T(n) = 3T(n-2) + c
This is what i have solved to far enter image description here
T(n)=3T(n-2)+c T(n)=3(T(N-4)+C)+C -> 3C+C=4C T(N)=9T(N-4)+4C T(N)=27T(N-6)+13C THEN YOU FIND THE SUMMATION 3^K T(N-K) + The sum from i=0 to n-1 of(3^i)
So the complexity of this algorithm is O(3^N)
Related
I realize that solving this with Master's theorem gives the answer of Big Theta(log n). However, I want to know more and find the base of the logarithm. I tried reading about masters theorem more to find out about the base but could not find more information on wikipedia (https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)).
How would I solve this using recursion tree or substitution method for solving recurrences?
You can assume n = 2^K and T(0) = 0.
Don't set n=2^k but n=3^k
thus T(3^k) = T(3^{k-1}) + c
recurrence becomes w_k = w_{k-1} + c
Assuming T(1) = 1
with the general term: w_k = ck+1
and w_0 = 1
you conclude T(n) = clog_3(n) + 1
and thus T(n) = O(log_3(n))
T(n) = T(n/3) + O(1) = T(n/9) + O(1) + O(1) = T(n/27) + O(1) + O(1) + O(1) = …
After log3(n) steps, the term T vanishes and T(n) = O(log(n)).
I have a recurrence where T(n) = 3T(n/5) + T(n/2) + 2^n and I want to find the upper and lower bounds for T(n).
But, I cannot use master method to solve the recurrence. I have just learned recurrence and it seems solving this is too hard. Can you please help me with this? How do I solve it if I can't use the master method?
you cant solve this relation with akra-bazzi method because 2^n is not polynomial .
But for solving with finding bounds :
it's obvious that:
1) T(n) >= 2^n (cause we can see in the relation we have 2^n and other things :)) )
and we know that the :
2) T(n) <= 4T(n/2) + 2^n . and we can solve this with master method and the answer of 4t(n/2) + 2^n is θ(2^n) .
1+2) now we have this : θ(2^n) <= T(n) <= 2^n .
so we have the answer :
T(n) ∈ θ(2^n).
I have the following "divide and conquer" algorithm A1.
A1 divides a problem with size n , to 4 sub-problems with size n/4.
Then, solves them and compose the solutions to 12n time.
How can I to write the recursive equation that give the runtime of algorithms.
Answering the question "How can I to write the recursive equation that give the runtime of algorithms"
You should write it this way:
Let T(n) denote the run time of your algorithm for input size of n
T(n) = 4*T(n/4) + 12*n;
Although the master theorem does give a shortcut to the answer, it is imperative to understand the derivation of the Big O runtime. Divide and conquer recurrence relations are written in the form T(n) = q * T(n/j) + cn, where q is the number of subproblems, j the amount we divide the data for each subproblem, and cn is the time it takes to divide/combine/manipulate each subproblem at each level. cn could also be cn^2 or c, whatever the runtime would be.
In your case, you have 4 subproblems of size n/4 with each level being solved in 12n time giving a recurrence relation of T(n) = 4 * T(n/4) + 12n. From this recurrence, we can then derive the runtime of the algorithm. Given it is a divide and conquer relation, we can assume that the base case is T(1) = 1.
To solve the recurrence, I will use a technique called substitution. We know that T(n) = 4 * T(n/4) + 12n, so we will substitute for T(n/4). T(n/4) = 4 * T(n/16) + 12(n/4). Plugging this into the equation gets us T(n) = 4 * (4 * T(n/16) + 12n/4) + 12n, which we can simplify to T(n) = 4^2 * T(n/16) + 2* 12n. Again, we still have more work to do in the equation to capture the work in all levels, so we substitute for T(n/16), T(n) = 4^3 * T(n/64) + 3* 12n. We see the pattern emerge and know that we want to go all the way down to our base case, T(1), so that we substitute to get T(n) = 4^k*T(1) + k * 12n. This equation defines the total amount of work that is in the divide and conquer algorithm because we have substituted all of the levels in, however, we still have an unknown variable k and we want it in terms of n We get k by solving the equation n/4^k = 1 as we know that we have reached the point where we are calling the algorithm on only one variable. We solve for n and get that k = log4n. That means that we have done log4n substitutions. We plug that in for k and get T(n) =4^log4n*T(1) + log4n * 12n. We simplify this to T(n) =n *1 + log4n * 12n. Since this is Big O analysis and log4n is in O(log2n) due to the change of base property of logarithms, we get that T(n) = n + 12n * logn which means that T(n) is in the Big O of nlogn.
Recurrence relation that best describes is given by:
T(n)=4*T(n/4)+12*n
Where T(n)= run time of given algorithm for input of size n, 4= no of subproblems,n/4 = size of each subproblem .
Using Master Theorem Time Complexity is calculated to be:theta(n*log n)
here we have an algorithm
T(n) = n-1 + T(i-1) + T(n-i)
T(1) = 1
How to calculate it's time complexity?
i is between 1 and n
I can recognise this as quick sort algorithm (randomized quick sort).
I am sure the question somehow missed the summation part.
Okay! you can use substitution method over here..check with O(n^2). you will get the idea that O(n^2) is the worst case time complexity.
The average case is a bit tricky. Then the pivot can be any element from 1 to n. Then analyse it. Here also you can apply substituin with T(n)=O(nlogn).
I think we should solve it like this
if i = 2 then we have
T(n) = n + T(n-2) = Theta(n^2)
if i = n/2 then we have
T(n) = n-1 + T(n/2 -1) + T(n/2) = Theta(n.logn)
then we have upper bound O(n^2) and algorithm is in order of O(n^2)
0,1,3,6,10,15,21,...
each term gets incremented in the order of natural numbers
I tried to generate the nth of the series but ended with TLE
here's my code
s=0
for(int i=1;i<=n;i++)
s=s+(i-1);
Can any anybody help me with a better algorithm.
Think the problem as solving recurrence of the form
T(n) = T(n-1) + n
given T(0)=0
T(1) = T(0) + 1
T(2) = T(1) + 2
on solving recurrence you are going to obtain T(n) = n*(n+1)/2
This series, gives for n the sum of the natural number from 0 to n. There is a simple formula for calculating this (n * (n+1)) / 2.