {x, 0, 100}, {y, 0, 100}, {a, 0, 1}, Contours -> 5]

Related

Unable to find a solution for 2d nonlinear heat equation in mathematica

Please help me to find a solution in a Wolfram Mathematica program.
I have several times checked the accuracy of the entered data. They are true. The solution must exist. But a Wolfram provides either the empty graph (for any point in time), or an error "NDSolve::eerr". Here is my code:
solution =
NDSolve[{D[fun[t, x, y], t] ==
Exp[-t]*Cos[Pi*y] + D[fun[t, x, y], {x, 2}] +
D[fun[t, x, y], {y, 2}], fun[t, 0, y] == 0, fun[t, 1, y] == 0,
fun[0, x, y] == 0, (D[fun[t, x, y], y] /. y -> 0) ==
0, (D[fun[t, x, y], y] /. y -> 1) == 0},
fun[t, x, y], {t, 0, 5}, {x, 0, 1}, {y, 0, 1}]
Plot3D[Evaluate[First[fun[5, x, y] /. solution]], {x, 0, 1}, {y, 0,
1}, PlotRange -> All, Mesh -> None, PlotPoints -> 40]
And here is the error code
NDSolve::eerr: Warning: scaled local spatial error estimate of
140.65851971330582at t = 5. in the direction of independent variable x is much greater than the prescribed error tolerance. Grid
spacing with 15 points may be too large to achieve the desired
accuracy or precision. A singularity may have formed or a smaller grid
spacing can be specified using the MaxStepSize or MinPoints method
options.
Please advise what can be done in such a situation. Many thanks in advance!

I'm trying to solve a very simple heat conduction differential equation with NDSolve in Mathematica, but the solution I get is quite strange…

This is a very simple one-dimensional solid-phase heat conduction differential equation, here is my code:
a = NDSolve[{D[721.7013888888889` 0.009129691127380562` tes[t, x],
t] == 2.04988920646734`*^-6 D[tes[t, x], x, x],
tes[t, 0] == 298 + 200 t, tes[t, 0.01] == 298,
tes[0, x] == 298}, {tes[t, x]}, {t, 0, 0.005}, {x, 0, 0.01}]
Plot3D[tes[t, x] /. a, {t, 0, 0.005}, {x, 0, 0.01}, PlotRange -> All]
(Plot[(tes[t, x] /. a) /. t -> 0.0005, {x, 0, 0.01},
PlotRange -> All])
After you run it, you will see: the temperature (in the equation it's named as tes) is lower than 298! It's ridiculous, it's against the second law of thermodynamics…how does this error come out? How can I correct it?
I'll deal only with the numerical aspects of this. First, scale time and space so that your equation becomes $\partial_t f=\partial_{x,x}f$ in the dimensionless units. then, for instance,
a = NDSolve[{D[ tes[t, x], t] == D[tes[t, x], x, x],
tes[t, 0] \[Equal] 1,
tes[t, 1] \[Equal] 1,
tes[0, x] \[Equal] Cos[2 \[Pi]*x/2]^2},
tes[t, x],
{t, 0, 1},
{x, 0, 1}
]
Plot3D[tes[t, x] /. a, {t, 0, .2}, {x, 0, 1}, PlotRange -> All,
AxesLabel \[Rule] {"t", "x"}]
so heat just diffuses inwards (note I changed the boundary and initial conditions).
This problem has been solved here,
I should admit that I haven't catch the nature yet at the time I posted this question…

Generating the Sierpinski triangle iteratively in Mathematica?

I have written code which draws the Sierpinski fractal. It is really slow since it uses recursion. Do any of you know how I could write the same code without recursion in order for it to be quicker? Here is my code:
midpoint[p1_, p2_] := Mean[{p1, p2}]
trianglesurface[A_, B_, C_] := Graphics[Polygon[{A, B, C}]]
sierpinski[A_, B_, C_, 0] := trianglesurface[A, B, C]
sierpinski[A_, B_, C_, n_Integer] :=
Show[
sierpinski[A, midpoint[A, B], midpoint[C, A], n - 1],
sierpinski[B, midpoint[A, B], midpoint[B, C], n - 1],
sierpinski[C, midpoint[C, A], midpoint[C, B], n - 1]
]
edit:
I have written it with the Chaos Game approach in case someone is interested. Thank you for your great answers!
Here is the code:
random[A_, B_, C_] := Module[{a, result},
a = RandomInteger[2];
Which[a == 0, result = A,
a == 1, result = B,
a == 2, result = C]]
Chaos[A_List, B_List, C_List, S_List, n_Integer] :=
Module[{list},
list = NestList[Mean[{random[A, B, C], #}] &,
Mean[{random[A, B, C], S}], n];
ListPlot[list, Axes -> False, PlotStyle -> PointSize[0.001]]]
This uses Scale and Translate in combination with Nest to create the list of triangles.
Manipulate[
Graphics[{Nest[
Translate[Scale[#, 1/2, {0, 0}], pts/2] &, {Polygon[pts]}, depth]},
PlotRange -> {{0, 1}, {0, 1}}, PlotRangePadding -> .2],
{{pts, {{0, 0}, {1, 0}, {1/2, 1}}}, Locator},
{{depth, 4}, Range[7]}]
If you would like a high-quality approximation of the Sierpinski triangle, you can use an approach called the chaos game. The idea is as follows - pick three points that you wish to define as the vertices of the Sierpinski triangle and choose one of those points randomly. Then, repeat the following procedure as long as you'd like:
Choose a random vertex of the trangle.
Move from the current point to the halfway point between its current location and that vertex of the triangle.
Plot a pixel at that point.
As you can see at this animation, this procedure will eventually trace out a high-resolution version of the triangle. If you'd like, you can multithread it to have multiple processes plotting pixels at once, which will end up drawing the triangle more quickly.
Alternatively, if you just want to translate your recursive code into iterative code, one option would be to use a worklist approach. Maintain a stack (or queue) that contains a collection of records, each of which holds the vertices of the triangle and the number n. Initially put into this worklist the vertices of the main triangle and the fractal depth. Then:
While the worklist is not empty:
Remove the first element from the worklist.
If its n value is not zero:
Draw the triangle connecting the midpoints of the triangle.
For each subtriangle, add that triangle with n-value n - 1 to the worklist.
This essentially simulates the recursion iteratively.
Hope this helps!
You may try
l = {{{{0, 1}, {1, 0}, {0, 0}}, 8}};
g = {};
While [l != {},
k = l[[1, 1]];
n = l[[1, 2]];
l = Rest[l];
If[n != 0,
AppendTo[g, k];
(AppendTo[l, {{#1, Mean[{#1, #2}], Mean[{#1, #3}]}, n - 1}] & ## #) & /#
NestList[RotateLeft, k, 2]
]]
Show#Graphics[{EdgeForm[Thin], Pink,Polygon#g}]
And then replace the AppendTo by something more efficient. See for example https://mathematica.stackexchange.com/questions/845/internalbag-inside-compile
Edit
Faster:
f[1] = {{{0, 1}, {1, 0}, {0, 0}}, 8};
i = 1;
g = {};
While[i != 0,
k = f[i][[1]];
n = f[i][[2]];
i--;
If[n != 0,
g = Join[g, k];
{f[i + 1], f[i + 2], f[i + 3]} =
({{#1, Mean[{#1, #2}], Mean[{#1, #3}]}, n - 1} & ## #) & /#
NestList[RotateLeft, k, 2];
i = i + 3
]]
Show#Graphics[{EdgeForm[Thin], Pink, Polygon#g}]
Since the triangle-based functions have already been well covered, here is a raster based approach.
This iteratively constructs pascal's triangle, then takes modulo 2 and plots the result.
NestList[{0, ##} + {##, 0} & ## # &, {1}, 511] ~Mod~ 2 // ArrayPlot
Clear["`*"];
sierpinski[{a_, b_, c_}] :=
With[{ab = (a + b)/2, bc = (b + c)/2, ca = (a + c)/2},
{{a, ab, ca}, {ab, b, bc}, {ca, bc, c}}];
pts = {{0, 0}, {1, 0}, {1/2, Sqrt[3]/2}} // N;
n = 5;
d = Nest[Join ## sierpinski /# # &, {pts}, n]; // AbsoluteTiming
Graphics[{EdgeForm#Black, Polygon#d}]
(*sierpinski=Map[Mean, Tuples[#,2]~Partition~3 ,{2}]&;*)
Here is a 3D version,https://mathematica.stackexchange.com/questions/22256/how-can-i-compile-this-function
ListPlot#NestList[(# + RandomChoice[{{0, 0}, {2, 0}, {1, 2}}])/2 &,
N#{0, 0}, 10^4]
With[{data =
NestList[(# + RandomChoice#{{0, 0}, {1, 0}, {.5, .8}})/2 &,
N#{0, 0}, 10^4]},
Graphics[Point[data,
VertexColors -> ({1, #[[1]], #[[2]]} & /# Rescale#data)]]
]
With[{v = {{0, 0, 0.6}, {-0.3, -0.5, -0.2}, {-0.3, 0.5, -0.2}, {0.6,
0, -0.2}}},
ListPointPlot3D[
NestList[(# + RandomChoice[v])/2 &, N#{0, 0, 0}, 10^4],
BoxRatios -> 1, ColorFunction -> "Pastel"]
]

Mathematica 2D Heat Equation Animation

I'm working on mapping a temperature gradient in two dimensions and having a lot of trouble. My current approach is to define an Interpolating Function and then try to graph it a lot of times, then animate that table of graphs. Here's what I have so far:
RT = 388.726919
R = 1
FUNC == NDSolve[{D[T[x, y, t], t] ==
RT*(D[T[x, y, t], x, x] + D[T[x, y, t], y, y]),
T[x, y, 0] == 0,
T[0, y, t] == R*t,
T[9, y, t] == R*t,
T[x, 0, t] == R*t,
T[x, 9, t] == R*t},
T, {x, 0, 9}, {y, 0, 9}, {t, 0, 6}]
So the first two variables just control the rate of change. The equation I'm solving is the basic 2D heat equation, where dT/dt=a(d^2T/dx^2+d^2T/dy^2). The initial conditions set everything to 0, then define the edges as the source of the heat change. Right now it sweeps over a 9x9 block from t=0 to t=6.
The second part attempts to animate the function working.
ListAnimate[
Table[
DensityPlot[T[x, y, t] /. FUNC, {x, 0, 9}, {y, 0, 9}, Mesh -> 9]
, {t, 0, 6}]
]
Unfortunately, this doesn't work, and I'm going crazy trying to figure out why. I first thought it had something to do with the Interpolating Function but now I'm not so confident that the animating code works either. Anyone have any ideas?
Just a quick check:
RT = 1
R = 1
FUNC = NDSolve[{D[T[x, y, t], t] ==
RT*(D[T[x, y, t], x, x] + D[T[x, y, t], y, y]), T[x, y, 0] == 0,
T[0, y, t] == R*t,
T[9, y, t] == R*t,
T[x, 0, t] == R*t,
T[x, 9, t] == R*t}, T,
{x, 0, 9}, {y, 0, 9}, {t, 0, 6}];
a = Table[
Plot3D[T[x, y, t] /. FUNC, {x, 0, 9}, {y, 0, 9}, Mesh -> 15,
PlotRange -> {{0, 9}, {0, 9}, {-1, 10}},
ColorFunction -> Function[{x, y, z}, Hue[.3 (1 - z)]]], {t, 0, 6}]
Export["c:\anim.gif", a]
PS: A lot of mistakes are avoided by using a lowercase letter as the first char for your symbols...
I'm with Mark -- there is nothing wrong with your program. The problem is that nothing interesting happens to your function after t=0: Try having a look at
ListAnimate[
Table[Plot3D[T[x, y, t] /. FUNC, {x, 0, 9}, {y, 0, 9}, Mesh -> 9], {t, 0, 6}]]
As you can see, all that happens is a scaling, so that when DensityPlot rescales each frame independently, they end up looking identical :)

in mathematica, how to make initial condition as a variable in ndsolve?

i'd like to have something like this
w[w1_] :=
NDSolve[{y''[x] + y[x] == 2, y[0] == w1, y'[0] == 0}, y, {x, 0, 30}]
this seems like it works better but i think i'm missing smtn
w := NDSolve[{y''[x] + y[x] == 2, y[0] == w1, y'[0] == 0},
y, {x, 0, 30}]
w2 = Table[y[x] /. w, {w1, 0.0, 1.0, 0.5}]
because when i try to make a table, it doesn't work:
Table[Evaluate[y[x] /. w2], {x, 10, 30, 10}]
i get an error:
ReplaceAll::reps: {<<1>>[x]} is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
ps: is there a better place to ask questions like that? mathematica doesn't have supported forums and only has mathGroup e-mail list. it would be nice if stackoverflow would have more specific mathematica tags like simplify, ndsolve, plot manipulation
There are a lot of ways to do that. One is:
w[w1_] := NDSolve[{y''[x] + y[x] == 2,
y'[0] == 0}, y[0] == w1,
y[x], {x, 0, 30}];
Table[Table[{w1,x,y[x] /. w[w1]}, {w1, 0., 1.0, 0.5}]/. x -> u, {u, 10, 30, 10}]
Output:
{{{0., 10, {3.67814}}, {0.5, 10, {3.25861}}, {1.,10, {2.83907}}},
{{0., 20, {1.18384}}, {0.5, 20, {1.38788}}, {1.,20, {1.59192}}},
{{0., 30, {1.6915}}, {0.5, 30, {1.76862}}, {1.,30, {1.84575}}}}
I see you already chose an answer, but I want to toss this solution for families of linear equations up. Specifically, this is to model a slight variation on Lotka-Volterra.
(*Put everything in a module to scope x and y correctly.*)
Module[{x, y},
(*Build a function to wrap NDSolve, and pass it
the initial conditions and range.*)
soln[iCond_, tRange_, scenario_] :=
NDSolve[{
x'[t] == -scenario[[1]] x[t] + scenario[[2]] x[t]*y[t],
y'[t] == (scenario[[3]] - scenario[[4]]*y[t]) -
scenario[[5]] x[t]*y[t],
x[0] == iCond[[1]],
y[0] == iCond[[2]]
},
{x[t], y[t]},
{t, tRange[[1]], tRange[[2]]}
];
(*Build a plot generator*)
GeneratePlot[{iCond_, tRange_, scen_,
window_}] :=
(*Find a way to catch errors and perturb iCond*)
ParametricPlot[
Evaluate[{x[t], y[t]} /. soln[iCond, tRange, scen]],
{t, tRange[[1]], tRange[[2]]},
PlotRange -> window,
PlotStyle -> Thin, LabelStyle -> Medium
];
(*Call the plot generator with different starting conditions*)
graph[scenario_, tRange_, window_, points_] :=
{plots = {};
istep = (window[[1, 2]] - window[[1, 1]])/(points[[1]]+1);
jstep = (window[[2, 2]] - window[[2, 1]])/(points[[2]]+1);
Do[Do[
AppendTo[plots, {{i, j}, tRange, scenario, window}]
, {j, window[[2, 1]] + jstep, window[[2, 2]] - jstep, jstep}
], {i, window[[1, 1]] + istep, window[[1, 2]] - istep, istep}];
Map[GeneratePlot, plots]
}
]
]
We can then use Animate (or table, but animate is awesome)
tRange = {0, 4};
window = {{0, 8}, {0, 6}};
points = {5, 5}
Animate[Show[graph[{3, 1, 8, 2, 0.5},
{0, t}, window, points]], {t, 0.01, 5},
AnimationRunning -> False]

Resources