Script runs when executed but fails when sourced - bash

Original Title: Indirect parameter substitution breaks when the script is sourced (zsh)
zsh 5.7.1 (x86_64-apple-darwin19.0)
GNU bash, version 4.4.20(1)-release (x86_64-pc-linux-gnu)
I’m developing a shell script on a Mac and I’m trying to keep it portable between bash & zsh, so array indexing is a consideration. I know that I can set KSH_ARRAYS to get indexing to start at 0, but I decided to query the OS for the shell that’s in use and set the start index accordingly, which led to the issue described below.
It made sense (to me anyway!) to use indirect expansion, which is what led to the problem. Consider the script indirect.sh:
#! /bin/bash
declare -r ARRAY_START_BASH=0
declare -r ARRAY_START_ZSH=1
declare -r SHELL_BASH=0
declare -r SHELL_ZSH=1
# Indirect expansion is used to reference the values of the variables declared
# in this case statement e.g. ${!ARRAY_START}
case $(basename $SHELL) in
"bash" )
declare -r SHELL_ID=SHELL_BASH
declare -r ARRAY_START=ARRAY_START_BASH
;;
"zsh" )
declare -r SHELL_ID=SHELL_ZSH
declare -r ARRAY_START=ARRAY_START_ZSH
;;
* )
return 1
;;
esac
echo "Shell ID: ${!SHELL_ID} Index arrays from: ${!ARRAY_START}"
It works fine when run from the command line while in the same directory:
<my home> ~ % echo "$(./indirect.sh)"
Shell ID: 1 Index arrays from: 1
Problems arise when I source the script:
<my home> ~ % echo "$(. ~/indirect.sh)"
/Users/<me>/indirect.sh:28: bad substitution
I don’t understand why sourcing the script changes the behavior of the parameter expansion.
Is this expected behavior? If so, I’d be grateful if someone could explain it and hopefully, offer a work around.

The problem described in the original post has nothing to do with indirect expansion. The difference in behavior is a result of different shells being invoked depending on whether the script is “executed” or “sourced”. These differences reveal the basic flaw in deriving the shell from the $SHELL variable that underpins the script's design. If the shell defined in $SHELL does not match the shebang, the script will fail either when sourced or executed. An explanation follows.
Indirect expansion doesn’t offer value in the given scenario because values could just as easily be assigned directly. They’ll have to be assigned that way regardless given the different syntax used for indirect expansion between shells. In fact, other syntax differences between shells makes the entire premise for detecting the shell moot! However, putting that aside, the difference in behavior is a result of different shells being invoked based on whether the script is “executed” or “sourced”. The behavior of sourcing is well documented with numerous explanations on the web, but for context here’s how it works:
Executing a Script
Use the “./“ syntax to execute a script.
When run this way, the script executes in a sub-shell. Any changes the
script makes to it’s shell are applied to the sub-shell, not the shell
in which the script was launched, so those changes are lost when the
shell exits because the sub-shell in which it executed is destroyed as
well. For example, if the script changes the working directory, it
does so in the sub-shell. The working directory of the main shell that
launched the script is unchanged when the script terminates. If you
want to make changes to the shell in which the script was launched, it
must be sourced.
Sourcing a Script
Use the “source “ syntax to source a
script. When run this way, the script essentially becomes an argument
for the source command, which handles invoking the appropriate
execution. Some shells (e.g. ksh) use a single period “.” instead of
“source”.
When a script is executed with the “./“ syntax, the shebang at the top of the file is used to determine which shell to use. When a script is sourced, the shebang is ignored and the shell in which the script is launched is used instead. Also note that the period that appears in the “./“ command syntax used to execute a script, is not related to the period that’s occasionally used as an alias for the source command.
The script in the post uses bash in the shebang statement, so it works when executed because it’s run using bash. When it’s sourced from zsh, it encounters the incorrect indirect expansion syntax:
“${!A_VAR}"
The correct syntax is:
"${(P)A_VAR}"
However, correcting the syntax won’t help because it will then fail when executed. The shebang will invoke bash and the syntax will be wrong again. That renders indirection useless for accessing a variable designed to indicate the shell in use. More importantly, a design based on querying an environment variable for the shell is flawed due to differences in the shell that’s ultimately used depending on whether the script is executed or sourced.

To add to your answer (what I'm going to say is too long for a comment), I can not think of any application, why your script could be useful if not sourced. Actually, I came accross the need of such a script by myself in exactly one occasion:
Since I use as interactive shell not only zsh, but also sometimes bash, so I have written my .zshrc and .bashrc to set up everything (including defining variables and shell functions for interactive use). In order to safe work,
I try to put code which works under both bash and zsh into a single file (say: .commonrc), and my .zshrc and .bashrc have inside them a
source .commonrc
While many things are so different in bash and zsh, that I can't put them into .commonrc, some can, provided I do some tweaking. One reason for headache is obviously the different indexing of arrays, which you seemingly try to solve. So I have also a similar feature. However, I don't nee ca case construct for this. Instead, my .bashrc looks like this (using your naming of the variables):
...
declare -r ARRAY_START=0
source .commonrc
...
and my .zshrc looks like this:
...
declare -r ARRAY_START=1
source .commonrc
...
Since it does not happen that the .bashrc is run from a zsh and vice versa, I don't need to query what kind of shell I have.

Related

Bash script ignores positional arguments after first time used

I noticed that my script was ignoring my positional arguments in old terminal tabs, but working on recently created ones, so I decided to reduce it to the following:
TAG=test
while getopts 't:' c
do
case $c in
t)
TAG=$OPTARG
;;
esac
done
echo $TAG
And running the script I have:
~ source my_script
test
~ source my_script -t "test2"
test2
~ source my_script -t "test2"
test
I thought it could be that c was an special used variable elsewhere but after changing it to other names I had the exact same problem. I also tried adding a .sh extension to the file to see it that was a problem, but nothing worked.
Am I doing something wrong ? And why does it work the first time, but not the subsequent attempts ?
I am on MacOS and I use zsh.
Thank you very much.
The problem is that you're using source to run the script (the . command does the same thing). This makes it run in your current (interactive) shell (rather than a subprocess, like scripts normally do). This means it uses the same variables as the current shell, which is necessary if you want it to change those variables, but it can also have weird effects if you're not careful.
In this case, the problem is that getopts uses the variable OPTIND to keep track of where it is in the argument list (so it doesn't process the same argument twice). The first time you run the script with -t test2, getopts processes those arguments, and leaves OPTIND set to 3 (meaning that it's already done the first two arguments, "-t" and "test2". The second time you run it with options, it sees that OPTIND is set to 3, so it thinks it's already processed both arguments and just exits the loop.
One option is to add unset OPTIND before the while getopts loop, to reset the count and make it start from the beginning each time.
But unless there's some reason for this script to run in the current shell, it'd be better to make it a standard shell script and have it run as a subprocess. To do this:
Add a "shebang" line as the first line of the script. To make the script run in bash, that'd be either #!/bin/bash or #!/usr/bin/env bash. For zsh, use #!/bin/zsh or #!/usr/bin/env zsh. Since the script runs in a separate shell process, the you can run bash scripts from zsh or zsh scripts from bash, or whatever.
Add execute permission to the script file with chmod -x my_script (or whatever the file's actual name is).
Run the script with ./my_script (note the lack of a space between . and /), or by giving the full path to the script, or by putting the script in some directory in your PATH (the directories that're automatically searched for commands) and just running my_script. Do NOT run it with the bash, sh, zsh etc commands; these override the shebang and therefore can cause confusion.
Note: adding ".sh" to the filename is not recommended; it does nothing useful, and makes the script less convenient to run since you have to type in the extension every time you run it.
Also, a couple of recommendations: there are a bunch of all-caps variable names with special meanings (like PATH and OPTIND), so unless you want one of those special meanings, it's best to use lower- or mixed-case variable names (e.g. tag instead of TAG). Also, double-quoting variable references (e.g. echo "$tag" instead of echo $tag) avoids a lot of weird parsing headaches. Run your scripts through shellcheck.net; it's good at spotting common mistakes like this.

Use a variable on a script command line when its value isn't set until after the script starts

How to correctly pass to the script and substitute a variable that is already defined there?
My script test.sh:
#!/bin/bash
TARGETARCH=amd64
echo $1
When I enter:
bash test.sh https://example/$TARGETARCH
I want to see
https://example/amd64
but I actually see
https://example/
What am I doing wrong?
The first problem with the original approach is that the $TARGETARCH is removed by your calling shell before your script is ever invoked. To prevent that, you need to use quotes:
./yourscript 'https://example.com/$TARGETARCH'
The second problem is that parameter expansions only happen in code, not in data. This is, from a security perspective, a Very Good Thing -- if data were silently treated as code it would be impossible to write secure scripts handling untrusted data -- but it does mean you need to do some more work. The easy thing, in this case, is to export your variable and use GNU envsubst, as long as your operating system provides it:
#!/bin/bash
export TARGETARCH=amd64
substitutedValue=$(envsubst <<<"$1")
echo "Original value was: $1"
echo "Substituted value is: $substitutedValue"
See the above running in an online sandbox at https://replit.com/#CharlesDuffy2/EcstaticAfraidComputeranimation#replit.nix
Note the use of yourscript instead of test.sh here -- using .sh file extensions, especially for bash scripts as opposed to sh scripts, is an antipattern; the essay at https://www.talisman.org/~erlkonig/documents/commandname-extensions-considered-harmful/ has been linked by the #bash IRC channel on this topic for over a decade.
For similar reasons, changing bash yourscript to ./yourscript lets the #!/usr/bin/env bash line select an interpreter, so you aren't repeating the "bash" name in multiple places, leading to the risk of those places getting out of sync with each other.

How to predictably run shell script in unknown user environment?

Summary
How can I guarantee that my shell scripts will do what I expect, regardless of the environment?
(Let's assume that people have alias'd and function'd everything they can, but that they haven't touched any system binaries eg. /bin/ls)
Explanation
I am distributing shell scripts as part of an app. These shell scripts are executed in the user's environment - this cannot be changed.
This means users may have aliases for anything and functions redefining "standard" behavior. There have already been a few cases when normal shell keywords have been redefined (eg. local), causing unexpected side effects and crashes.
The only tokens that cannot be defined as functions are as follows:
Bash:
! [[ ]] case coproc do done elif else esac fi for function if in select then time until while { }
ZSH:
! [[ case coproc do done elif else end esac fi for foreach function if nocorrect repeat select then time until while { }
I am aware that:
You can escape a word to skip alias lookup
You can use builtin to always run a builtin
You can use command to always run a command
However, builtin and command can be redefined, so \builtin <command> may not always do what I expect.
Aliases are not expanded in bash scripts (unless you explicitly request this), and functions are usually not inherited by child processes. The caller of your script just has to avoid sourcing it. Problems could be environment variables and file handles.
It is difficult to make a script completely self-containing. For instance, I have seen cases where even standard programs (ls, cat,....) are stored in different locations, which means that if you set up your own PATH and don't know anything about the target platform, you have to apply some heuristics (searching a list of "commonly known directories") and hope that your search is correct.
A more reliable way would be to require from the user of the script to provide a certain minimal configuration (typically containing the basic definition for a PATH) and pass this configuration as parameter to your script.
There is one problem pointed out in the comment by Renaud Pacalet, in that bash allows functions to be exported (using export -f), and in bash, you would have to find out which functions exist, and explicitly remove their definitions (similarily as you would do it with environment variables). However, I see that you have tagged your question by bash and zsh, and if you don't mind, which script language you are using, writing the script in zsh would be perhaps better, because zsh does not have exported functions.
One point to keep in mind is, that every shell, bash and zsh, processes on startup certain files, before the commands in your script have any chance to run. For instance, no matter how you start your zsh, it will always process /etc/zshenv. For instance, if your script at one point invokes a zsh child script too, it would again run /etc/zshenv.
Of course, those startup files could set up functions, and in zsh, aliases are (AFIK) even expanded inside scripts. The strategy would be therefore to initially loop over your environment variables, the currently defined functions, the currently defined aliases (in zsh), and remove those definitions. Then you set up your own definitions (functions, variables).

Shell independent way of setting environment variable

I need to make a script which can modify an environment variable of the calling shell. To allow the script to modify the environment variable I'm using source <script> and I want both bash and tcsh to be able to use the same script.
I'm hitting the fact that tcsh and bash have different if syntax so I can't even switch between the two inside the script. What is the best way to handle setting the environment variable?
Ok, you got me. I did some experimentation, and you might actually be able to do this with one script. (Update: I way overcomplicated the original, here's a much better solution that also works in zsh.)
What you're trying to create is a bash/tcsh polyglot (we'll assume for now that you don't want to support any other shells). I'll put the actual polyglot here, then some explanation and caveats afterwards:
if ( : != : ) then
echo "In a POSIX shell or zsh or ksh"
else
echo "In tcsh"
alias fi :
endif
fi
The first line is really the interesting bit in this polyglot.
In POSIX sh, it creates a subshell to run the command : with two arguments, == and :. : always returns true, so the first branch of the if-statement is executed. (Usually a semicolon is used after the condition in an if-statement, but in fact a close-paren works too, since both are control operators, which can be used to end a simple command – the condition in an if-statement is really a list, but that degenerates to a simple command, going by the Bash manual.)
In tcsh, it compares the string : with the string : – since they are equal, and we were testing for inequality, it executes the second branch.
The last line of the second (tcsh) branch just ensures that that tcsh won't complain that the final fi isn't a command. There's no need for a similar alias in the first branch, because the endif is still in the second branch of the if-statement as far as a POSIX shell is concerned.
With regard to caveats, you're somewhat limited in what you can actually do in the POSIX shell section: for example, you can't define any functions with the POSIX syntax (foo() {...}), since tcsh will complain about the parentheses, although the Bash syntax (function foo {...}) works. I assume there are similar limitations in the tcsh section.
This polyglot also doesn't work in fish, though it does work in zsh. (That's why the condition is : != : rather than something like : == '' – in zsh, == expands to the path to the command =, which doesn't exist.) It also appears to work in ksh (though at this point it's turning into less of a polyglot, more of a "is this shell csh" program...)
I hate to write an answer that does little more than expand on the comment made by #Ash to the original question. But I felt it important to note that you need to consider not just POSIX 1003 shells like bash and classic shells like csh/tcsh. You also need to consider modern alternatives like fish which is not compatible with either of those shells.
As #Ash noted the solution is to use "bridge" code for each of the invoking shells which maps the information into the syntax appropriate for the invoking shell.

what will bash do with an unset variable

I am confused by the behavior about how do bash treat a unset variable used in a shell command, like below:
rm -rf /$TO_BE_REMOVED
what will be done if i have not defined a variable TO_BE_REMOVED.
If you do that, the command executed will effectively try to remove / which is very, very bad. I mean, it will probably mostly fail (unless you're running as root), but still, it will be very bad.
You can avoid many of these sorts of bugs in Bash automatically with one simple command:
set -eu
If you put that at the top of your Bash script, the interpreter will stop and return an error code if your script ever invokes a command which returns an error which is not checked (that's the -e part), or if it uses an undefined variable (the -u part). This makes Bash considerably safer.

Resources