Create a custom `ls` but only for manual use - bash

I'm thinking of writing my own ls command. Mostly as a learning experience, but I also think I can make it a bit more useful (for me) than the default.
I'm worried though that if I alias ls, this also interferes with any bash/sh scripts that use ls as it's output.
Is there a way to override ls, but only when it's not used in scripts (or pipes?)

You're worried that aliasing your version of ls will interfere with other processes.
Let's have a look at the POSIX standard.
From the man page of alias:
Historical versions of the KornShell have allowed aliases to be
exported to scripts that are invoked by the same shell. This is
triggered by the alias −x flag; it is allowed by this volume of
POSIX.1‐2008 only when an explicit extension such as −x is used. The
standard developers considered that aliases were of use primarily to
interactive users and that they should normally not affect shell
scripts called by those users; functions are available to such
scripts.
So, what does "normally" mean for bash? For instance, which version of ls would be used inside a shell script?
From the man page of bash:
Aliases are not expanded when the shell is not interactive, unless the
expand_aliases shell option is set using shopt (see the description of
shopt under SHELL BUILTIN COMMANDS below).
That means, you don't have to worry about shell scripts - they will use the unaliased version of ls.
But what about pipes? Again, we can combine those two man pages for great good:
From the man page of bash:
Each command in a pipeline is executed as a separate process (i.e., in
a subshell).
From the man page of alias:
An alias definition shall affect the current shell execution
environment and the execution environments of the subshells of the
current shell. When used as specified by this volume of POSIX.1‐2008,
the alias definition shall not affect the parent process of the
current shell nor any utility environment invoked by the shell
That is, while your alias will not be used inside shell scripts, it will be used in pipes.

Related

Script runs when executed but fails when sourced

Original Title: Indirect parameter substitution breaks when the script is sourced (zsh)
zsh 5.7.1 (x86_64-apple-darwin19.0)
GNU bash, version 4.4.20(1)-release (x86_64-pc-linux-gnu)
I’m developing a shell script on a Mac and I’m trying to keep it portable between bash & zsh, so array indexing is a consideration. I know that I can set KSH_ARRAYS to get indexing to start at 0, but I decided to query the OS for the shell that’s in use and set the start index accordingly, which led to the issue described below.
It made sense (to me anyway!) to use indirect expansion, which is what led to the problem. Consider the script indirect.sh:
#! /bin/bash
declare -r ARRAY_START_BASH=0
declare -r ARRAY_START_ZSH=1
declare -r SHELL_BASH=0
declare -r SHELL_ZSH=1
# Indirect expansion is used to reference the values of the variables declared
# in this case statement e.g. ${!ARRAY_START}
case $(basename $SHELL) in
"bash" )
declare -r SHELL_ID=SHELL_BASH
declare -r ARRAY_START=ARRAY_START_BASH
;;
"zsh" )
declare -r SHELL_ID=SHELL_ZSH
declare -r ARRAY_START=ARRAY_START_ZSH
;;
* )
return 1
;;
esac
echo "Shell ID: ${!SHELL_ID} Index arrays from: ${!ARRAY_START}"
It works fine when run from the command line while in the same directory:
<my home> ~ % echo "$(./indirect.sh)"
Shell ID: 1 Index arrays from: 1
Problems arise when I source the script:
<my home> ~ % echo "$(. ~/indirect.sh)"
/Users/<me>/indirect.sh:28: bad substitution
I don’t understand why sourcing the script changes the behavior of the parameter expansion.
Is this expected behavior? If so, I’d be grateful if someone could explain it and hopefully, offer a work around.
The problem described in the original post has nothing to do with indirect expansion. The difference in behavior is a result of different shells being invoked depending on whether the script is “executed” or “sourced”. These differences reveal the basic flaw in deriving the shell from the $SHELL variable that underpins the script's design. If the shell defined in $SHELL does not match the shebang, the script will fail either when sourced or executed. An explanation follows.
Indirect expansion doesn’t offer value in the given scenario because values could just as easily be assigned directly. They’ll have to be assigned that way regardless given the different syntax used for indirect expansion between shells. In fact, other syntax differences between shells makes the entire premise for detecting the shell moot! However, putting that aside, the difference in behavior is a result of different shells being invoked based on whether the script is “executed” or “sourced”. The behavior of sourcing is well documented with numerous explanations on the web, but for context here’s how it works:
Executing a Script
Use the “./“ syntax to execute a script.
When run this way, the script executes in a sub-shell. Any changes the
script makes to it’s shell are applied to the sub-shell, not the shell
in which the script was launched, so those changes are lost when the
shell exits because the sub-shell in which it executed is destroyed as
well. For example, if the script changes the working directory, it
does so in the sub-shell. The working directory of the main shell that
launched the script is unchanged when the script terminates. If you
want to make changes to the shell in which the script was launched, it
must be sourced.
Sourcing a Script
Use the “source “ syntax to source a
script. When run this way, the script essentially becomes an argument
for the source command, which handles invoking the appropriate
execution. Some shells (e.g. ksh) use a single period “.” instead of
“source”.
When a script is executed with the “./“ syntax, the shebang at the top of the file is used to determine which shell to use. When a script is sourced, the shebang is ignored and the shell in which the script is launched is used instead. Also note that the period that appears in the “./“ command syntax used to execute a script, is not related to the period that’s occasionally used as an alias for the source command.
The script in the post uses bash in the shebang statement, so it works when executed because it’s run using bash. When it’s sourced from zsh, it encounters the incorrect indirect expansion syntax:
“${!A_VAR}"
The correct syntax is:
"${(P)A_VAR}"
However, correcting the syntax won’t help because it will then fail when executed. The shebang will invoke bash and the syntax will be wrong again. That renders indirection useless for accessing a variable designed to indicate the shell in use. More importantly, a design based on querying an environment variable for the shell is flawed due to differences in the shell that’s ultimately used depending on whether the script is executed or sourced.
To add to your answer (what I'm going to say is too long for a comment), I can not think of any application, why your script could be useful if not sourced. Actually, I came accross the need of such a script by myself in exactly one occasion:
Since I use as interactive shell not only zsh, but also sometimes bash, so I have written my .zshrc and .bashrc to set up everything (including defining variables and shell functions for interactive use). In order to safe work,
I try to put code which works under both bash and zsh into a single file (say: .commonrc), and my .zshrc and .bashrc have inside them a
source .commonrc
While many things are so different in bash and zsh, that I can't put them into .commonrc, some can, provided I do some tweaking. One reason for headache is obviously the different indexing of arrays, which you seemingly try to solve. So I have also a similar feature. However, I don't nee ca case construct for this. Instead, my .bashrc looks like this (using your naming of the variables):
...
declare -r ARRAY_START=0
source .commonrc
...
and my .zshrc looks like this:
...
declare -r ARRAY_START=1
source .commonrc
...
Since it does not happen that the .bashrc is run from a zsh and vice versa, I don't need to query what kind of shell I have.

dash '-' after #!/bin/sh -

I have been working on a few scripts on CentOS 7 and sometimes I see:
#!/bin/sh -
on the first line. Looking at the man page for sh I see the following under the Special Parameters
- Expands to the current option flags as specified upon invocation,
by the set builtin command, or those set by the shell
itself (such as the -i option).
What exactly does this mean? When do I need to use this special parameter option??
The documentation you are reading has nothing to do with the command line you're looking at: it's referring to special variables. In this case, if you run echo $- you will see "the current option flags as specified upon invocation...".
If you take a look at the OPTIONS part of the bash man page, you will find:
-- A -- signals the end of options and disables further option processing.
Any arguments after the -- are treated as filenames and arguments. An
argument of - is equivalent to --.
In other words, an argument of - simply means "there are no other options after this argument".
You often see this used in situation in which you want to avoid filenames starting with - accidentally being treated as command options: for example, if there is a file named -R in your current directory, running ls * will in fact behave as ls -R and produce a recursive listing, while ls -- * will not treat the -R file specially.
The single dash when used in the #! line is meant as a security precaution. You can read more about that here.
/bin/sh is an executable representing the system shell. Actually, it is usually implemented as a symbolic link pointing to the executable for whichever shell is the system shell. The system shell is kind of the default shell that system scripts should use. In Linux distributions, for a long time this was usually a symbolic link to bash, so much so that it has become somewhat of a convention to always link /bin/sh to bash or a bash-compatible shell. However, in the last couple of years Debian (and Ubuntu) decided to switch the system shell from bash to dash - a similar shell - breaking with a long tradition in Linux (well, GNU) of using bash for /bin/sh. Dash is seen as a lighter, and much faster, shell which can be beneficial to boot speed (and other things that require a lot of shell scripts, like package installation scripts).
Dash is fairly well compatible with bash, being based on the same POSIX standard. However, it doesn't implement the bash-specific extensions. There are scripts in existence that use #!/bin/sh (the system shell) as their shebang, but which require bash-specific extensions. This is currently considered a bug that should be fixed by Debian and Ubuntu, who require /bin/sh to be able to work when pointed to dash.
Even though Ubuntu's system shell is pointing to dash, your login shell as a user continues to be bash at this time. That is, when you log in to a terminal emulator anywhere in Linux, your login shell will be bash. Speed of operation is not so much a problem when the shell is used interactively, and users are familiar with bash (and may have bash-specific customization in their home directory).

Why history command is default disabled for bash scripts

I've made a little bash script which clean some files (*~, *#, etc.) and the terminal but I've seen that the history command is disabled by default in non-interactive shells by bash (I wanted to add "history -c").
I'm just curious of why ?
In General
For an overwhelming majority of scripts, reading dotfiles for history would be pure startup-time overhead, with that content never used at runtime. This would make all shell scripts take longer to start up, with no compensating benefit.
If noninteractive scripts did support history expansion, this would make their behavior dependent on prior interactive actions, thus harder to predict and different between invocations. This is, in particular, a compelling reason not to have set -H on by default in noninteractive script invocation.
History is specified in the User Portability Utilities section of the POSIX sh standard, which is focused around support for interactive scripting. Quoting from the standard, with emphasis added:
When the sh utility is being used interactively, it shall maintain a list of commands previously entered from the terminal in the file named by the HISTFILE environment variable. The type, size, and internal format of this file are unspecified. Multiple sh processes can share access to the file for a user, if file access permissions allow this; see the description of the HISTFILE environment variable.
Finally, some context:
history -c is needed in an interactive script because that interactive shell will be writing a new copy of HISTFILE when it exits; if you didn't use a special command, it would potentially write back content that you instead want to clear. In a noninteractive shell, it won't be writing any history anyhow, so you might as well simply delete or truncate the history file.

Is scripts' use of a shebang line differing from the default shell cause for concern?

my scripts are developed using a shebang line as "#!/bin/ksh" and the default shell is
$ echo $SHELL
/bin/ksh
i am moving all these scripts without changing the shebang line to a new machine where the default shell is
$ echo $SHELL
/bin/bash
Should i worry about this ?
I am guessing there should not be any issue as the shebang line will override the interpreter and use ksh as defined in the scripts and as i want it to be.
Please share your thoughts ..
The default shell does not affect how scripts are executed (unless you're using a shell that does something very strange).
An executable script with no #! line will be executed with /bin/sh. Actually that doesn't appear to be correct, but in any case you don't have to worry about that.
As long as your scripts start with #!/bin/ksh and you execute them normally, the system will execute them by passing them to /bin/ksh.
One thing you might have to worry about is whether /bin/ksh exists, and if it does, just what it is. On my system (Linux Mint 17), /bin/ksh is a symlink to /etc/alternatives/ksh, which in turn is a symlink to /bin/ksh93.
Scripts with #!/bin/ksh are probably common enough that almost all UNIX-like systems will cater to them, and will install something that behaves like ksh at that location.
Note that what you call the "default shell", specified by $SHELL, is not a system-wide default. It's just the value of a particular environment variable. That variable is set for each user on login based on the shell specified in /etc/passwd or equivalent; thus different users can have different default shells. You can change the value of $SHELL after logging in. The entry in /etc/passwd or equivalent is set when the account is created, and can be changed later. Most systems have a default user shell that's set for new accounts if no shell is specified (for example, most Linux systems user /bin/bash).
The supposition given is correct: The shebang line is honored on any execve() call. Only if your scripts are sourced (. yourscript or source yourscript) or lack a valid shebang do you need to care which interpreter they're called from.
If this were not true, scripts in non-shell languages wouldn't work as expected (as the Python interpreter, for instance, is never a system's default shell).
The kernel will use the shebang line to select the appropriate interpreter to use when the script is executed in the default manner, whether it is sh, bash, ksh, expect, python, or whatever. The only real issue to be wary of is scripts written on a system where sh is one specific shell (e.g. bash) that are then moved to another system where sh is a different shell (e.g. dash) since they may use shell features found in the former that do not exist in the latter.

Should I use a Shebang with Bash scripts?

I am using Bash
$ echo $SHELL
/bin/bash
and starting about a year ago I stopped using Shebangs with my Bash scripts. Can
I benefit from using #!/bin/sh or #!/bin/bash?
Update: In certain situations a file is only treated as a script with the
Shebang, example
$ cat foo.sh
ls
$ cat bar.sh
#!/bin/sh
ls
$ file foo.sh bar.sh
foo.sh: ASCII text
bar.sh: POSIX shell script, ASCII text executable
On UNIX-like systems, you should always start scripts with a shebang line. The system call execve (which is responsible for starting programs) relies on an executable having either an executable header or a shebang line.
From FreeBSD's execve manual page:
The execve() system call transforms the calling process into a new
process. The new process is constructed from an ordinary file, whose
name is pointed to by path, called the new process file.
[...]
This file is
either an executable object file, or a file of data for an interpreter.
[...]
An interpreter file begins with a line of the form:
#! interpreter [arg]
When an interpreter file is execve'd, the system actually execve's the
specified interpreter. If the optional arg is specified, it becomes the
first argument to the interpreter, and the name of the originally
execve'd file becomes the second argument
Similarly from the Linux manual page:
execve() executes the program pointed to by filename. filename must be
either a binary executable, or a script starting with a line of the
form:
#! interpreter [optional-arg]
In fact, if a file doesn't have the right "magic number" in it's header, (like an ELF header or #!), execve will fail with the ENOEXEC error (again from FreeBSD's execve manpage):
[ENOEXEC] The new process file has the appropriate access
permission, but has an invalid magic number in its
header.
If the file has executable permissions, but no shebang line but does seem to be a text file, the behaviour depends on the shell that you're running in.
Most shells seem to start a new instance of themselves and feed it the file, see below.
Since there is no guarantee that the script was actually written for that shell, this can work or fail spectacularly.
From tcsh(1):
On systems which do not understand the `#!' script interpreter conven‐
tion the shell may be compiled to emulate it; see the version shell
variable. If so, the shell checks the first line of the file to see if
it is of the form `#!interpreter arg ...'. If it is, the shell starts
interpreter with the given args and feeds the file to it on standard
input.
From FreeBSD's sh(1):
If the program is not a normal executable file (i.e., if it
does not begin with the “magic number” whose ASCII representation is
“#!”, resulting in an ENOEXEC return value from execve(2)) but appears to
be a text file, the shell will run a new instance of sh to interpret it.
From bash(1):
If this execution fails because the file is not in executable format,
and the file is not a directory, it is assumed to be a shell script, a
file containing shell commands. A subshell is spawned to execute it.
You cannot always depend on the location of a non-standard program like bash. I've seen bash in /usr/bin, /usr/local/bin, /opt/fsf/bin and /opt/gnu/bin to name a few.
So it is generally a good idea to use env;
#!/usr/bin/env bash
If you want your script to be portable, use sh instead of bash.
#!/bin/sh
While standards like POSIX do not guarantee the absolute paths of standard utilities, most UNIX-like systems seem to have sh in /bin and env in /usr/bin.
Scripts should always begin with a shebang line. If a script doesn't start with this, then it may be executed by the current shell. But that means that if someone who uses your script is running a different shell than you do, the script may behave differently. Also, it means the script can't be run directly from a program (e.g. the C exec() system call, or find -exec), it has to be run from a shell.
You might be interested in an early description by Dennis M Ritchie (dmr) who invented the #! :
From uucp Thu Jan 10 01:37:58 1980
.>From dmr Thu Jan 10 04:25:49 1980 remote from research
The system has been changed so that if a file
being executed begins with the magic characters #! , the rest of the
line is understood to be the name of an interpreter for the executed
file. Previously (and in fact still) the shell did much of this job;
it automatically executed itself on a text file with executable mode
when the text file's name was typed as a command. Putting the facility
into the system gives the following benefits.
1) It makes shell scripts more like real executable files, because
they can be the subject of 'exec.'
2) If you do a 'ps' while such a command is running, its real name
appears instead of 'sh'. Likewise, accounting is done on the basis of
the real name.
3) Shell scripts can be set-user-ID.
4) It is simpler to have alternate shells available; e.g. if you like
the Berkeley csh there is no question about which shell is to
interpret a file.
5) It will allow other interpreters to fit in more smoothly.
To take advantage of this wonderful opportunity, put
#! /bin/sh
at the left margin of the first line of your shell scripts. Blanks
after ! are OK. Use a complete pathname (no search is done). At the
moment the whole line is restricted to 16 characters but this limit
will be raised.
Hope this helps
If you write bash scripts, i.e. non portable scripts containing bashisms, you should keep using the #!/bin/bash shebang just to be sure the correct interpreter is used. You should not replace the shebang by #!/bin/sh as bash will run in POSIX mode so some of your scripts might behave differently.
If you write portable scripts, i.e. scripts only using POSIX utilities and their supported options, you might keep using #!/bin/sh on your system (i.e. one where /bin/sh is a POSIX shell).
It you write stricly conforming POSIX scripts to be distributed in various platforms and you are sure they will only be launched from a POSIX conforming system, you might and probably should remove the shebang as stated in the POSIX standard:
As it stands, a strictly conforming application must not use "#!" as the first two characters of the file.
The rationale is the POSIX standard doesn't mandate /bin/sh to be the POSIX compliant shell so there is no portable way to specify its path in a shebang. In this third case, to be able to use the 'find -exec' syntax on systems unable to run a shebangless still executable script, you can simply specify the interpreter in the find command itself, eg:
find /tmp -name "*.foo" -exec sh -c 'myscript "$#"' sh {} +
Here, as sh is specified without a path, the POSIX shell will be run.
The header is useful since it specifies which shell to use when running the script. For example, #!/bin/zsh would change the shell to zsh instead of bash, where you can use different commands.
For example, this page specifies the following:
Using #!/bin/sh, the default Bourne shell in most commercial variants
of UNIX, makes the script portable to non-Linux machines, though you
sacrifice Bash-specific features ...
TL;DR: always in scripts; please not in source'd scripts
Always in your parent
FYI: POSIX compliant is #!/bin/bash, not #!/bin/sh
You want to clarify this so that nothing else overrides the interpreter your script is made for.
You don't want a user at the terminal using zsh to have trouble if your script was written for POSIX bash scripts.
You don't want to run source in your #!/bin/bash unrecognized by #!/bin/sh, someone in an sh terminal have it break the script because it is expecting the simple/POSIX . for including source'd files
You don't want e.g. zsh features - not available in other interpreters - to make their way into your bash code. So, put #!/bin/bash in all your script headers. Then, any of your zsh habits in your script will break so you know to remove them before your roll-out.
It's probably best, especially so POSIX-compliant scripts don't break in a terminal like zsh.
Not expected for included source scripts
FYI: POSIX compliant for sourcing text in a BASH script is ., not source
You can use either for sourcing, but I'll do POSIX.
Standard "shebanging" for all scripting:
parent.sh:
#!/bin/bash
echo "My script here"
. sourced.sh # child/source script, below
sourced.sh:
echo "I am a sourced child script"
But, you are allowed to do this...
sourced.sh: (optional)
#!/bin/bash
echo "I am a sourced child script"
There, the #!/bin/bash "shebang" will be ignored. The main reason I would use it is for syntax highlighting in my text editor. However, in the "proper" scripting world, it is expected that your rolled-out source'd script will not contain the shebang.
In addition to what the others said, the shebang also enables syntax highlighting in some text editors, for example vim.
$SHELL and #!/bin/bash or #!/bin/sh are different.
To start, #!/bin/sh is a symlink to /bin/bash on most Linux systems (on Ubuntu it is now /bin/dash)
But on whether to start with /bin/sh or /bin/bash:
Bash and sh are two different shells. Basically bash is sh, with more
features and better syntax. Most commands work the same, but they are
different.
Just assume if you're writing a bash script, stick with /bin/bash and not /sh because problems can arise.
$SHELL does not necessarily reflect the currently running shell.
Instead, $SHELL is the user's preferred shell, which is typically the
one set in /etc/passwd. If you start a different shell after logging
in, you can not necessarily expect $SHELL to match the current shell
anymore.
This is mine for example, but it could also be /root:/bin/dash or /root:/bin/sh depending on which shell you have input in passwd. So to avoid any problems, keep the passwd file at /bin/bash and then using $SHELL vs. #!/bin/bash wouldn't matter as much.
root#kali:~/Desktop# cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
Sources:
http://shebang.mintern.net/bourne-is-not-bash-or-read-echo-and-backslash/
https://unix.stackexchange.com/questions/43499/difference-between-echo-shell-and-which-bash
http://man.cx/sh
http://man.cx/bash

Resources