Shortest Path, but on a physical maze - algorithm

I'm implementing a robot to be able to solve any maze (where the robot only has front sensors, but I make it scan the surroundings), and I was able to get it to turn the maze into a map where 0 represents walls, and 1 represents roads, with possibly slanted roads. Now, the robot is not fast at turning, but fairly fast at moving down a straight line. Therefore, a normal shortest path algorithm through the somewhat slanted hallway would be slow, although the paths are wide enough for it.
For example, we find
0001111111000
0011111110000
0111111100000
1111111000000
1111110000000
As a possible map. I'd like the robot to recognize that it can walk diagonally, or even just go straight up then right then right again, instead of turning every time in a normal shortest path algorithm.
Any ideas? Also, a complete algorithm change is welcome too - I'm fairly new to this.

I've faced similar problem some time ago.
You can assign weights to surrounding cells and less weight to the front cell, thus making a weight graph that is made during the movement.
I used Dijkstra algorithm with weights of 2 for surrounding cells and weight 1 for the front cell, you must pass direction of robot to Dijkstra and when adding them to the priority queue, and when extracting cells from the queue add the neighbors with respect to the direction saved in the extracted cell.
Then make the move and then recompute the modified Dijkstra for finding the nearest unseen cell.

Related

shortest path to surround a target in a weighted 2d array

I'm having some trouble finding the right approach to coding this.
Take a random-generated 2d array, about 50x50 with each cell having a value 1~99.
Starting at a random position "Green", and the goal is to surround the target "Red" with the lowest amount of actions.
Moving to a neighboring cell takes 1~99 actions depending on it's value.
example small array with low values:
[
Currently the best idea i have is, generate 4 sets of checkpoints based on the diagonals of the target and then using a lot of Dijkstra's to find a path that goes through all of them, as well as the starting point.
One problem i have is this very quickly becomes an extreme numbers of paths.
FROM any starting point "NorthWest-1 to NW-20" TO any ending point in "NE-1 to NE-20", is 400 possibilities. Adding the 3rd and 4th diagonal to that becomes 400 * 20 * 20.
Another problem using diagonal checkpoints is that the problem is not [shortest path from green to a diagonal (orange path)]
[
but rather from "green to any point on the path around red".
Current pseudocode;
take 2 sets of diagonals nearest to Green/start
find the shortest path that connects those diagonals while going through Green
(backtracking through the path is free)
draw a line starting from the target point, in-between the 2 connected diagonals,
set those cells to value infinite to force going around them (and thus around the target)
find the shortest path connecting the now-seperated diagonals
Unfortunately this pseudocode already includes some edge cases where the 'wall' blocks the most efficient path.
If relevant, this will be written in javascript.
Edit, as an edge case it could spiral the target before surrounding, though extremely rare
Edit2; "Surround" means disconnect the target from the rest of the field, regardless of how large the surrounded area is, or even if it includes the starting point (eg, all edges are 0)
Here is another larger field with (probably) optimal path, and 2 fields in text-form:
https://i.imgur.com/yMA14sS.png
https://pastebin.com/raw/YD0AG6YD
For short, let us call paths that surround the target fences. A valid fence is a set of (connected) nodes that makes the target disconnected from the start, but does not include the target. A minimal fence is one that does so while having a minimal cost. A lasso could be a fence that includes a path to the start node. The goal is to build a minimal-cost lasso.
A simple algorithm would be to use the immediate neighborhood of the target as a fence, and run Dijkstra to any of those fence-nodes to build a (probably non-optimal) lasso. Note that, if optimal answers are required, the choice of fence actually influences the choice of path from the start to the fence -- and vice-versa, the choice of path from start to fence can influence how the fence itself is chosen. The problem cannot be split neatly into two parts.
I believe that the following algorithm will yield optimal fences:
Build a path using Dijkstra from start to target (not including the end-points). Let us call this the yellow path.
Build 2 sets of nodes, one on each side of this yellow path, and neighboring it. Call those sets red and blue. Note that, for any given node that neighbors the path, it can either be part of the path, blue set, red set, or is actually an end-point.
For each node in the red set, run Dijkstra to find the shortest path to a node in the blue set that does not cross the yellow path.
For each of those previous paths, see which is shortest after adding the (missing) yellow-path bit to connect the blue and red ends together.
The cost is length(yellowPath) * cost_of_Dijkstra(redStart, anyBlue)
To make a good lasso, it would be enough to run Dijkstra from the start to any fence node. However, I am unsure of whether the final lasso will be optimal or not.
You might want to consider the A* search algorithm instead, you can probably adjust the algorithm to search for all 4 spots at once.
https://en.wikipedia.org/wiki/A*_search_algorithm
Basically A* expands Dijkstra's algorithm by focusing it's search on spots that are "closer" to the destination.
There are a number of other variations for search algorithms that may be more useful for your situation as well in the "Also See" section, though some of them are more suited for video game path planning rather than 2D grid paths.
Edit after reviewing question again:
Seems each spot has a weight. This makes the distance calculation a bit less straightforward. In this case, I would treat it as an optimization. For the heuristic cost function, it may be best to just use the most direct path (diagonal) to the goal as the heuristic cost, and then just use A* search to try to find an even better path.
As for the surround logic. I would treat that as it's own logic and a separate step (likely the second step). Find least cost path to the target first. Then find the cheapest way to surround the path. Honestly, the cheapest way to surround a point is probably worth it's own question.
Once you have both parts, it should be easy enough to merge the two. There will be some point where the two first overlap and that is where they are merged together.

Shortest path in a maze

I'm developing a game similar to Pacman: consider this maze:
Each white square is a node from the maze where an object located at P, say X, is moving towards node A in the right-to-left direction. X cannot switch to its opposite direction unless it encounters a dead-end such as A. Thus the shortest path joining P and B goes through A because X cannot reverse its direction towards the rightmost-bottom node (call it C). A common A* algorithm would output:
to get to B from P first go rightward, then go upward;
which is wrong. So I thought: well, I can set the C's visited attribute to true before running A* and let the algorithm find the path. Obviously this method doesn't work for the linked maze, unless I allow it to rediscover some nodes (the question is: which nodes? How to discriminate from useless nodes?). The first thinking that crossed my mind was: use the previous method always keeping track of the last-visited cell; if the resulting path isn't empty, you are done. Otherwise, when you get to the last-visited dead-end, say Y, (this step is followed by the failing of A*) go to Y, then use standard A* to get to the goal (I'm assuming the maze is connected). My questions are: is this guaranteed to work always? Is there a more efficient algorithm, such as an A*-derived algorithm modified to this purpose? How would you tackle this problem? I would greatly appreciate an answer explaining both optimal and non-optimal search techniques (actually I don't need the shortest path, a slightly long path is good, but I'm curious if such an optimal algorithm running as efficiently as Dijkstra's algorithm exists; if it does, what is its running time compared to a non-optimal algorithm?)
EDIT For Valdo: I added 3 cells in order to generalize a bit: please tell me if I got the idea:
Good question. I can suggest the following approach.
Use Dijkstra (or A*) algorithm on a directed graph. Each cell in your maze should be represented by multiple (up to 4) graph nodes, each node denoting the visited cell in a specific state.
That is, in your example you may be in the cell denoted by P in one of 2 states: while going left, and while going right. Each of them is represented by a separate graph node (though spatially it's the same cell). There's also no direct link between those 2 nodes, since you can't switch your direction in this specific cell.
According to your rules you may only switch direction when you encounter an obstacle, this is where you put links between the nodes denoting the same cell in different states.
You may also think of your graph as your maze copied into 4 layers, each layer representing the state of your pacman. In the layer that represents movement to the right you put only links to the right, also w.r.t. to the geometry of your maze. In the cells with obstacles where moving right is not possible you put links to the same cells at different layers.
Update:
Regarding the scenario that you described in your sketch. It's actually correct, you've got the idea right, but it looks complicated because you decided to put links between different cells AND states.
I suggest the following diagram:
The idea is to split your inter-cell AND inter-state links. There are now 2 kinds of edges: inter-cell, marked by blue, and inter-state, marked by red.
Blue edges always connect nodes of the same state (arrow direction) between adjacent cells, whereas red edges connect different states within the same cell.
According to your rules the state change is possible where the obstacle is encountered, hence every state node is the source of either blue edges if no obstacle, or red if it encounters an obstacle (i.e. can't emit a blue edge). Hence I also painted the state nodes in blue and red.
If according to your rules state transition happens instantly, without delay/penalty, then red edges have weight 0. Otherwise you may assign a non-zero weight for them, the weight ratio between red/blue edges should correspond to the time period ratio of turn/travel.

Merge adjacent vertices of a graph until single vertex left in the fewest steps possible

I have a game system that can be represented as an undirected, unweighted graph where each vertex has one (relevant) property: a color. The goal of the game in terms of the graph representation is to reduce it down to one vertex in the fewest "steps" possible. In each step, the player can change the color of any one vertex, and all adjacent vertices of the same color are merged with it. (Note that in the example below I just happened to show the user only changing one specific vertex the whole game, but the user can pick any vertex in each step.)
What I am after is a way to compute the fewest amount of steps necessary to "beat" a given graph per the procedure described above, and also provide the specific moves needed to do so. I'm familiar with the basics of path-finding, BFS, and things of that nature, but I'm having a hard time framing this problem in terms of a "fastest path" solution.
I am unable to find this same problem anywhere on Google, or even a graph-theory term that encapsulates the problem. Does anyone have an idea of at least how to get started approaching this problem? Can anyone point me in the right direction?
EDIT Since this problem seems to be really difficult to solve efficiently, perhaps I could change the aim of my question. Could someone describe how I would even set up a brute force, breadth first search for this? (Brute force could possibly be okay, since in practice these graphs will only be 20 vertices at most.) I know how to write a BFS for a normal linked graph data structure... but in this case it seems quite weird since each vertex would have to contain a whole graph within itself, and the next vertices in the search graph would have to be generated based on possible moves to make in the graph within the vertex. How would one setup the data structure and search algorithm to accomplish this?
EDIT 2 This is an old question, but I figured it might help to just state outright what the game was. The game was essentially to be a rip-off of Kami 2 for iOS, except my custom puzzle editor would automatically figure out the quickest possible way to solve your puzzle, instead of having to find the shortest move number by trial and error yourself. I'm not sure if Kami was a completely original game concept, or if there is a whole class of games like it with the same "flood-fill" mechanic that I'm unaware of. If this is a common type of game, perhaps knowing the name of it could allow finding more literature on the algorithm I'm seeking.
EDIT 3 This Stack Overflow question seems like it may have some relevant insights.
Intuitively, the solution seems global. If you take a larger graph, for example, which dot you select first will have an impact on the direct neighbours which will have an impact on their neighbours and so on.
It sounds as if it were of the same breed of problems as the map colouring problem. Not because of the colours but because of the implications of a local selection to the other end of the graph down the road. In the map colouring, you have to decide what colour to draw a country and its neighbouring countries so two countries that touch don't have the same colour. That first set of selections have an impact on whether there is a solution in the subsequent iterations.
Just to show how complex problem is.
Lets check simpler problem where graph is changed with a tree, and only root vertex can change a colour. In that case path to a leaf can be represented as a sequence of colours of vertices on that path. Sequence A of colour changes collapses a leaf if leaf's sequence is subsequence of A.
Problem can be stated that for given set of sequences problem is to find minimal length sequence (S) so that each initial sequence is contained in S. That is called shortest common supersequence problem, and it is NP-complete.
Your problem is for sure more complex than this one :-/
Edit *
This is a comment on question's edit. Check this page for a terms.
Number of minimal possible moves is >= than graph radius. With that it seems good strategy to:
use central vertices for moves,
use moves that reduce graph radius, or at least reduce distance from central vertices to 'large' set of vertices.
I would go with a strategy that keeps track of central vertices and distances of all graph vertices to these central vertices. Step is to check all meaningful moves and choose one that reduce radius or distance to central vertices the most. I think BFS can be used for distance calculation and how move influences them. There are tricky parts, like when central vertices changes after moves. Maybe it is good idea to use not only central vertices but also vertices close to central.
I think the graph term you are looking for is the "valence" of a graph, which is the number of edges that a node is connected to. It looks like you want to change the color based on what node has the highest valence. Then in the resulting graph change the color for the node that has the highest valence, etc. until you have just one node left.

Continuous space shortest path

I need a shortest path algorithm for controlling a real life robot.
Lets say i have map of the environment in the form of a matrix where 1 is an obstacle and 0 is free space. If i use a conventional shortest path algorithm, such as A* then that would give me a Manhattan distance shortest path. So nowhere near a the actual shortest path. This problem arises since i cannot think of a way to penalize movement in such a way that a diagonal line is better than two straight lines. I can make a heuristic that will make A* try euclidean shortest path between two points first, but not actually make euclidean shortest path a better path.
Does anyone know of a method to get the continuous space shortest path? It does not have to be the actual optimal path, but a better one than straight lines and 90 degree angles.
I have one idea:
From the start point make a circle.
Increase the radius of the circle until the one point on the circle is next to a wall, or at the goal. All the points on the edge of the circle are set as children nodes with the penalty of the radius of the circle. All points inside the circle, that are not open, will be closed since there is no reason to test them. Repeat this in an A* way with euclidean shortest path as heuristic, until the goal state is reached.Make the robot go from one point to the next in a straight line.
This should give something closer to what i am looking for. A set of straight lines with various angles. It would of course be better with a continuous curvy line...
I have implemented a continuous space path planning algorithm and blogged about it here. It uses A* to get an initial estimate and finalizes it (and pennalizes for sharp turns and robot's orientation at the destination) by using the simple gradient descent algorithm.
Let's say the discrete path from A* has n "waypoints" (coordinates on the grid). First and last ones cannot be moved but others can, as long as the path doesn't go through blocked grid cells. The function to be minimized is parametrized by n - 2 parameters which move waypoints perpendicular to its current direction.

Finding the starting vertex for Dijkstra's algorithm?

Imagine I am implementing Dijkstra's algorithm at a park. There are points and connections between those points; these specify valid paths the user can walk on (e.g. sidewalks).
Now imagine that the user is on the grass (i.e. not on a path) and wants to navigate to another location. The problem is not in Dijkstra's algorithm (which works fine), the problem is determining at which vertex to begin.
Here is a picture of the problem: (ignore the dotted lines for now)
Black lines show the edges in Dijkstra's algorithm; likewise, purple circles show the vertices. Sidewalks are in gray. The grass is, you guessed it, green. The user is located at the red star, and wants to get to the orange X.
If I naively look for the nearest vertex and use that as my starting point, the user is often directed to a suboptimal path, that involves walking further away from their destination at the start (i.e. the red solid path).
The blue solid path is the optimal path that my algorithm would ideally come up with.
Notes:
Assume no paths cross over other paths.
When navigating to a starting point, the user should never cross over a path (e.g. sidewalk).
In the image above, the first line segment coming out of the star is created dynamically, simply to assist the user. The star is not a vertex in the graph (since the user can be anywhere inside the grass region). The line segment from the star to a vertex is simply being displayed so that the user knows how to get to the first valid vertex in the graph.
How can I implement this efficiently and correctly?
Idea #1: Find the enclosing polygon
If I find the smallest polygon which surrounds my starting point, I can now create new paths for Dijkstra's algorithm from the starting point (which will be added as a new vertex temporarily) to each of the vertices that make up the polygon. In the example above, the polygon has 6 sides, so this would mean creating 6 new paths to each of its vertices (i.e. the blue dotted lines). I would then be able to run Dijkstra's algorithm and it would easily determine that the blue solid line is the optimal path.
The problem with this method is in determining which vertices comprise the smallest polygon that surrounds my point. I cannot create new paths to each vertex in the graph, otherwise I will end up with the red dotted lines as well, which completely defeats the purpose of using Dijkstra's algorithm (I should not be allowed to cross over a sidewalk). Therefore, I must take care to only create paths to the vertices of the enclosing polygon. Is there an algorithm for this?
There is another complication with this solution: imagine the user now starts at the purple lightning bolt. It has no enclosing polygon, yet the algorithm should still work by connecting it to the 3 points at the top right. Again, once it is connected to those, running Dijkstra's is easy.
Update: the reason we want to connect to one of these 3 points and not walk around everything to reach the orange X directly is because we want to minimize the walking done on unpaved paths. (Note: This is only a constraint if you start outside a polygon. We don't care how long you walk on the grass if it is within a polygon).
If this is the correct solution, then please post its algorithm as an answer.
Otherwise, please post a better solution.
You can start off by running Dijkstra from the target to find its distance to all vertices.
Now let's consider the case where you start "inside" the graph on the grass. We want to find all vertices that we can reach via a straight line without crossing any edge. For that we can throw together all the line segments representing the edges and the line segments connecting the start point to every vertex and use a sweep-line algorithm to find whether the start-vertex lines intersect any edge.
Alternatively you can use any offline algorithm for planar point location, those also work with a sweep line. I believe this is in the spirit of the more abstract algorithm proposed in the question in that it reports the polygon that surrounds the point.
Then we just need to find the vertex whose connection line to the start does not intersect any edge and the sum d(vertex, target) + d(vertex, start) is minimum.
The procedure when the vertex is outside the graph is somewhat underspecified, but I guess the exact same idea would work. Just keep in mind that there is the possibility to walk all around the graph to the target if it is on the border, like in your example.
This could probably be implemented in O((n+m) log m) per query. If you run an all-pairs shortest path algorithm as a preprocessing step and use an online point location algorithm, you can get logarithmic query time at the cost of the space necessary to store the information to speed up shortest path queries (quadratic if you just store all distance pairs).
I believe simple planar point location works just like the sweep line approaches, only with persistent BSTs to store all the sweepline states.
I'm not sure why you are a bothering with trying to find a starting vertex when you already have one. The point you (the user) are standing at is another vertex in of itself. So the real question now is to find the distance from your starting point to any other point in the enclosing polygon graph. And once you have that, you can simply run Dijkstra's or another shortest path algorithm method like A*, BFS, etc, to find the shortest path to your goal point.
On that note, I think you are better off implementing A* for this problem because a park involves things like trees, playgrounds, ponds (sometimes), etc. So you will need to use a shortest path algorithm that takes these into consideration, and A* is one algorithm that uses these factors to determine a path of shortest length.
Finding distance from start to graph:
The problem of finding the distance from your new vertex to other vertices can be done by only looking for points with the closest x or y coordinate to your start point. So this algorithm has to find points that form a sort of closure around the start point, i.e. a polygon of minimum area which contains the point. So as #Niklas B suggested, a planar point algorithm (with some modifications) might be able to accomplish this. I was looking at the sweep-line algorithm, but that only works for line segments so that will not work (still worth a shot, with modifications might be able to give the correct answer).
You can also decide to implement this algorithm in stages, so first, find the points with the closest y coordinate to the current point (Both negative and positive y, so have to use absolute value), then among those points, you find the ones with the closest x coordinate to the current point and that should give you the set of points that form the polygon. Then these are the points you use to find the distance from your start to the graph.

Resources