Count specific element in list [Prolog] - prolog

I want to count a specific element in a list.
?count(3,[3,3,3],C).
count(_,[],_).
count(X,[Y|R],C):- X \= Y, count(X,R,C).
count(X,[Y|R],C):- X = Y, L is C + 1, count(X,R,L).
But I get this error and I do not see why:
Arguments are not sufficiently instantiated
In:
[1] count(3,[3,3|...],_1594)
Do you have a tipp?

The instantiation error occurs in the goal L is C + 1 as the variable C is unbound when the goal is called.
One solution is to rewrite the predicate to use an accumulator. Doing the minimal changes to your code:
count(Element, List, Count) :-
count(Element, List, 0, Count).
count(_, [], Count, Count).
count(X, [Y|R], Count0, Count) :-
X \= Y,
count(X, R, Count0, Count).
count(X, [Y|R], Count0, Count) :-
X = Y,
Count1 is Count0 + 1,
count(X, R, Count1, Count).
With your sample call:
| ?- count(3, [3,3,3], Count).
Count = 3 ? ;
no
Notice that this new definition leaves a spurious choice-point. Can you improve it so that calls (with the two first arguments ground) become deterministic? Hint: start by moving the list argument to the first position in the auxiliary count/4 predicate.

Related

Prolog, count how many different values there are in a list

I'm new in prolog, and I wanted to create a "function" to count how many different values I have in a list.
I've made this predicate to count the total number of values:
tamanho([],0).
tamanho([H|T],X) :- tamanho(T,X1), X is X1+1.
I wanted to follow the same line of thought like in this last predicate.(Don't know if that's possible).
So in a case where my list is [1,2,2,3], the answer would be 3.
Can someone give me a little help?
Here is a pure version which generalizes the relation. You can not only count but just see how elements have to look like in order to obtain a desired count.
In SWI, you need to install reif first.
:- use_module(library(reif),[memberd_t/3]).
:- use_module(library(clpz)). % use clpfd in SWI instead
:- op(150, fx, #). % backwards compatibility for old SWI
nt_int(false, 1).
nt_int(true, 0).
list_uniqnr([],0).
list_uniqnr([E|Es],N0) :-
#N0 #>= 0,
memberd_t(E, Es, T),
nt_int(T, I),
#N0 #= #N1 + #I,
list_uniqnr(Es,N1).
tamanho(Xs, N) :-
list_uniqnr(Xs, N).
?- tamanho([1,2,3,1], Nr).
Nr = 3.
?- tamanho([1,2,X,1], 3).
dif:dif(X,1), dif:dif(X,2).
?- tamanho([1,2,X,Y], 3).
X = 1, dif:dif(Y,1), dif:dif(Y,2)
; Y = 1, dif:dif(X,1), dif:dif(X,2)
; X = 2, dif:dif(Y,1), dif:dif(Y,2)
; Y = 2, dif:dif(X,1), dif:dif(X,2)
; X = Y, dif:dif(X,1), dif:dif(X,2)
; false.
You can fix your code by adding 1 to the result that came from the recursive call if H exists in T, otherwise, the result for [H|T] call is the same result for T call.
tamanho([],0).
tamanho([H|T], X) :- tamanho(T, X1), (member(H, T) -> X is X1; X is X1 + 1).
Tests
/*
?- tamanho([], Count).
Count = 0.
?- tamanho([1,a,21,1], Count).
Count = 3.
?- tamanho([1,2,3,1], Count).
Count = 3.
?- tamanho([1,b,2,b], Count).
Count = 3.
*/
In case the input list is always numerical, you can follow #berbs's suggestion..
sort/2 succeeds if input list has non-numerical items[1] so you can use it without any restrictions on the input list, so tamanho/2 could be just like this
tamanho(T, X) :- sort(T, TSorted), length(TSorted, X).
[1] thanks to #Will Ness for pointing me to this.

implementation of copy in prolog

Given a list of regs regs (1,2,3, ...) what I want the code to do is to copy the position X to X + 1, I put some examples below. I have the following code in prolog:
exe(EA, copy(X), ES):-
EA =.. [reg|TH],
LL1 is X+1,
length(TH,LL),
LL2 is LL+X+1,
length(L1,LL1),
length(L2,LL2),
append(L1,LI1,TH),[EX|L2]=LT1,
flatten(reg[L1,EX,L2], LR),
ES=.. LR.
what i want to show me as a result is:
?- exe(reg(1,2,3,4), copy(2), ES).
result:
?- ES=reg(1,2,2,4)
?- exe(reg(4,6,2,9), copy(1), ES).
result:
?-ES=reg(4,4,2,9).
?- exe(reg(1,2), copy(2), ES).
result:
false
I think the code is wrong
Try to split up your goal into multiple aspects, like: getting the element at position X (nth_element), then try to implement a predicate overwriting a particular value. Below is code that works as you expect. It basically traverses lists in the Prolog-"standard" way.
% Get the nth element of a list, indices starting at 1
nth_element([X|_], 1, X) :- !.
nth_element([_|Xs], N, R) :-
M is N - 1,
nth_element(Xs, M, R).
% Overwrites the N-th position in a list by a new element
% Indices starting with 1
% overwrite(List, N, Element, New_List) :-
% overwrite([], _, _, []) :- !.
overwrite([_|Xs], 1, Y, [Y|Xs]) :- !.
overwrite([X|Xs], N, Y, [X|Ys]) :-
M is N - 1,
overwrite(Xs, M, Y, Ys).
exe(EA, copy(X), Es):-
EA =.. [reg|TH],
nth_element(TH, X, Element),
Y is X + 1,
overwrite(TH, Y, Element, New),
Es =.. [reg|New].

Given a list of elements, replicate each element N times

I have to replicate each element n times like this:
?- replicate([a,b,c],2,X). -> X = [a,a,b,b,c,c]
?- replicate([a,b,c],3,X). -> X = [a,a,a,b,b,b,c,c,c]
I have tried everything with the information I have so far, the only thing I have been able to do is to determine which is the most repeating element like this:
%List of tuples, keeps track of the number of repetitions.
modify([],X,[(X,1)]).
modify([(X,Y)|Xs],X,[(X,K)|Xs]):- K is Y+1.
modify([(Z,Y)|Xs],X,[(Z,Y)|K]):- Z =\= X, modify(Xs,X,K).
highest((X1,Y1),(_,Y2),(X1,Y1)):- Y1 >= Y2.
highest((_,Y1),(X2,Y2),(X2,Y2)):- Y2 > Y1.
maxR([X],X).
maxR([X|Xs],K):- maxR(Xs,Z),highest(X,Z,K).
rep([],R,R).
rep([X|Xs],R,R1):-modify(R,X,R2),rep(Xs,R2,R1).
maxRepeated(X,R):- rep(X,[],K),maxR(K,R).
?- maxRepeated([1,3,3,4,3,2] ,X).
X = (3, 3) .
?- maxRepeated([1,2,3,4,5,6] ,X).
X = (1, 1) .
What do you want to do ?
Take each element X of the list, get a list of N X and create a new list with the process of the rest of the list !
How to get a list of N elements X ?
replicate_one(X, N, Out) :-
length(Out, N),
maplist(=(X),Out).
Now, how to work with each element of the input, it can be easily done with the pattern [Head|Tail] :
replicate([Head|Tail], N, Out) :-
% I replicate the rest of the list
replicate(Tail, N, Tmp1),
% I replicate the first element of the list
replicate_one(Head, N, Tmp2),
% I concatenate the 2 results
append(Tmp2, Tmp1, Out).
When you work with replicate, the input looses an element each time, so you must have a process for the empty list :
replicate([], _N, []).
Now :
?- replicate([a,b,c],3,X).
X = [a, a, a, b, b, b, c, c, c].
We can split the problem into two problems:
generate a list of N elements X with a predicate we implement replicate_item/3; and
do this for every element, and concatenate the result in a prdicate named replicate/3.
#joel76 already provided a nice implementation for replicate_item/3. I will only change the order of the parameters:
replicate_item(N, X, List) :-
length(List, N),
maplist(=(X), List).
Now our replicate/3 prdicate can iterate over the list, and for each element use replicate_item/3 to generate a sublist. We can then use append/2 [swi-doc] for this:
replicate(LA, N, List) :-
maplist(replicate_item(N), LA, LL),
append(LL, List).

Prolog count list elements higher than n

I'm kinda new to Prolog so I have a few problems with a certain task. The task is to write a tail recursive predicate count_elems(List,N,Count) condition List_Element > N, Count1 is Count+1.
My approach:
count_elems( L, N, Count ) :-
count_elems(L,N,0).
count_elems( [H|T], N, Count ) :-
H > N ,
Count1 is Count+1 ,
count_elems(T,N,Count1).
count_elems( [H|T], N, Count ) :-
count_elems(T,N,Count).
Error-Msg:
ERROR: toplevel: Undefined procedure: count_elems/3 (DWIM could not correct goal)
I'm not quite sure where the problem is. thx for any help :)
If you want to make a tail-recursive version of your code, you need (as CapelliC points out) an extra parameter to act as an accumulator. You can see the issue in your first clause:
count_elems(L, N, Count) :- count_elems(L,N,0).
Here, Count is a singleton variable, not instantiated anywhere. Your recursive call to count_elems starts count at 0, but there's no longer a variable to be instantiated with the total. So, you need:
count_elems(L, N, Count) :-
count_elems(L, N, 0, Count).
Then declare the count_elem/4 clauses:
count_elems([H|T], N, Acc, Count) :-
H > N, % count this element if it's > N
Acc1 is Acc + 1, % increment the accumulator
count_elems(T, N, Acc1, Count). % check the rest of the list
count_elems([H|T], N, Acc, Count) :-
H =< N, % don't count this element if it's <= N
count_elems(T, N, Acc, Count). % check rest of list (w/out incrementing acc)
count_elems([], _, Count, Count). % At the end, instantiate total with accumulator
You can also use an "if-else" structure for count_elems/4:
count_elems([H|T], N, Acc, Count) :-
(H > N
-> Acc1 is Acc + 1
; Acc1 = Acc
),
count_elems(T, N, Acc1, Count).
count_elems([], _, Count, Count).
Also as CapelliC pointed out, your stated error message is probably due to not reading in your prolog source file.
Preserve logical-purity with clpfd!
Here's how:
:- use_module(library(clpfd)).
count_elems([],_,0).
count_elems([X|Xs],Z,Count) :-
X #=< Z,
count_elems(Xs,Z,Count).
count_elems([X|Xs],Z,Count) :-
X #> Z,
Count #= Count0 + 1,
count_elems(Xs,Z,Count0).
Let's have a look at how versatile count_elems/3 is:
?- count_elems([1,2,3,4,5,4,3,2],2,Count).
Count = 5 ; % leaves useless choicepoint behind
false.
?- count_elems([1,2,3,4,5,4,3,2],X,3).
X = 3 ;
false.
?- count_elems([1,2,3,4,5,4,3,2],X,Count).
Count = 0, X in 5..sup ;
Count = 1, X = 4 ;
Count = 3, X = Count ;
Count = 5, X = 2 ;
Count = 7, X = 1 ;
Count = 8, X in inf..0 .
Edit 2015-05-05
We could also use meta-predicate
tcount/3, in combination with a reified version of (#<)/2:
#<(X,Y,Truth) :- integer(X), integer(Y), !, ( X<Y -> Truth=true ; Truth=false ).
#<(X,Y,true) :- X #< Y.
#<(X,Y,false) :- X #>= Y.
Let's run above queries again!
?- tcount(#<(2),[1,2,3,4,5,4,3,2],Count).
Count = 5. % succeeds deterministically
?- tcount(#<(X),[1,2,3,4,5,4,3,2],3).
X = 3 ;
false.
?- tcount(#<(X),[1,2,3,4,5,4,3,2],Count).
Count = 8, X in inf..0 ;
Count = 7, X = 1 ;
Count = 5, X = 2 ;
Count = 3, X = Count ;
Count = 1, X = 4 ;
Count = 0, X in 5..sup .
A note regarding efficiency:
count_elems([1,2,3,4,5,4,3,2],2,Count) left a useless choicepoint behind.
tcount(#<(2),[1,2,3,4,5,4,3,2],Count) succeeded deterministically.
Seems you didn't consult your source file.
When you will fix this (you could save these rules in a file count_elems.pl, then issue a ?- consult(count_elems).), you'll face the actual problem that Count it's a singleton in first rule, indicating that you must pass the counter down to actual tail recursive clauses, and unify it with the accumulator (the Count that gets updated to Count1) when the list' visit is done.
You'll end with 3 count_elems/4 clauses. Don't forget the base case:
count_elems([],_,C,C).

Finding the max in a list - Prolog

I was just introduced to Prolog and am trying to write a predicate that finds the Max value of a list of integers. I need to write one that compares from the beginning and the other that compares from the end. So far, I have:
max2([],R).
max2([X|Xs], R):- X > R, max2(Xs, X).
max2([X|Xs], R):- X <= R, max2(Xs, R).
I realize that R hasn't been initiated yet, so it's unable to make the comparison. Do i need 3 arguments in order to complete this?
my_max([], R, R). %end
my_max([X|Xs], WK, R):- X > WK, my_max(Xs, X, R). %WK is Carry about
my_max([X|Xs], WK, R):- X =< WK, my_max(Xs, WK, R).
my_max([X|Xs], R):- my_max(Xs, X, R). %start
other way
%max of list
max_l([X],X) :- !, true.
%max_l([X],X). %unuse cut
%max_l([X],X):- false.
max_l([X|Xs], M):- max_l(Xs, M), M >= X.
max_l([X|Xs], X):- max_l(Xs, M), X > M.
Ignoring the homework constraints about starting from the beginning or the end, the proper way to implement a predicate that gets the numeric maximum is as follows:
list_max([P|T], O) :- list_max(T, P, O).
list_max([], P, P).
list_max([H|T], P, O) :-
( H > P
-> list_max(T, H, O)
; list_max(T, P, O)).
A very simple approach (which starts from the beginning) is the following:
maxlist([],0).
maxlist([Head|Tail],Max) :-
maxlist(Tail,TailMax),
Head > TailMax,
Max is Head.
maxlist([Head|Tail],Max) :-
maxlist(Tail,TailMax),
Head =< TailMax,
Max is TailMax.
As you said, you must have the variables instantiated if you want to evaluate an arithmetic expression. To solve this, first you have to make the recursive call, and then you compare.
Hope it helps!
As an alternative to BLUEPIXY' answer, SWI-Prolog has a builtin predicate, max_list/2, that does the search for you. You could also consider a slower method, IMO useful to gain familiarity with more builtins and nondeterminism (and then backtracking):
slow_max(L, Max) :-
select(Max, L, Rest), \+ (member(E, Rest), E > Max).
yields
2 ?- slow_max([1,2,3,4,5,6,10,7,8],X).
X = 10 ;
false.
3 ?- slow_max([1,2,10,3,4,5,6,10,7,8],X).
X = 10 ;
X = 10 ;
false.
edit
Note you don't strictly need three arguments, but just to have properly instantiated variables to carry out the comparison. Then you can 'reverse' the flow of values:
max2([R], R).
max2([X|Xs], R):- max2(Xs, T), (X > T -> R = X ; R = T).
again, this is slower than the three arguments loops, suggested in other answers, because it will defeat 'tail recursion optimization'. Also, it does just find one of the maxima:
2 ?- max2([1,2,3,10,5,10,6],X).
X = 10 ;
false.
Here's how to do it with lambda expressions and meta-predicate foldl/4, and, optionally, clpfd:
:- use_module([library(lambda),library(apply),library(clpfd)]).
numbers_max([Z|Zs],Max) :- foldl(\X^S^M^(M is max(X,S)),Zs,Z,Max).
fdvars_max( [Z|Zs],Max) :- foldl(\X^S^M^(M #= max(X,S)),Zs,Z,Max).
Let's run some queries!
?- numbers_max([1,4,2,3],M). % integers: all are distinct
M = 4. % succeeds deterministically
?- fdvars_max( [1,4,2,3],M).
M = 4. % succeeds deterministically
?- numbers_max([1,4,2,3,4],M). % integers: M occurs twice
M = 4. % succeeds deterministically
?- fdvars_max( [1,4,2,3,4],M).
M = 4. % succeeds deterministically
What if the list is empty?
?- numbers_max([],M).
false.
?- fdvars_max( [],M).
false.
At last, some queries showing differences between numbers_max/2 and fdvars_max/2:
?- numbers_max([1,2,3,10.0],M). % ints + float
M = 10.0.
?- fdvars_max( [1,2,3,10.0],M). % ints + float
ERROR: Domain error: `clpfd_expression' expected, found `10.0'
?- numbers_max([A,B,C],M). % more general use
ERROR: is/2: Arguments are not sufficiently instantiated
?- fdvars_max( [A,B,C],M).
M#>=_X, M#>=C, M#=max(C,_X), _X#>=A, _X#>=B, _X#=max(B,A). % residual goals
list_max([L|Ls], Max) :- foldl(num_num_max, Ls, L, Max).
num_num_max(X, Y, Max) :- Max is max(X, Y).
%Query will be
?-list_max([4,12,5,3,8,90,10,11],Max).
Max=90
Right now I was working with recursion in Prolog, so if it is useful for someone I will leave 'my two cents' solving it in the two ways that I have thought:
% Start
start :- max_trad([2, 4, 6, 0, 5], MaxNumber1),
max_tail([2, 4, 6, 0, 5], 0, MaxNumber2),
show_results(MaxNumber1, MaxNumber2).
% Traditional Recursion (Method 1)
max_trad([Head|Tail], Max) :- max_trad(Tail, Value), Head > Value, Max is Head.
max_trad([Head|Tail], Max) :- max_trad(Tail, Value), Head =< Value, Max is Value.
max_trad([], 0).
% Tail Recursion (Method 2)
max_tail([], PartialMax, PartialMax).
max_tail([Head|Tail], PartialMax, FinalMax) :- Head > PartialMax, max_tail(Tail, Head, FinalMax).
max_tail([_|Tail], PartialMax, FinalMax) :- max_tail(Tail, PartialMax, FinalMax).
% Show both of the results
show_results(MaxNumber1, MaxNumber2) :-
write("The max value (obtained with traditional recursion) is: "), writeln(MaxNumber1),
write("The max value (obtained with tail recursion) is: "), writeln(MaxNumber2).
The output of the above code is:
Both methods are similar, the difference is that in the second an auxiliary variable is used in the recursion to pass values forward, while in the first method, although we have one less variable, we are filling the Stack with instructions to be executed later, so if it were an exaggeratedly large list, the second method is appropriate.
maximum_no([],Max):-
write("Maximum No From the List is:: ",Max).
maximum_no([H|T],Max):-
H>Max,
N = H,
maximum_no(T,N).
maximum_no(L,Max):-
maximum_no(L,Max).
The maximum number in a list in Prolog ?
max([],A):-print(A),!.
max([Head | Tail] , A):-A =< Head ,A1 is Head , max(Tail,A1) ; max(Tail,A).
max(L,M):-
member(M,L),
findall(X,(member(X,L),X>M),NL),
length(NL,0).

Resources