Create a plane with curved edges using PlaneGeometry - Three.js - three.js

I'm trying to create a 2D square with curved/round edges. As I understand it using planes is the way to go. I'm struggling to figure out how exactly to do this though. It seems like it should be simple. Can't seem to find any straightforward answers online either so I would really appreciate the help.
// Create plane
let geometry = new THREE.PlaneGeometry(1, 1)
// Round the edges somehow?
this.mesh = new THREE.Mesh(geometry, material)
this.mesh.rotation.x = -Math.PI / 2
this.container.add(this.mesh)

Managed to get it working based off #prisoner849 suggestion to use THREE.Shape() and THREE.ShapeBufferGeometry(). Posting my answer but its mostly the same as the found here here
let x = 1; let y = 1; let width = 50; let height = 50; let radius = 20
let shape = new THREE.Shape();
shape.moveTo( x, y + radius );
shape.lineTo( x, y + height - radius );
shape.quadraticCurveTo( x, y + height, x + radius, y + height );
shape.lineTo( x + width - radius, y + height );
shape.quadraticCurveTo( x + width, y + height, x + width, y + height - radius );
shape.lineTo( x + width, y + radius );
shape.quadraticCurveTo( x + width, y, x + width - radius, y );
shape.lineTo( x + radius, y );
shape.quadraticCurveTo( x, y, x, y + radius );
let geometry = new THREE.ShapeBufferGeometry( shape );
this.mesh = new THREE.Mesh(geometry, material)
this.mesh.rotation.x = -Math.PI / 2
this.container.add(this.mesh)

Related

How to rotate cartesian coordinates relative to a vector?

I'm building a fractal tree in three dimensions. I need to draw each generation of branches at an angle relative to the previous generation. The branches are currently drawn at the same angle and are growing "straight up". I know I need to do a rotation of some kind, but not sure if it's quaternions or if I need to take a completely different approach.
Here's a jsfiddle of the fractal tree with the branches growing "straight up".
https://jsfiddle.net/degraeve/xa8m5Lcj/59/
Here's a 2D image of what I'm trying to achieve with the branch angles: https://i.imgur.com/uVK4Dx6.png
code that appears in the jsfiddle:
function draw_tree_branch(x, y, z, phi, theta, radius) {
// use sperical coordinate system
// https://en.wikipedia.org/wiki/Spherical_coordinate_system
var phi_in_degrees = phi * (180 / Math.PI);
var material = new THREE.LineBasicMaterial({
color: 0x00ffff,
linewidth: 1
});
// draw 3 lines at 120 degrees to each other
var angle_between_branches = 120;
var num_branches = 360 / angle_between_branches;
for (var temp_count = 1; temp_count <= num_branches; temp_count++) {
phi_in_degrees += angle_between_branches;
phi = (phi_in_degrees) * Math.PI / 180;
// compute Cartesian coordinates
var x2 = x + (radius * Math.sin(theta) * Math.sin(phi));
var y2 = y + (radius * Math.cos(theta));
var z2 = z + (radius * Math.sin(theta) * Math.cos(phi));
// ????????
// How do I rotate this line so the angles are "relative" to the parent line instead of growing "straight up?"
// Quaternion ???
// example of what I'm trying to achieve, but in 3D:
// https://www.codheadz.com/2019/06/30/Trees-with-Turtle-in-Python/simple_tree.png
// ????????
var points = [];
var vector_1 = new THREE.Vector3(x, y, z);
points.push(vector_1);
var vector_2 = new THREE.Vector3(x2, y2, z2);
points.push(vector_2);
var geometry = new THREE.BufferGeometry().setFromPoints(points);
var line = new THREE.Line(geometry, material);
scene.add(line);
// keep drawing branches until the branch is "too short"
if (radius > 2) {
draw_tree_branch(x2, y2, z2, phi, theta, radius * 0.5);
}
}
}
I may not even be asking the right question. Any pointers in the right direction are appreciated.
You're very close. The only problem is that theta is the same on each iteration, so you'll always get a sub-branch that's 30º from vertical. A simple way to solve this is by keeping track of the iteration you're in, and multiply that by tree_theta so you get an increasing number of degrees: 30, 60, 90, 120, etc...
function draw_tree_branch(x, y, z, phi, tree_theta, radius, iteration) {
var theta = tree_theta * iteration;
// ... perform all calculations
// Draw next branch with iteration + 1
if (radius > 2) {
draw_tree_branch(x2, y2, z2, phi, tree_theta, radius * 0.5, iteration + 1);
}
}
Here's an updated version of your JSFiddle: https://jsfiddle.net/marquizzo/r2w7oz6x/

XNA/Monogame Creating rectangle around texture regardless of rotation?

I know Rectangle is axis aligned, that's fine, I just can't figure out how to create a rectangle so it is always encompassing the entire sprite, regardless of rotation. I have been looking everywhere for an answer but I can't get a straight one anywhere.
For example:
Assuming the origin point is the middle of the texture, how can I go about this?
EDIT
Fiddling around with it a little, I've gotten this far:
public Rectangle BoundingBox
{
get
{
var cos = Math.Cos(SpriteAngle);
var sin = Math.Cos(SpriteAngle);
var t1_opp = Width * cos;
var t1_adj = Math.Sqrt(Math.Pow(Width, 2) - Math.Pow(t1_opp, 2));
var t2_opp = Height * sin;
var t2_adj = Math.Sqrt(Math.Pow(Height, 2) - Math.Pow(t2_opp, 2));
int w = Math.Abs((int)(t1_opp + t2_opp));
int h = Math.Abs((int)(t1_adj + t2_adj));
int x = Math.Abs((int)(Position.X) - (w / 2));
int y = Math.Abs((int)(Position.Y) - (h / 2));
return new Rectangle(x, y, w, h);
}
}
(doing this off the top of my head.. but the principle should work)
Create a matrix to rotate around the center of the rectangle - that is a translate of -(x+width/2), -(y+height/2)
followed by a rotation of angle
followed by a translate of (x+width/2), (y+height/2)
Use Vector2.Transform to transform each corner of the original rectangle
Then make a new rectangle with
x = min(p1.x, p2.x, p3.x, p4.x)
width = max(p1.x, p2.x, p3.x, p4.x) - x
similar for y
Sorry this is coming so late, but I figured this out a while ago and forgot to post an answer.
public virtual Rectangle BoundingBox
{
get
{
int x, y, w, h;
if (Angle != 0)
{
var cos = Math.Abs(Math.Cos(Angle));
var sin = Math.Abs(Math.Sin(Angle));
var t1_opp = Width * cos;
var t1_adj = Math.Sqrt(Math.Pow(Width, 2) - Math.Pow(t1_opp, 2));
var t2_opp = Height * sin;
var t2_adj = Math.Sqrt(Math.Pow(Height, 2) - Math.Pow(t2_opp, 2));
w = (int)(t1_opp + t2_opp);
h = (int)(t1_adj + t2_adj);
x = (int)(Position.X - (w / 2));
y = (int)(Position.Y - (h / 2));
}
else
{
x = (int)Position.X;
y = (int)Position.Y;
w = Width;
h = Height;
}
return new Rectangle(x, y, w, h);
}
}
This is it here. In my work in the edit, I accidentally had Math.Cos in the sin variable, which didn't help.
So it's just basic trigonometry. If the textures angle is something other than zero, calculate the sides of the two triangles formed by the width and the height, and use the sides as the values for the width and the height, then center the rectangle around the texture. If that makes sense.
Here's a picture to help explain:
Here's a gif of the final result:

How to get UV and texture coordinate from a face or 3d point?

I have a sphere geometry with a basic material which mapped by a texture:
var geometry = new THREE.SphereGeometry(500, 60, 40);
var material = new THREE.MeshBasicMaterial({
map: THREE.ImageUtils.loadTexture('textures/equirectangular.jpg'),
overdraw: 0.5
});
var mesh = new THREE.Mesh(geometry, material);
And on mouse click:
mouse.x = (event.clientX / renderer.domElement.width) * 2 - 1;
mouse.y = -(event.clientY / renderer.domElement.height) * 2 + 1;
raycaster.setFromCamera(mouse, camera);
var intersects = raycaster.intersectObject(mesh);
Which gives me an array of intersected objects.
Now how can i find the UV coordinate out of the intersected point and then get the texture pixel(pixels range) of the sphere texture?
With more googling and seeing this question, i've got this code which gives me the right texture coordinate:
var p = intersects[0].point;
var x = (p.x - sphere.position.x) / (-1 * radius);
var y = (p.y - sphere.position.y) / radius;
var z = (p.z - sphere.position.z) / radius;
var u = 1 - (Math.atan2(z, x) / (2 * Math.PI) + 0.5);
var v = 1 - ((Math.asin(y) / Math.PI) + 0.5);
console.log("u,v:", u, v);
var x = u * textureWidth;
var y = v * textureHeight;
console.log(x, y);
Note: camera is inside the sphere at (0, 0, 0) and i apply a scale matrix to the sphere geometry like this:
geometry.applyMatrix(new THREE.Matrix4().makeScale(-1, 1, 1));
But i'm looking for more complete answer which applies for geometry without negative scale too or other basic geometries like plane or cube.
Also this code returns inaccurate texture X coordinates for a loaded sphere from blender. generally getting the right x coordinates is more problematic for me. i guess the geometry/mesh rotation and scale should take into account in order to get right x,y texture coordinates, but i'm not good at math!

add geometry from vertex and vertex nromal

I load a model with vertex and vertex nromal,
for (var i = 0, vindex = 0; i < triangle.length; i++, vindex += 3) {
x = parseFloat(triangle[i].attributes.getNamedItem('x1').value);
y = parseFloat(triangle[i].attributes.getNamedItem('y1').value);
z = parseFloat(triangle[i].attributes.getNamedItem('z1').value);
this.geometry.vertices.push(new THREE.Vector3(x * scale + this.translateVector.x, y * scale + this.translateVector.y, z * scale + this.translateVector.z));
x = parseFloat(triangle[i].attributes.getNamedItem('x2').value);
y = parseFloat(triangle[i].attributes.getNamedItem('y2').value);
z = parseFloat(triangle[i].attributes.getNamedItem('z2').value);
this.geometry.vertices.push(new THREE.Vector3(x * scale + this.translateVector.x, y * scale + this.translateVector.y, z * scale + this.translateVector.z));
x = parseFloat(triangle[i].attributes.getNamedItem('x3').value);
y = parseFloat(triangle[i].attributes.getNamedItem('y3').value);
z = parseFloat(triangle[i].attributes.getNamedItem('z3').value);
this.geometry.vertices.push(new THREE.Vector3(x * scale + this.translateVector.x, y * scale + this.translateVector.y, z * scale + this.translateVector.z));
var face = new THREE.Face3(vindex, vindex + 1, vindex + 2);
face.color.setHex(this.faceColor || this.defaultcolor);
face.vertexNormals = [];
nx = parseFloat(triangle[i].attributes.getNamedItem('nx1').value);
ny = parseFloat(triangle[i].attributes.getNamedItem('ny1').value);
nz = parseFloat(triangle[i].attributes.getNamedItem('nz1').value);
face.vertexNormals.push(new THREE.Vector3(-nx, -ny, -nz));
nx1 = parseFloat(triangle[i].attributes.getNamedItem('nx2').value);
ny1 = parseFloat(triangle[i].attributes.getNamedItem('ny2').value);
nz1 = parseFloat(triangle[i].attributes.getNamedItem('nz2').value);
face.vertexNormals.push(new THREE.Vector3(-nx1, -ny1, -nz1));
nx2 = parseFloat(triangle[i].attributes.getNamedItem('nx3').value);
ny2 = parseFloat(triangle[i].attributes.getNamedItem('ny3').value);
nz2 = parseFloat(triangle[i].attributes.getNamedItem('nz3').value);
face.vertexNormals.push(new THREE.Vector3(-nx2, -ny2, -nz2));
face.normal.set((nx + nx1 + nx2) / 3, (ny + ny1 + ny2) / 3,(nz + nz1 + nz2) / 3);
this.geometry.faces.push(face);
}
this.material = new THREE.MeshBasicMaterial({ vertexColors: THREE.FaceColors, overdraw: true , opacity: 1, transparent: 0 });
this.mesh = new THREE.Mesh(this.geometry, this.material);
this.mesh.name = this.id;
this.mesh.updateMatrix();
this.mesh.matrixAutoUpdate = false;
scene.add(this.mesh);
the house below, front face is invisible, so front wall and left wall is invisible, we can see through the inside of house, but I want it to show all walls and not see through, could anyone help me?
after I change to Lambert material it still show house inside, I've tried, cw,ccw, or invert index of vertex, invert normal. could any body help?
it is possible there is something wrong with the face UV's. try making the material applied doublesided.
seems find the answer.
that's because part of the house model position.z < 0, and camera's near < 0, maybe three.js z-buffer clear negative = 0, z-buffer determines the sheltery relation.

Spawn bullet at barrel of gun

I'm making a top-down shooter and the player's gun is offset from the coordinates of the object. I'm using GameMaker:Studio, so the x and y coords are the center of the object. The offset of the image is set here:
bullet_offset_x = 30;
bullet_offset_y = 28;
And here is the code for shooting the gun:
var xpos = x + (bullet_offset_x * cos(degtorad(direction))) - (bullet_offset_y * sin(degtorad(direction)));
var ypos = y + (bullet_offset_x * sin(degtorad(direction))) + (bullet_offset_y * cos(degtorad(direction)));
var flash = instance_create(xpos, ypos, obj_flash);
with (flash){
direction = other.direction;
image_angle = other.direction;
}
I'm using the following formula for placing the muzzle flash:
x' = xcos(angle) - ysin(angle)
y' = xsin(angle) + ycos(angle)
Therefore:
xpos = x + x' and ypos = x + y'
However, when I run the code, the muzzle flash is correctly positioned when the angle is 0/360, but is off otherwise. Am I calculating this wrong?
IMAGES:
Correct
Incorrect
You need to use lengthdir_x and lengthdir_y functions, like:
var xpos = x + lengthdir_x(offset_distance, offset_angle + image_angle); // or direction
var ypos = y + lengthdir_y(offset_distance, offset_angle + image_angle);
var flash = instance_create(xpos, ypos, obj_flash);
flash.direction = direction;
flash.image_angle = direction;
little example here
To calculate the values ​​to be substituted into the formula, you can use this program.
Originally it was made in Russian, but I have translated it into English. My English is terrible, but I hope you will be able to understand it.
upd: Example with offsets:
var delta_x = 60;
var delta_y = -70;
var angle = point_direction(0, 0, delta_x, delta_y);
var distance = point_distance(0, 0, delta_x, delta_y);
var xpos = x + lengthdir_x(distance, image_angle + angle);
var ypos = y + lengthdir_y(distance, image_angle + angle);
var obj = instance_create(xpos, ypos, obj_flash);
obj.image_angle = image_angle;
When your sprite has an angle of 0, your muzzle flash still at an angle of invtan(28/30) in relation to the sprite. Therefore, the angle that the flash must be placed at in relation to the rotation of the sprite can be given by
flashRotation = spriteRotationDegrees - invtan(28/30) \\you can change this to radians
Once that is found, the positions can be found by:
var x_pos = sprite_x_pos + Math.Sqrt(28^2 + 30^2)cos(flashRotation);
var y_pos = sprite_y_pos + Math.Sqrt(28^2 + 30^2)sin(flashRotation);
The actual angle of rotation of the flash (which way it points) will be the same angle as the sprite.
You may need to play with the flashRotaion equation depending upon which way is counted as a positive rotation.

Resources