Large lagging on mouse movement with SketchUp Dae model - three.js

I’ve designed a 3D model in SketchUp and I didn’t use any texture. I’m faced with an issue related with lagging on mouse move and rotate process. When I exported the model by Dae format and imported to the three js online editor (three js online editor) mouse movement is being very slow. I think it occurs fps drop. I couldn’t understand what’s problem with my model that I designed. I need your suggestions and ideas how to resolve this issue. Thanks for your support. I’ve uploaded 3D model’s image. Please take a look.
Object Count: 98.349, Vertices: 2,107.656, Triangles: 702.552

Object Count: 98.349,
The object count results in an equal number draw calls. Such a high value will degrade the performance no matter how complex the respective geometry eventually is.
I suggest you redesign the model and ensure to merge individual objects as much as possible. Also try to lower the number of vertices and faces.
Keep in mind that three.js does not automatically merge or batch render items. So it's your responsibility to optimize assets for rendering. It's best to do this right when designing the model. Or in code via methods like BufferGeometryUtils.mergeBufferGeometries() or via instanced rendering.

Related

THREE JS Imported Model Size and Performance

I was hoping to display in my app as many as 3,000 instances of the same model at the same time - but it’s really slowing down my computer. It's just too much.
I know InstancedMesh is the way to go for something like this so I’ve been following THREE.js’s examples here: https://threejs.org/docs/#api/en/objects/InstancedMesh
The examples are fantastic, but they seem to use really small models which makes it really hard to get a good feel for what the model size-limits should be.
For example:
-The Spheres used here aren't imported custom 3D models, they're just instances of IcosahedronGeometry
-The Flower.glb model used in this example is tiny: it only has 218 Vertices on it.
-And the “Flying Monkeys” here come from a ".json" file so I can’t tell how many vertices that model has.
My model by comparison has 4,832 Vertices - which by the way, was listed in the "low-poly" category where I found it, so it's not really considered particularly big.
In terms of file-size, it's exactly 222kb.
I tried scaling it down in Blender and re-exporting it - still came out at 222kb.
Obviously I can take some “drastic measures”, like:
-Try to re-design my 3D model and make it smaller - but that would greatly reduce it’s beauty and the overall aesthetics of the project
-I can re-imagine or re-architect the project to display maybe 1,000 models at the same time instead of 3,000
etc.
But being that I’m new to THREE.js - and 3D modeling in general, I just wanted to first ask the community if there are any suggestions or tricks to try out first before making such radical changes.
-The model I'm importing is in the .glTF format - is that the best format to use or should I try something else?
-All the meshes in it come into the browser as instances of BufferGeometry which I believe is the lightest in terms of memory demands - is that correct?
Are there any other things I need to be aware of to optimize performance?
Some setting in Blender or other 3D modeling software that can reduce model-size?
Some general rules of thumb to follow when embarking on something like this?
Would really appreciate any and all help.
Thanks!
GLTF is fine to transmit geometry and materials — I might say the standard right now. If there's only geometry, I'd see OBJ or PLY formats.
The model size is blocking, but only for the initial load if we employ instancing on its geometry and material. This way we simply re-use the already generated geometry and its material.
At the GPU level, instancing means drawing a single mesh with a single material shader, many times. You can override certain inputs to the material for each instance, but it sort of has to be a single material.
— Don McCurdy
Our biggest worry here would be the triangles or faces rendered. Lower counts of this are more performant, and thus, fewer models at a time are. For this, you can use some degree of LOD to progressively increase and decrease your models' detail until you stop rendering them at a distance.
Some examples/resources to get you started:
LOD
Instancing Models
Modifying Instances

3d gltf model rendering optimization (threejs)

I have issues loading some 3d gltf models using threejs on iPad. Loading works fine actually, it loads up fine on desktop computers and android tablets, but in my specific case it needs to run on an iPad tablet and the page keeps crashing because it uses up all of the memory trying to render the model (I guess Android gives the browser more memory to use).
My question is how to optimize the model in order for it to be able to run on iPad? My first thought was that the number of vertices/indices etc. affects rendering, but it turned out that a model with more vertices and indices was able to load while the "optimized" model couldn't load. We throw the model into babylon online previewer to see its info and the thing I noticed is that the older model with more vertices and indices had less meshes and less draw calls than the new one that doesn't work. So is that something that we should focus on optimizing instead of number of vertices and indices?
The problem is that we need to optimize the model to render on iPad but I can't figure out which part of the model needs to be optimized so any help would be much appreciated!
P.S. I tried implementing DRACO compression and DRACOLoader but it doesn't help because it just compresses the file, and once it needs to be rendered on screen that compression doesn't matter at all because it's basically still the same 3d file that needs to be rendered. I can share code if needed, but I don't think it matters because there is no issues with the loading, it's just that the model is not optimized.
Oversized textures were the problem. We had textures that were 2048x2048px but it was just one color inside. So I reduced all of the textures to 1x1px and it worked perfectly.

Efficiently rendering tiled map using SpriteKit

As an exercise, I decided to write a SimCity (original) clone in Swift for OSX. I started the project using SpriteKit, originally having each tile as an instance of SKSpriteNode and swapping the texture of each node when that tile changed. This caused terrible performance, so I switched the drawing over to regular Cocoa windows, implementing drawRect to draw NSImages at the correct tile position. This solution worked well until I needed to implement animated tiles which refresh very quickly.
From here, I went back to the first approach, this time using a texture atlas to reduce the amount of draws needed, however, swapping textures of nodes that need to be animated was still very slow and had a huge detrimental effect on frame rate.
I'm attempting to display a 44x44 tile map where each tile is 16x16 pixels. I know here must be an efficient (or perhaps more correct way) to do this. This leads to my question:
Is there an efficient way to support 1500+ nodes in SpriteKit and which are animated through changing their textures? More importantly, am I taking the wrong approach by using SpriteKit and SKSpriteNode for each tile in the map (even if I only redraw the dirty ones)? Would another approach (perhaps, OpenGL?) be better?
Any help would be greatly appreciated. I'd be happy to provide code samples, but I'm not sure how relevant/helpful they would be for this question.
Edit
Here are some links to relevant drawing code and images to demonstrate the issue:
Screenshot:
When the player clicks on the small map, the center position of the large map changes. An event is fired from the small map the central engine powering the game which is then forwarded to listeners. The code that gets executed on the large map the change all of the textures can be found here:
https://github.com/chrisbenincasa/Swiftopolis/blob/drawing-performance/Swiftopolis/GameScene.swift#L489
That code uses tileImages which is a wrapper around a Texture Atlas that is generated at runtime.
https://github.com/chrisbenincasa/Swiftopolis/blob/drawing-performance/Swiftopolis/TileImages.swift
Please excuse the messiness of the code -- I made an alternate branch for this investigation and haven't cleaned up a lot of residual code that has been hanging around from pervious iterations.
I don't know if this will "answer" your question, but may help.
SpriteKit will likely be able to handle what you need but you need to look at different optimizations for SpriteKit and more so your game logic.
SpriteKit. Creating a .atlas is by far one of the best things you can do and will help keep your draw calls down. Also as I learned the hard way keep a pointer to your SKTextures as long as you need them and only generate the ones you needs. For instance don't create textureWithImageNamed#"myImage" every time you need a texture for myImage instead keep reusing a texture and store it in a dictionary. Also skView.ignoresSiblingOrder = YES; helps a bunch but you have to manage your own zPosition on all the sprites.
Game logic. Updating every tile every loop is going to be very expensive. You will want to look at a better way to do that. keeping smaller arrays or maybe doing logic (model) updates on a background thread.
I currently have a project you can look into if you want called Old Frank. I have a map that is 75 x 75 with 32px by 32px tiles that may be stacked 2 tall. I have both Mac and iOS target so you could in theory blow up the scene size and see how the performance holds up. Not saying there isn't optimization work to be done (it is a work in progress), but I feel it might help get you pointed in the right direction at least.
Hope that helps.

Make a mesh unprintable, but still viewable with three.js

Is there a way to make a mesh unprintable with a 3D printer, but still viewable with three.js.
Motivation is that I want to show users a preview of a mesh before he can buy it. But as the JS code is viewable he could download it without paying for it. Degrading the quality of the preview mesh would be a way, but as the quality of the mesh is a selling point I would like to avoid that.
My idea was to add some kind of triangulation defects which would prevent the printing of the mesh, but which would not prevent threejs from showing the mesh.
Tools like Netfabb or Meshlab should also not be able to automatically repair the mesh.
Is there something like a bad sector copy protection equivalent for 3d models?
Just a few ideas.
1) Augment your shaders to ignore some interval of vertices from the buffer (like every 3rd or something). In this way you can add "garbage" to the model file so it can not be lifted easily from the network.
2) Once in the buffer it can still be pulled out with a savvy user, unless you split the model up into many chunks and render out of order or only render the front half of the model making it less useful for 3D printing. One could also render in split views or using stereoscopic interlaced with a separation of zero.
3) Only render a none symmetrical half of your model with an camera control locked to that half :P
Kinda wonky, a ton of work to implement, and still someone will find a way I'm sure. But that's my two cents worth anyway, hope it helps.
I've seen some online shops preview with renders taken from each 10-30 degrees around the model. That way you only pass the resulting image, not the model.
why not show a detailed HD video of your model?
If the mesh is non-manifold it will not print.
a) Render serverside, stream results in an interactive video
b) destroy the mesh while still keeping the normals intact for shading. You can randomly flip faces, render with double sided. You can "extrude" edges to mess up topology. As long as you map the normals correctly, it will shade without any of these defects affecting it.

Lightweight 3D animation driven by external data

I'm a structural engineering master student work on a seismic evaluation of a temple structure in Portugal. For the evaluation, I have created a 3D block model of the structure and will use a discrete element code to analyze the behaviour of the structure under a variety of seismic (earthquake) records. The software that I will use for the analysis has the ability to produce snapshots of the structure at regular intervals which can then be put together to make a movie of the response. However, producing the images slows down the analysis. Furthermore, since the pictures are 2D images from a specified angle, there is no possibility to rotate and view the response from other angles without re-running the model (a process that currently takes 3 days of computer time).
I am looking for an alternative method for creating a movie of the response of the structure. What I want is a very lightweight solution, where I can just bring in the block model which I have and then produce the animation by feeding in the location and the three principal axis of each block at regular intervals to produce the animation on the fly. The blocks are described as prisms with the top and bottom planes defining all of the vertices. Since the model is produced as text files, I can modify the output so that it can be read and understood by the animation code. The model is composed of about 180 blocks with 24 vertices per block (so 4320 vertices). The location and three unit vectors describing the block axis are produced by the program and I can write them out in a way that I want.
The main issue is that the quality of the animation should be decent. If the system is vector based and allows for scaling, that would be great. I would like to be able to rotate the model in real time with simple mouse dragging without too much lag or other issues.
I have very limited time (in fact I am already very behind). That is why I wanted to ask the experts here so that I don't waste my time on something that will not work in the end. I have been using Rhino and Grasshopper to generate my model but I don't think it is the right tool for this purpose. I was thinking that Processing might be able to handle this but I don't have any experience with it. Another thing that I would like to be able to do is to maybe have a 3D PDF file for distribution. But I'm not sure if this can be done with 3D PDF.
Any insight or guidance is greatly appreciated.
Don't let the name fool you, but BluffTitler DX9, a commercial software, may be what your looking for.
It's simple interface provides a fast learning curve, may quick tutorials to either watch or dissect. Depending on how fast your GPU is, real-time previews are scalable.
Reference:
Model Layer Page
User Submitted Gallery (3D models)
Jim Merry from tetra4D here. We make the 3D CAD conversion tools for Acrobat X to generate 3D PDFs. Acrobat has a 3D javascript API that enables you to manipulate objects, i.e, you could drive translations, rotations, etc of objects from your animation information after translating your model to 3D PDF. Not sure I would recommend this approach if you are in a hurry however. Also - I don't think there are any commercial 3D PDF generation tools for the formats you are using (Rhino, Grasshopper, Processing).
If you are trying to animate geometric deformations, 3D PDF won't really help you at all. You could capture the animation and encode it as flash video and embed in a PDF, but this a function of the multimedia tool in Acrobat Pro, i.e, is not specific to 3D.

Resources