In a Spring Boot Web Application layout, I have defined a Service Interface named ApplicationUserService. An implementation called ApplicationUserServiceImpl implements all the methods present in ApplicationUserService.
Now, I have a Controller called ApplicationUserController that calls all the methods of ApplicationUserServiceImpl under different #GetMapping annotations.
As suggested by my instructor, I have defined a Dependency Injection as follows:
public class ApplicationUserController {
private final ApplicationUserService applicationUserService; //This variable will work as an object now.
public ApplicationUserController(ApplicationUserService applicationUserService) {
this.applicationUserService = applicationUserService;
}
#GetMapping
//REST OF THE CODE
}
I am new to Spring Boot and I tried understanding Dependency Injection in plain English and I understood how it works. I understood that the basic idea is to separate the dependency from the usage. But I am totally confused about how this works in my case.
My Questions:
Here ApplicationUserService is an Interface and it's implementation has various methods defined. In the code above, applicationUserService now has access to every method from ApplicationUserServiceImpl. How did that happen?
I want to know how the Object creation works here.
Could you tell me the difference between not using DI and using DI in this case?
Answers
The interface layer is used for abstraction of the code it will be really helpfull when you want to provide different implementations for it. When you create a instance you are simply creating a ApplicationUserServiceImpl and assigning it into a reference variable of ApplicationUserService this concept is called upcasting. Even though you have created the object of child class/implementation class you can only access the property or methods defined in parent class/interface class. Please refer this for more info
https://stackoverflow.com/questions/62599259/purpose-of-service-interface-class-in-spring-boot#:~:text=There%20are%20various%20reasons%20why,you%20can%20create%20test%20stubs.
in this example when a applicationusercontroller object is created. The spring engine(or ioc container) will create a object of ApplicationUserServiceImpl (since there is a single implementation of the interface ) and returns to controller object as a constructor orgument which you assign to the refrence variable also refer the concept called IOC(Invertion of control)
as explained in the previous answer the spring will take care of object creation (object lifecycle)rather than you explsitly doing it. it will make the objects loosely coupled. In this the controll of creating the instances is with spring .
The non DI way of doing this is
private ApplicationUserService applicationUserService = new ApplicationUserServiceImpl()
Hope I have answered your questions
this analogy may make you understand better consider an example, wherein you have the ability to cook. According to the IoC principle(principal which is the basis of DI), you can invert the control, so instead of you cooking food, you can just directly order from outside, wherein you receive food at your doorstep. Thus the process of food delivered to you at your doorstep is called the Inversion of Control.
You do not have to cook yourself, instead, you can order the food and let a delivery executive, deliver the food for you. In this way, you do not have to take care of the additional responsibilities and just focus on the main work.
Now, that you know the principle behind Dependency Injection, let me take you through the types of Dependency Injection
Related
I am trying to understand the idea of spring beans and why I should use them. If I create a bean and use it to print something out like this.
ApplicationContext context = new ClassPathXmlApplicationContext("spring.xml");
Account acc = (Account)context.getBean("account");
acc.printAccName();
Why not just create an object of that class like this
Account acc2 = new Account();
acc.printAccName();
I have been watching some video's and did some reading but I did not get an answer why it is better.
Usually what you inject is business logic or services which typically is what changes in a system.
You are trying to inject a domain object Account these objects are not subject to change so it is okay to create the object via new. Perhaps, this is what it is confusing you.
The idea, is to let the container handle the instantiation of your logic or services that change regularly so you can swap them easily without having to open the client classes, because these might be already in production, tested and a developer could potentially introduce new bugs and break things. One way to avoid this is to follow a principle called Open-Closed principle. Then you code to abstractions so you can easily inject concrete implementations via dependency injection.
Imagine the following escenario. For a bookstore, you have different implementations of how to save a book into a database e.g. using JDBC BookServiceJDBCImpl, or using an ORM BookServiceHibernateImpl etc..
// Create & get the Spring container, where you configure your implementations
// e.g. bookServiceJDBC, or bookServiceHibernate
ApplicationContext container = new ClassPathXmlApplicationContext("spring-config.xml");
// the container loads the appropriate bean say bookServiceHibernate
BookService bookService = (BookService) container.getBean("bookService");
//Create a new book this is a domain object usually you use new
Book newBook = new Book("1234", "Spring in Action","Rod Johnson");
//Now save the book using the implementation defined in the
//container
bookService.registerNewBook(newBook);
This is how part of the container file may look like, in here you define the concrete implementation:
<bean id="bookService" class="service.BookServiceHibernateImpl"/>
By letting the container handle this you could inject different implementations without having to touch the client class or even knowing which implementation will be passed.
Check this Dependency Injection blog post it explains a way to achieve it using Spring.
Bare in mind that in Spring you can use java annotations or xml, and that there are different ways to inject dependencies e.g. via get/set, constructors etc this is just an illustrative example of the general DI concept. The design is up to the developer.
Another reason why you would use beans is to aid testing.
We also extract the RestTemplate into a #Bean to make it easier to
test (it can be mocked more easily that way). Link
This question already has answers here:
What is dependency injection?
(37 answers)
Closed 7 years ago.
I have a class
#Component
public class MessageServiceHelper {
#Autowired
private MessageService messageService;
public boolean sendMessage(String text){
return messageService.sendMessage(text);
}
public MessageService getMessageService() {
return messageService;
}
public void setMessageService(MessageService messageService) {
this.messageService = messageService;
}
}
so here I am autowiring messageService, so that whenever the object ob MessageServiceHelper is instantiated then it will automatically inject dependency messageService into MessageServiceHelper. Same thing I can achieve if I have write some other class which will create the instance of MessageService and will call the setter method.
Now here the point can be raised is we have shifted the dependency resolution logic some where else and that code is coupled with the instantiation of MessageService and if some implementation is changed then I will have to change that class but with spring also If I have to change implementation I have to make change in metadata that I have given before.
so here my question is what is different with DI? What is strongest point about DI here?
In short, the metadata change is desirable which enables configuration of a higher layer of abstraction rather than change in the application code. The configurable higher layer is then reusable and your lower layer of application code is easily testable. Dependency injection is one of the very old core design principles featuring in famous SOLID design principles. This design principle has featured into lots of frameworks out there - Spring being one of the most popular and evangelist of DI in Java world. There are already lots of good articles available to understand the necessity of DI- you can read them on Wikipedia and Microsoft library. And yes, then there are few gem of articles on Martin Fowler's site to understand it in depth here and here.
The point of dependency injection is reuse. Crafting your code correctly you can inject multiple implementations at runtime.
This is particularly useful for unit testing where you want to pass a mock object instead of a real one without modifying the object. By moving the dependency outside of the code and injecting it you can test your code without modifying it.
It also allows a separation of concerns. If the creation of the object is a complex affair you don't have to put that code in the class which uses it. Other code or classes can do the creation and just pass it into your class, which no longer has to worry about the specifics of how it was created. So moving it outside is an advantage. Think of complex objects created using frameworks. Good examples include instantiating a database driver or database session.
There are other specific instances where the reuse is practical but I would say these are the main ones I've seen for web applications and business code.
I'm new to using Spring with Neo4j and I have a question about #Autowire for a GraphRepository.
Most examples I've seen use one #Autowire per Controller, but I have two Nodes I need to modify at the same time when a particular method is called in the controller. Should I simply #Autowire the repositories for both nodes (eg per the code below)? Is there any impact if I do this in a second controller with the same repositories as well (so if I had a ChatSessionController which also #Autowired ChatMessageService and ChatSessionService)?
ChatMessageController.java
#Controller
public class ChatMessageController {
#Autowired
private ChatMessageService chatMessageService;
#Autowired
private ChatSessionService chatSessionService;
#RequestMapping(value = "/message/add/{chatSessionId}", method = RequestMethod.POST)
#ResponseBody
#Transactional
public void addMessage(#RequestBody ChatMessagePack chatMessagePack,
#PathVariable("chatSessionId") Long chatSessionId) {
ChatMessage chatMessage = new ChatMessage(chatMessagePack);
chatMessageService.save(chatMessage);
// TODO: Make some modifications to the ChatSession as well
}
}
Any help would be much appreciated! I've been googling and looking through Stackoverflow to understand this better but I haven't found anything yet. Any pointers in the right directions would be great.
Another underlying question is, should I be (and can I?) modifying other Nodes in a GraphRepository that handles a particular node? Eg Should my GraphRepository be able to modify my GraphRespository?
Thanks!
I'm not convinced that this is a SO question, it's not really a Neo4J or Spring question either, it is more about the architecture of your application. However assuming that you understand the negatives of class fan out, and how to use the #Transactional annotation to achieve what you want then the answer to your question is that it is just fine to have many Repositories (Neo4J or otherwise, autowired or otherwise) in your class and in as many classes as you want.
Neo4J transactions default to Isolation level READ_COMMITTED and if you need anything else, you need to add the guards/locks yourself. Nested transactions are consideredd tobe the same transaction. The Spring #Transactional annotation relies on proxies that you should be aware of as they have implications when calling methods from within the same class.
I would go through this tuotorial over at Spring Data and get your head around how real world vs domain vs node models differ, there will be cases where one repository impacts another node type but I would think it is often transparent to you (i.e adding relationships). You can do what you like in each repository (the generic nature of them is largely confined to all of the built in CRUD and queries derived from finder-method names (see documentation ) using the #Query annotation, and some queries have side effects, but largely you should avoid it.
As you start adding multiple repositories to multiple controllers I think that your code will begin to smell bad and that you should consider encapsulating this business logic off on its own somewhere, neatly unit tested. I also wouldn't tie myself to one controller per data object, it would be fine to have a single ChatController with a POST/chat/ to create a new session and POST /chat/{sessionId} to add a message. Intersting questions on Programmers:
How accurate is "Business logic should be in a service, not in a model?"
Best Practices for MVC Architecture
MVC Architecture — How many Controllers do I need?
I've built some code that can rebuild expression trees so I can avoid triggering the no supported translation to SQL exception and it works fine as long as I call my function to replace the iqueryable. The problem is that I'd like it to automatically be applied to all queries in my project without having to worry about calling this function on each one separately. Is there any way that I can intercept everything?
I've tried using Reflection.Emit to create a wrapping provider and using reflection to replace it on the data context and it turns out that even with Reflection.Emit I can't implement the internal IProvider interface.
I've also tried replacing the provider with a RealProxy based class and that works for non-compiled queries, but the CompiledQuery.Execute method is throwing an exception because it won't cast to the SqlProvider class. I tried replacing the response to the Compile method on the provider with another proxy so I could intercept the Execute call, but that failed a check on the return type being correct.
I'm open to any other ideas or ways of using what I've already tried?
It's hard to tell whether this is an applicable solution without seeing your code, but if you have a DI-friendly app architecture you can implement an interceptor and have your favorite IoC container emit the appropriate type for you, at run-time.
Esoteric? A little. Consider an interface like this:
public interface ISomeService
{
IEnumerable<SomeEntity> GetSomeEntities();
// ...
}
This interface might be implemented like this:
public class SomeService : ISomeService
{
private readonly DbContext _context // this is a dependency!
private readonly IQueryTweaker _tweaker; // this is a dependency!
public SomeService(DbContext context, IQueryTweaker tweaker) // this is constructor injection!
{
_context = context;
_tweaker = tweaker;
}
public IEnumerable<SomeEntity> GetSomeEntities()
{
return _tweaker.TweakTheQuery(_context.SomeEntities).ToList();
}
}
Every time you implement a method of the ISomeService interface, there's always a call to _tweaker.TweakTheQuery() that wraps the IQueryable, and that not only gets boring, it also feels like something is missing a feature - the same feeling you'd get by wrapping every one of these calls inside a try/catch block, or if you're familiar with MVVM in WPF, by raising this annoying PropertyChanged event for every single property setter in your ViewModel.
With DI Interception, you factor this requirement out of your "normal" code and into an "interceptor": you basically tell the IoC container that instead of binding ISomeService directly to the SomeService implementation, you're going to be decorating it with an interceptor, and emit another type, perhaps SomeInterceptedService (the name is irrelevant, the actual type only exists at run-time) which "injects" the desired behavior into the desired methods. Simple? Not exactly.
If you haven't designed your code with DI in mind (are your dependencies "injected" into your classes' constructor?), it could mean a major refactoring.
The first step breaks your code: remove the IQueryTweaker dependency and all the TweakTheQuery calls from all ISomeService implementations, to make them look like this - notice the virtualness of the method to be intercepted:
public class SomeService : ISomeService
{
private readonly DbContext _context
public SomeService(DbContext context)
{
_context = context;
}
public virtual IEnumerable<SomeEntity> GetSomeEntities()
{
return _context.SomeEntities.ToList();
}
}
The next step is to configure the IoC container so that it knows to inject the SomeService implementation whenever a type's constructor requires an ISomeService:
_kernel.Bind<ISomeService>().To<SomeService>();
At that point you're ready to configure the interception - if using Ninject this could help.
But before jumping into that rabbit's hole you should read this article which shows how decorator and interceptor are related.
The key point is, you're not intercepting anything that's internal to LINQ to SQL or the .NET framework itself - you're intercepting your own method calls, wrapping them with your own code, and with a little bit of help from any decent IoC container, you'll be intercepting the calls to methods that call upon Linq to SQL, rather than the direct calls to Linq to SQL itself. Essentially the IQueryTweaker dependency becomes a dependency of your interceptor class, and you'll only code its usage once.
An interesting thing about DI interception, is that interceptors can be combined, so you can have a ExecutionTimerServiceInterceptor on top of a AuditServiceInterceptor, on top of a CircuitBreakerServiceInterceptor... and the best part is that you can configure your IoC container so that you can completely forget it exists and, as you add more service classes to the application, all you need to do is follow a naming convention you've defined and voilà, you've just written a service that not only accomplishes all the strictly data-related tasks you've just coded, but also a service that will disable itself for 3 minutes if the database server is down, and will remain disabled until it's back up; that service also logs all inserts, updates and deletes, and stores its execution time in a database for performance analysis. The term automagical seems appropriate.
This technique - interception - can be used to address cross-cutting concerns; another way to address those is through AOP, although some articles (and Mark Seeman's excellent Dependency Injection in .NET) clearly demonstrate how AOP frameworks are a less ideal solution over DI interception.
I find myself struggling with the fuzz around the concept of string-based 'Service Locators'.
For starters, IoC is great, and programming to interfaces is the way to go. But I fail to see where the big benefit lies in the yellow-pages pattern used here, apart from compilation-less reconfigurability .
Application code will use a (Spring) container to retrieve objects from. Now that's nice: since the code needs to know only the needed interface (to cast to), the Spring container interface, and the name of the needed object, a lot of coupling is removed.
public void foo(){
((MyInterface) locator.get("the/object/I/need")).callMe();
}
Where, of course, the locator can be populated with a gazillion of objects of all kind of Object derivatives.
But I'm a bit puzzled by the fact that the 'flexibility' of retrieving an object by name actually hides the dependency in a type-unsafe, lookup-unsafe manner: where my compiler used to check the presence of a requested object member, and it's type, now all of that is postponed to the runtime phase.
The simplest, functionally allright, pattern I could think of is a giant, application wide struct like object:
public class YellowPages {
public MyInterface the_object_i_need;
public YourInterface the_object_you_need;
....
}
// context population (no xml... is that bad?)
YellowPages locator = new YellowPages();
locator.the_object_i_need=new MyImpl("xyx",true),
locator.the_object_you_need=new YourImpl(1,2,3)
public void foo(){
locator.the_object_i_need.callMe(); // type-safe, lookup-safe
}
Would there be a way/pattern/framework to ask the compiler to resolve the requested object, and check whether it's type is ok? Are there DI frameworks that also do that?
Many thanks
What you are describing is an anti-pattern, plain and simple. Dependency injection (done via the constructor if possible) is the preferred way to do Inversion of Control. Older articles on IOC talk about service location as a viable way to implement the pattern, but you'd be hard pressed to find anyone advocating this in more recent writings.
You hit the nail on the head with this statement:
But I'm a bit puzzled by the fact that the 'flexibility' of retrieving
an object by name actually hides the dependency in a type-unsafe,
lookup-unsafe manner:
Most modern DI frameworks can get around the type-unsafe part, but they do hide the dependency by making it implicit instead of explicit.
Good article on this topic:
Service Locator is an Anti-Pattern
Spring is the only DI framework that I've used, so I can't speak for others, but even though Spring give you the ability to request an object by its name in your code, you don't have to get your Spring beans by name -- in fact, if you do, you're not really capitalizing on the "I" (inversion) in IOC.
The whole principle behind Spring/DI is that your objects shouldn't be asking for a particular object -- it should just have whatever objects it needs handed to it by the IOC container. The distinction is subtle, but it's there. The former approach would resemble the code that you pasted:
public void foo(){
((MyInterface) locator.get("the/object/I/need")).callMe();
}
The latter approach, by contrast, doesn't depend on any service locator, nor does it depend on the "name" of the object that it wants:
private ObjectINeed objectINeed;
public void setObjectINeed(ObjectINeed objectINeed) {
this.objectINeed = objectINeed;
}
public void foo(){
objectINeed.callMe();
}
It's the IOC container that calls the setObjectINeed() method. DI is definitely tackles the same problem as the service locator pattern, but it goes that extra step towards getting rid of the dependency on your service locator class.