how to find largest value in an array without using any enumerables? - ruby

nums = [4, 6, 8, 7]
until num[index] == nil
if num[index] > num[index + 1]
puts num[index]
index += 1
elsif
index = index + 1
end
For some reason, the output I get is:
8
Traceback (most recent call last):
1: from main.rb:21:in <main>' main.rb:21:in >': comparison of Integer with nil failed (ArgumentError)
Not sure how to fix the code to not get the ArgumentError.

You could use sort plus last:
[4, 6, 8, 7].sort.last # 8
both Array methods.

We should of course keep the computational complexity to O(nums.size) (by making a single pass through the array). My friend #Sergio points out that there can be nothing simpler than
nums.max
#=> 8
which uses the method Array#max. This would also work well at Code Golf.

This should work, it'll return the largest in the array:
nums = [4, 6, 8, 7]
index=0
until index==nums.length-1 #
if nums[index] > nums[index + 1]
largest= nums[index]
index += 1
else
index = index + 1
end
end
puts largest

Related

Add diagonal difference of matrix

HackerRank Diagonal Difference Problem.
Print the absolute difference between the sums of the matrix's two diagonals as a single integer.
Link to problem: https://www.hackerrank.com/challenges/diagonal-difference/problem
I have been trying for hours to solve this problem in Ruby. I happened upon an answer that someone else figured out.
I am now please asking for help in understanding how this method works. I want to understand what it is doing. I am confused by the entirety of the loop.
a.each_with_index do |array, index|
left_right += array[index]
right_left += array[-index-1]
Could someone please explain step-by-step what is happening in this block of code so I can learn and better understand Ruby? Thank you.
def diagonalDifference(a)
left_right=0
right_left=0
a.each_with_index do |array, index|
left_right += array[index]
right_left += array[-index-1]
end
v = right_left - left_right
return v.abs
end
The main skew diagonal (or main secondary diagonal) of a nxn matrix a is comprised of the elements a[n-1][0], a[n-2][1],..., a[1][n-2], a[0][n-1]].
Part of the problem is that the variables have not been given descriptive names. I would write that as follows.
def diagonal_difference(arr)
main_diagonal_sum=0
main_skew_diagonal_sum=0
arr.each_with_index do |row, i|
main_diagonal_sum += row[i]
main_skew_diagonal_sum += row[-i-1]
end
(main_diagonal_sum - main_skew_diagonal_sum).abs
end
I expect row[-i-1] might be the most confusing part of the code. Suppose i = 0, then row[-0-1] #=> row[-1], which is the last element of row. When i = 1, row[-1-1] #=> row[-2], which is the next-to-last element of row, and so on. That could instead be written row[row.size-i-1].
Note return is not needed if, as here, the return value of the last statement executed (before the method returns) is to be returned by the method.
Let's add some puts statements in the method and work through an example.
def diagonal_difference(arr)
puts "arr=#{arr}"
main_diagonal_sum=0
main_skew_diagonal_sum=0
arr.each_with_index do |row, i|
puts "row=#{row}, i=#{i}"
main_diagonal_sum += row[i]
puts " row[#{i}]=#{row[i]}, main_diagonal_sum=#{main_diagonal_sum}"
main_skew_diagonal_sum += row[-i-1]
puts " row[-#{i}-1]=#{row[-i-1]}, main_skew_diagonal_sum=#{main_skew_diagonal_sum}"
end
(main_diagonal_sum - main_skew_diagonal_sum).abs
end
arr = [[1,2,3],
[4,5,6],
[9,8,7]]
The main diagonal sum is 1+5+7 #=> 13 and the main skew diagonal sum is 3+5+9 #=> 17, so we expect the method to return (13-17).abs #=> 4.
diagonal_difference(arr)
#=> 4
prints the following.
arr=[[1, 2, 3], [4, 5, 6], [9, 8, 7]]
row=[1, 2, 3], i=0
row[0]=1, main_diagonal_sum=1
row[-0-1]=3, main_skew_diagonal_sum=3
row=[4, 5, 6], i=1
row[1]=5, main_diagonal_sum=6
row[-1-1]=5, main_skew_diagonal_sum=8
row=[9, 8, 7], i=2
row[2]=7, main_diagonal_sum=13
row[-2-1]=9, main_skew_diagonal_sum=17
This can alternatively be written as follows. We first need a helper method to rotate a square array 90 degrees.
def rotate90(arr)
arr.map(&:reverse).transpose
end
arr = [[1,2,3],
[4,5,6],
[9,8,7]]
arr90 = rotate90(arr)
#=> [[3, 6, 7],
# [2, 5, 8],
# [1, 4, 9]]
Next, I'll add a second helper to sum the main diagonal of a square matrix. That's easiest by using Matrix#trace.
require 'matrix'
def trace(arr)
Matrix[*arr].trace
end
We therefore may write the following.
(trace(arr90) - trace(arr)).abs
#=> (17 - 13).abs => 4.abs => 4
See following
11 2 4
4 5 6
10 8 -12
So, a = [ [11, 2, 4], [4, 5, 6], [10, 8, -12] ]
Now ref each_with_index method for a.each_with_index do |array, index|. during first iteration array will be [11, 2, 4] & index will be 0. array[0] = 11 & array[-0-1] i.e. array[-1] = 4
Similarly for second iteration array[1] = 5 & array[-1-1] i.e. array[-2] = 5& so on.
You'll get
2.3.1 :360 > left_right # 11 + 5 - 12
=> 4
2.3.1 :361 > right_left # 4 + 5 + 10
=> 19
2.3.1 :362 > v = right_left - left_right
=> 15
v.abs is used to return absolute difference in case v is negative, Ref abs method of Numeric class.
Note:- return keyword is optional if it is the last non comment line in a method.
You can use the Matrix library as proposed in this answer.
require 'matrix'
(Matrix[*arr].tr - Matrix[*arr.reverse].tr).abs
Where arr is an array of depth 2 with length n and each sub-array is also of length n e.g. [[a,b],[c,d]].
Sidenote: NB I am posting this as an answer, not a comment, for the sake of formatting; it should not be upvoted.
The more ruby idiomatic version of the snippet you have posted would be:
def diagonal_difference(a)
a.each.with_object([0, 0]).with_index do |(e, left_right), idx|
left_right[0] += array[idx]
right_left[1] += array[-idx-1]
end.reduce(:-).abs
end

Collatz Chain Algorithm RUBY

I am trying to populate an array according to the Collatz sequence. The constraints for the sequence are as follows:
positive integers:
n → n/2 (n is even)
n → 3n + 1 (n is odd)
Example Output
3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1
Ideally, I wanted to construct a recursive call that would populate the array according to the constraints of the sequence. However, I believe my logic for the recursive call is extremely flawed. The intended behavior is to iterate over the nested array, manipulating only the last element of each sub array until the element reaches 1. I am trying to build my understanding of recursion and would appreciate any suggestions on how to fix this problem.
def collatzSum(maxNumber)
sequenceHash = Hash.new(0)
i = maxNumber
until i == 0 do
if i.even?
sequenceHash[i] = [(i), (i / 2)]
elsif i.odd? && i != 1
sequenceHash[i] = [(i), (3 * i + 1)]
elsif i == 1
sequenceHash[i] = [i]
end
i -= 1
end
p sequenceHash
helper_method recursion. Method should take in hash values and iterate according to if statements.
=begin
desired output
hash = {5=>[5,16, 8, 4, 2,1],
4=>[4,2,1],
3=>[3,10,5,16,8,4,2,1],
2=>[2,1],
1=>[1]}
=end
Code:
collatzChain = lambda do |k|
j = 0
k = j[-1]
until k == 1 do
if k.even?
sequenceHash[k] << (k / 2)
elsif k.odd?
sequenceHash[k] << (3 * k + 1)
end
end
j += 1
end
collatzChain.call(sequenceHash.values)
sequenceHash
end
collatzSum(5)
So you mention that you wanted a recursive algorithm, your current approach looks iterative to me. To be recursive, you need to call the method you're in with values closer and closer to a base condition and then, once you hit the base condition, you return back out, up the call chain building up your return values. So, for the Collatz sequence a recursive approach would look like:
def build_collatz_chain(max_number)
return_value = [max_number]
# our base condition is when the number passed in is equal to 1, so
# when we get 1 as the max_number, we'll return an array looking like
# [1]
return return_value if max_number == 1
if max_number.even?
# here, with an even max_number, we'll recurse and call our method
# again, passing in the new max_number, which is the current
# max_number / 2.
return_value + build_collatz_chain(max_number / 2)
else
# same as above, but we're odd, so we'll recurse with 3 * max_number + 1
return_value + build_collatz_chain(3 * max_number + 1)
end
end
and now when we call this with a value of 5, what will end up happening is something like:
call build_collatz_chain(5)
call build_collatz_chain(16)
call build_collatz_chain(8)
call build_collatz_chain(4)
call build_collatz_chain(2)
call build_collatz_chain(1)
We have hit the base condition! return with [1]
return from 2 with [2, 1]
return from 4 with [4, 2, 1]
return from 8 with [8, 4, 2, 1]
return from 16 with [16, 8, 4, 2, 1]
return from 5 with [5, 16, 8, 4, 2, 1]
So, now if you want a hash of all numbers up to the passed in max_number with their Collatz chains as values you can use a helper to call this for each value, up to max (this helper is iterative, but could be made recursive...exercise for the viewer if you want it recursive):
def collatz_sum(max_number)
{ }.tap do |sequence_hash|
max_number.downto(1) do |i|
sequence_hash[i] = build_collatz_chain(i)
end
end
end
and then when you call collatz_sum(5) you get back:
{5=>[5, 16, 8, 4, 2, 1], 4=>[4, 2, 1], 3=>[3, 10, 5, 16, 8, 4, 2, 1], 2=>[2, 1], 1=>[1]}
The reason your approach is iterative is in the collatzChain lambda, you are setting a value (j) and then incrementing it and just looping through until k is equal to 1. It's also an infinite loop because you initially set k as:
j = 0
k = j[-1]
and so k == 0, and then you iterate until k == 1 and then you never update what the value of k is again.
It's not clear that a recursive operation is necessary here since this seems to be a straightforward mapping between a value x and f(x). By switching to a simple array output you can achieve what you want with:
def collatz_sum(max)
(2..max).map do |i|
[
i,
if (i.even?)
i / 2
else
3 * i + 1
end
]
end.reverse + [ [ 1 ] ]
end

Adding the number to the according index it is positioned in

def incrementer(num)
num.map.with_index(1) do |row, index|
if row > 9
row.to_s.reverse.chop.to_i
else
index + row
end
end
end
Hi,
I have a method which adds the number to the according index it is positioned in. However I have two rules:
The index starts at (1)
If the number is a multiple, remove the first integer off the end of it. 12 would become 2 for example.
The problem is I am unsure how to include an 'if' statement inside a block and I believe I am doing it wrong. I know there is a much better way to write this statement but I am finding it hard.
Example:
incrementer([4,6,9,1,3]) => [5,8,2,5,8]
- 9 + 3 (position of 9 in array) = 12
- Only its last digit 2 should be returned
Fixing your code
Use map followed by with_index(1), the argument offsetting the initial index by +1.
def incrementer(num)
num.map.with_index(1) do |row, index|
row = index + row
if row > 9
row.digits.first
else
row
end
end
end
incrementer [3, 2, 4, 10] #=> [4, 4, 7, 4]
incrementer [4, 6, 9, 1, 3] #=> [5, 8, 2, 5, 8]
Negative numbers
Numbers can be negative and for which we can use abs.digits but it may be better to use Integer#remainder.
def incrementer(num)
num.map.with_index(1) do |row, index|
row = index + row
case row
when -9..9
row
else
row.remainder 10
end
end
end
incrementer [3, 2, 4, 10]
#=> [4, 4, 7, 4]
incrementer [4, 6, 9, 1, 3]
#=> [5, 8, 2, 5,8]
incrementer [3, 2, 4,-17]
#=> [4, 4, 7, -3]
incrementer [4, 6, -22, 1, 3]
#=> [5, 8, -9, 5, 8]
Why not use % instead of Integer#remainder?
a % b returns a modulo b which is not the same thing as the remainder. This has consequences for negative numbers:
-12 % 10 #=> 8 not the last digit
So we need to use Integer#remainder, so:
-12.remainder 10 #=> -2
Which is what we need, i.e. the last digit (parity included). It can be noted in other languages such as JavaScript, a % b returns the remainder.
As noted by #moveson the above code can be refactored to:
num.map.with_index(1) { |row, index| (index + row).remainder 10 }
The #digits method requires Rails or ActiveSupport (or Ruby 2.4+), and it's not necessary. Here is a pure Ruby solution that works with any Ruby version:
def incrementer(array)
array.map.with_index(1) { |integer, index| (integer + index) % 10 }
end
This code above says: For each element of the array, add its index (starting from 1), divide the sum by 10, and return the remainder.
The % (modulo) operator divides the number before it by the number after it and returns the remainder. For example, 22 % 7 returns 1. It's an extremely useful tool and can often help avoid the use of conditionals entirely, such as in your example. Using %, you can get the last digit of a number n (whether or not n is greater than 9) by simply taking n % 10.
Now you can do:
>> incrementer([3,2,4,10])
=> [4, 4, 7, 4]
>> incrementer([4,6,9,1,3])
=> [5, 8, 2, 5, 8]
You've got two separate problems. The first problem is your use of each_with_index. Ruby functions return the value of the last expression they execute, so if you look at your function:
def incrementer(num)
num.each_with_index do |row, index|
# do some stuff
end
end
It essentially calls each_with_index and returns the value. The issue here is that each_with_index iterates over an array and then returns the original array. What you want to do is change each item in the array and return a new array with the new values. For this, you can use map:
def incrementer(num)
num.map.with_index(1) do |row, index|
# do some stuff
end
end
In this case, you can even conveniently pass in the parameter 1 to tell the iterator to start at index 1.
Now the second problem is that your if-else-statement either iterates a number or wraps it around. But what you actually want to do is iterate a number and wrap it around if it's bigger than 9. You can do that like so:
def incrementer(num)
num.map.with_index(1) do |row, index|
row = index + row
if row > 9
row.to_s.reverse.chop.to_i
else
row
end
end
end
What we're doing here is iterating the number first, saving it into row and then checking to see if it's over 9. If it is, we return the last digit; otherwise, we just return the value row.
This code will do what you want, but let's make one more change for the sake of clarity. This code:
row.to_s.reverse.chop.to_i
Is a little bit confusing. Ruby 2.4 has a convenient method for getting at the digits of an integer:
row.digits.first
This is easy to read, but it's a bit slow since it turns an integer into an array of integers. A better way is to use modulus % to get the remainder of your number, divided by 10. This is fast and easy to read for most programmers, since it's a common trick.
row % 10
Putting it all together, you get:
def incrementer(num)
num.map.with_index(1) do |row, index|
row = index + row
if row > 9
row % 10
else
row
end
end
end
Special thanks to (#sagarpandya84) and (#moveson) for allowing me to build on their answers.

How to 'reverse sum' in Ruby?

I have no clue how to call this in correct math-terms. Consider a method which takes two digits:
def num_of_sum(total, group_count)
end
where total is an integer and group_count is an integer.
How would I get a 'nicely' grouped Array of integers of group_count-length which sum up till total.
My spec would look like:
describe "number to sum of" do
it "grabs all numbers" do
expect(num_of_sum(10, 2)).to eq([5,5])
expect(num_of_sum(10, 3)).to eq([3,3,4])
expect(num_of_sum(20, 3)).to eq([6,7,7])
expect(num_of_sum(100, 3)).to eq([33,33,34])
expect(num_of_sum(100, 2)).to eq([50,50])
end
end
I tried this, which works:
def num_of_sum(total, in_groups_of)
result = []
section_count ||= (total.to_f / in_groups_of.to_f).round
while(total > 0)
total -= section_count
if (total - section_count) < 0 && (total + section_count).even?
section_count += total
total -= total
end
result << section_count
end
result
end
But, for instance, this spec doesn't work:
expect(num_of_sum(67,5)).to eq([13,13,13,14,14])
I need the array to contain numbers that are as close to each other as possible. But the array is limited to the length of the group_count.
Does someone know what the mathemetical name for this is, so I can search a bit more accurately?
The mathematical term for this is an integer partition
A more direct approach to this is to observe that if you do integer division (round down) of the total by the number of groups, then your sum would be short by total mod number_of_groups, so you just need to distribute that amount across the array:
def even_partition(total, number_of_groups)
quotient, remainder = total.divmod(number_of_groups)
(number_of_groups-remainder).times.collect {quotient} +
remainder.times.collect { quotient + 1}
end
def n_parts(num, groupcount)
div, mod = num.divmod(groupcount)
Array.new(groupcount-mod, div) + Array.new(mod, div+1)
end
n_parts(100,3) => [33, 33, 34]
Docs to Array.new and Fixnum.divmod
A naive implementation is like this:
Let's take example of (20, 3). You want three numbers as a result.
20 / 3 # => 6
This is your "base" value. Create an array of three sixes, [6, 6, 6]. That'll get you 18. Now you have to distribute remaining 2 as equally as possible. For example, enumerate array elements and increment each one by 1, until you have no value to distribute. Result is [7, 7, 6]. Good enough, I think.
Possible (working) implementation:
def breakdown(total, group_count)
avg_value, extra = total.divmod(group_count)
result = Array.new(group_count, avg_value)
extra.times do |i|
result[i] += 1
end
result
end
breakdown(10, 2) == [5, 5] # => true
breakdown(10, 3) == [4, 3, 3] # => true
breakdown(20, 3) # => [7, 7, 6]
I have no clue how it’s called, but here is a solution:
def num_of_sum sum, count
result = [i = sum / count] * count # prepare an array e.g. [3,3,3] for 10,3
result[sum - i * count..-1] + # these should be left intact
result[0...sum - i * count].map { |i| i + 1 } # these are ++’ed
end
Hope it helps.
Another way:
def floors_then_ceils(n, groups)
floor, ceils = n.divmod(groups)
groups.times.map { |i| (i < groups-ceils) ? floor : floor + 1 }
end
floors_then_ceils(10, 3)
#=> [3, 3, 4]
floors_then_ceils(9, 3)
#=> [3, 3, 3]
Alternatively, groups.times.map... could be replaced with:
Array.new(groups-ceils, floor).concat(Array.new(ceils, floor+1))

ruby get next value on each loop

Can I get the next value in an each loop?
(1..5).each do |i|
#store = i + (next value of i)
end
where the answer would be..
1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 = 29
And also can I get the next of the next value?
From as early as Ruby 1.8.7, the Enumerable module has had a method each_cons that does almost exactly what you want:
each_cons(n) { ... } → nil
each_cons(n) → an_enumerator
Iterates the given block for each array of consecutive <n> elements. If no block is given, returns an enumerator.
e.g.:
(1..10).each_cons(3) { |a| p a }
# outputs below
[1, 2, 3]
[2, 3, 4]
[3, 4, 5]
[4, 5, 6]
[5, 6, 7]
[6, 7, 8]
[7, 8, 9]
[8, 9, 10]
The only problem is that it doesn't repeat the last element. But that's trivial to fix. Specifically, you want
store = 0
range = 1..5
range.each_cons(2) do |i, next_value_of_i|
store += i + next_value_of_i
end
store += range.end
p store # => 29
But you could also do this:
range = 1..5
result = range.each_cons(2).reduce(:+).reduce(:+) + range.end
p result # => 29
Alternatively, you may find the following to be more readable:
result = range.end + range.each_cons(2)
.reduce(:+)
.reduce(:+)
Like this:
range = 1..5
store = 0
range.each_with_index do |value, i|
next_value = range.to_a[i+1].nil? ? 0 : range.to_a[i+1]
store += value + next_value
end
p store # => 29
There may be better ways, but this works.
You can get the next of the next value like this:
range.to_a[i+2]
One approach that wouldn't use indexes is Enumerable#zip:
range = 11..15
store = 0 # This is horrible imperative programming
range.zip(range.to_a[1..-1], range.to_a[2..-1]) do |x, y, z|
# nil.to_i equals 0
store += [x, y, z].map(&:to_i).inject(:+)
end
store

Resources