Curve Algorithm used in Node-RED - algorithm

I want to know that what algorithm is used for drawing the curve line between nodes in Node-RED Editor.
Here is an screenshot of the curved line.
Thanks.

You can see the code that generates the path here:
https://github.com/node-red/node-red/blob/d57edaa4c102a1bc2ec09f7703c7c8e6cdf04894/packages/node_modules/%40node-red/editor-client/src/js/ui/view.js#L666
It varies the approach used to determine the path based on the relative position of the two nodes it is connecting.
If the nodes don't overlap (that is, the right edge of the source node is to the left of the left edge of the destination node), then a simple bezier curve is used. The positions of the control points determined by the relative distance between the nodes.
If the destination node is further to the left of the source node (that is, the wire has to loop back on itself), then it gets more complicated, using 4 different curves. Again, all of the control points are determined by the relative distance and other scaling factors.

Related

Shortest path in a maze

I'm developing a game similar to Pacman: consider this maze:
Each white square is a node from the maze where an object located at P, say X, is moving towards node A in the right-to-left direction. X cannot switch to its opposite direction unless it encounters a dead-end such as A. Thus the shortest path joining P and B goes through A because X cannot reverse its direction towards the rightmost-bottom node (call it C). A common A* algorithm would output:
to get to B from P first go rightward, then go upward;
which is wrong. So I thought: well, I can set the C's visited attribute to true before running A* and let the algorithm find the path. Obviously this method doesn't work for the linked maze, unless I allow it to rediscover some nodes (the question is: which nodes? How to discriminate from useless nodes?). The first thinking that crossed my mind was: use the previous method always keeping track of the last-visited cell; if the resulting path isn't empty, you are done. Otherwise, when you get to the last-visited dead-end, say Y, (this step is followed by the failing of A*) go to Y, then use standard A* to get to the goal (I'm assuming the maze is connected). My questions are: is this guaranteed to work always? Is there a more efficient algorithm, such as an A*-derived algorithm modified to this purpose? How would you tackle this problem? I would greatly appreciate an answer explaining both optimal and non-optimal search techniques (actually I don't need the shortest path, a slightly long path is good, but I'm curious if such an optimal algorithm running as efficiently as Dijkstra's algorithm exists; if it does, what is its running time compared to a non-optimal algorithm?)
EDIT For Valdo: I added 3 cells in order to generalize a bit: please tell me if I got the idea:
Good question. I can suggest the following approach.
Use Dijkstra (or A*) algorithm on a directed graph. Each cell in your maze should be represented by multiple (up to 4) graph nodes, each node denoting the visited cell in a specific state.
That is, in your example you may be in the cell denoted by P in one of 2 states: while going left, and while going right. Each of them is represented by a separate graph node (though spatially it's the same cell). There's also no direct link between those 2 nodes, since you can't switch your direction in this specific cell.
According to your rules you may only switch direction when you encounter an obstacle, this is where you put links between the nodes denoting the same cell in different states.
You may also think of your graph as your maze copied into 4 layers, each layer representing the state of your pacman. In the layer that represents movement to the right you put only links to the right, also w.r.t. to the geometry of your maze. In the cells with obstacles where moving right is not possible you put links to the same cells at different layers.
Update:
Regarding the scenario that you described in your sketch. It's actually correct, you've got the idea right, but it looks complicated because you decided to put links between different cells AND states.
I suggest the following diagram:
The idea is to split your inter-cell AND inter-state links. There are now 2 kinds of edges: inter-cell, marked by blue, and inter-state, marked by red.
Blue edges always connect nodes of the same state (arrow direction) between adjacent cells, whereas red edges connect different states within the same cell.
According to your rules the state change is possible where the obstacle is encountered, hence every state node is the source of either blue edges if no obstacle, or red if it encounters an obstacle (i.e. can't emit a blue edge). Hence I also painted the state nodes in blue and red.
If according to your rules state transition happens instantly, without delay/penalty, then red edges have weight 0. Otherwise you may assign a non-zero weight for them, the weight ratio between red/blue edges should correspond to the time period ratio of turn/travel.

Finding a possible path between 2 points with limited circle-ranges (algorithm)

I'm currently struggling in finding an algorithm if a path is possible or not.
I have a field of points, the positions of these points are fully random. I have also a starting point, and a destination point. On my starting point I can jump to any point around the starting point in a limited radius, and continue the same from there, but only with a limited amount of jumps. Performance in this case is important! Existant algorithms like Dijkstra won't help me here.
Any idea?
You could construct an undirected graph with the points as vertices. Each of the edges connects two points which are no further apart than the jump distance limit. Once this graph is constructed, you can find the shortest path with traditional algorithms.
To construct the graph, you could assign the points to a grid of 2D matrix cells. The cell hight and width is the jump radius limit. Candidate points for an edge for a given point have to belong to its matrix cell or directly adjacent cells. This reduces the construction time.
A further speedup could be to restrict a first version of the graph to those grid cells which are located near the direct line-of-sight between start and end point. Only if the search is not sucessfull, you could broaden the search area and try again.
If start and end point are further apart than radius limit times jump limit, no feasible path exists.
Just in case someone want have a solution:
Since the amount of jumps are limited I've created a radial grid, where the maximum radius is the amount of circles multiplied by their own radius.
After that I simply use an A-star path finder. (I used one existant by http://www.rapidfirestudio.com)

Shortest Path, but on a physical maze

I'm implementing a robot to be able to solve any maze (where the robot only has front sensors, but I make it scan the surroundings), and I was able to get it to turn the maze into a map where 0 represents walls, and 1 represents roads, with possibly slanted roads. Now, the robot is not fast at turning, but fairly fast at moving down a straight line. Therefore, a normal shortest path algorithm through the somewhat slanted hallway would be slow, although the paths are wide enough for it.
For example, we find
0001111111000
0011111110000
0111111100000
1111111000000
1111110000000
As a possible map. I'd like the robot to recognize that it can walk diagonally, or even just go straight up then right then right again, instead of turning every time in a normal shortest path algorithm.
Any ideas? Also, a complete algorithm change is welcome too - I'm fairly new to this.
I've faced similar problem some time ago.
You can assign weights to surrounding cells and less weight to the front cell, thus making a weight graph that is made during the movement.
I used Dijkstra algorithm with weights of 2 for surrounding cells and weight 1 for the front cell, you must pass direction of robot to Dijkstra and when adding them to the priority queue, and when extracting cells from the queue add the neighbors with respect to the direction saved in the extracted cell.
Then make the move and then recompute the modified Dijkstra for finding the nearest unseen cell.

Finding the starting vertex for Dijkstra's algorithm?

Imagine I am implementing Dijkstra's algorithm at a park. There are points and connections between those points; these specify valid paths the user can walk on (e.g. sidewalks).
Now imagine that the user is on the grass (i.e. not on a path) and wants to navigate to another location. The problem is not in Dijkstra's algorithm (which works fine), the problem is determining at which vertex to begin.
Here is a picture of the problem: (ignore the dotted lines for now)
Black lines show the edges in Dijkstra's algorithm; likewise, purple circles show the vertices. Sidewalks are in gray. The grass is, you guessed it, green. The user is located at the red star, and wants to get to the orange X.
If I naively look for the nearest vertex and use that as my starting point, the user is often directed to a suboptimal path, that involves walking further away from their destination at the start (i.e. the red solid path).
The blue solid path is the optimal path that my algorithm would ideally come up with.
Notes:
Assume no paths cross over other paths.
When navigating to a starting point, the user should never cross over a path (e.g. sidewalk).
In the image above, the first line segment coming out of the star is created dynamically, simply to assist the user. The star is not a vertex in the graph (since the user can be anywhere inside the grass region). The line segment from the star to a vertex is simply being displayed so that the user knows how to get to the first valid vertex in the graph.
How can I implement this efficiently and correctly?
Idea #1: Find the enclosing polygon
If I find the smallest polygon which surrounds my starting point, I can now create new paths for Dijkstra's algorithm from the starting point (which will be added as a new vertex temporarily) to each of the vertices that make up the polygon. In the example above, the polygon has 6 sides, so this would mean creating 6 new paths to each of its vertices (i.e. the blue dotted lines). I would then be able to run Dijkstra's algorithm and it would easily determine that the blue solid line is the optimal path.
The problem with this method is in determining which vertices comprise the smallest polygon that surrounds my point. I cannot create new paths to each vertex in the graph, otherwise I will end up with the red dotted lines as well, which completely defeats the purpose of using Dijkstra's algorithm (I should not be allowed to cross over a sidewalk). Therefore, I must take care to only create paths to the vertices of the enclosing polygon. Is there an algorithm for this?
There is another complication with this solution: imagine the user now starts at the purple lightning bolt. It has no enclosing polygon, yet the algorithm should still work by connecting it to the 3 points at the top right. Again, once it is connected to those, running Dijkstra's is easy.
Update: the reason we want to connect to one of these 3 points and not walk around everything to reach the orange X directly is because we want to minimize the walking done on unpaved paths. (Note: This is only a constraint if you start outside a polygon. We don't care how long you walk on the grass if it is within a polygon).
If this is the correct solution, then please post its algorithm as an answer.
Otherwise, please post a better solution.
You can start off by running Dijkstra from the target to find its distance to all vertices.
Now let's consider the case where you start "inside" the graph on the grass. We want to find all vertices that we can reach via a straight line without crossing any edge. For that we can throw together all the line segments representing the edges and the line segments connecting the start point to every vertex and use a sweep-line algorithm to find whether the start-vertex lines intersect any edge.
Alternatively you can use any offline algorithm for planar point location, those also work with a sweep line. I believe this is in the spirit of the more abstract algorithm proposed in the question in that it reports the polygon that surrounds the point.
Then we just need to find the vertex whose connection line to the start does not intersect any edge and the sum d(vertex, target) + d(vertex, start) is minimum.
The procedure when the vertex is outside the graph is somewhat underspecified, but I guess the exact same idea would work. Just keep in mind that there is the possibility to walk all around the graph to the target if it is on the border, like in your example.
This could probably be implemented in O((n+m) log m) per query. If you run an all-pairs shortest path algorithm as a preprocessing step and use an online point location algorithm, you can get logarithmic query time at the cost of the space necessary to store the information to speed up shortest path queries (quadratic if you just store all distance pairs).
I believe simple planar point location works just like the sweep line approaches, only with persistent BSTs to store all the sweepline states.
I'm not sure why you are a bothering with trying to find a starting vertex when you already have one. The point you (the user) are standing at is another vertex in of itself. So the real question now is to find the distance from your starting point to any other point in the enclosing polygon graph. And once you have that, you can simply run Dijkstra's or another shortest path algorithm method like A*, BFS, etc, to find the shortest path to your goal point.
On that note, I think you are better off implementing A* for this problem because a park involves things like trees, playgrounds, ponds (sometimes), etc. So you will need to use a shortest path algorithm that takes these into consideration, and A* is one algorithm that uses these factors to determine a path of shortest length.
Finding distance from start to graph:
The problem of finding the distance from your new vertex to other vertices can be done by only looking for points with the closest x or y coordinate to your start point. So this algorithm has to find points that form a sort of closure around the start point, i.e. a polygon of minimum area which contains the point. So as #Niklas B suggested, a planar point algorithm (with some modifications) might be able to accomplish this. I was looking at the sweep-line algorithm, but that only works for line segments so that will not work (still worth a shot, with modifications might be able to give the correct answer).
You can also decide to implement this algorithm in stages, so first, find the points with the closest y coordinate to the current point (Both negative and positive y, so have to use absolute value), then among those points, you find the ones with the closest x coordinate to the current point and that should give you the set of points that form the polygon. Then these are the points you use to find the distance from your start to the graph.

Suggestions on speeding up edge selection

I am building a graph editor in C# where the user can place nodes and then connect them with either a directed or undirected edge. When finished, an A* pathfinding algorithm determines the best path between two nodes.
What I have: A Node class with an x, y, list of connected nodes and F, G and H scores.
An Edge class with a Start, Finish and whether or not it is directed.
A Graph class which contains a list of Nodes and Edges as well as the A* algorithm
Right now when a user wants to select a node or an edge, the mouse position gets recorded and I iterate through every node and edge to determine whether it should be selected. This is obviously slow. I was thinking I can implement a QuadTree for my nodes to speed it up however what can I do to speed up edge selection?
Since users are "drawing" these graphs I would assume they include a number of nodes and edges that humans would likely be able to generate (say 1-5k max?). Just store both in the same QuadTree (assuming you already have one written).
You can easily extend a classic QuadTree into a PMR QuadTree which adds splitting criteria based on the number of line segments crossing through them. I've written a hybrid PR/PMR QuadTree which supported bucketing both points and lines, and in reality it worked with a high enough performance for 10-50k moving objects (rebalancing buckets!).
So your problem is that the person has already drawn a set of nodes and edges, and you'd like to make the test to figure out which edge was clicked on much faster.
Well an edge is a line segment. For the purpose of filtering down to a small number of possible candidate edges, there is no harm in extending edges into lines. Even if you have a large number of edges, only a small number will pass close to a given point so iterating through those won't be bad.
Now divide edges into two groups. Vertical, and not vertical. You can store the vertical edges in a sorted datastructure and easily test which vertical lines are close to any given point.
The not vertical ones are more tricky. For them you can draw vertical boundaries to the left and right of the region where your nodes can be placed, and then store each line as the pair of heights at which the line intersects those lines. And you can store those pairs in a QuadTree. You can add to this QuadTree logic to be able to take a point, and search through the QuadTree for all lines passing within a certain distance of that point. (The idea is that at any point in the QuadTree you can construct a pair of bounding lines for all of the lines below that point. If your point is not between those lines, or close to them, you can skip that section of the tree.)
I think you have all the ingredients already.
Here's a suggestion:
Index all your edges in a spatial data structure (could be QuadTree, R-Tree etc.). Every edge should be indexed using its bounding box.
Record the mouse position.
Search for the most specific rectangle containing your mouse position.
This rectangle should have one or more edges/nodes; Iterate through them, according to the needed mode.
(The tricky part): If the user has not indicated any edge from the most specific rectangle, you should go up one level and iterate over the edges included in this level. Maybe you can do without this.
This should be faster.

Resources