As an exercise, I decided to write a SimCity (original) clone in Swift for OSX. I started the project using SpriteKit, originally having each tile as an instance of SKSpriteNode and swapping the texture of each node when that tile changed. This caused terrible performance, so I switched the drawing over to regular Cocoa windows, implementing drawRect to draw NSImages at the correct tile position. This solution worked well until I needed to implement animated tiles which refresh very quickly.
From here, I went back to the first approach, this time using a texture atlas to reduce the amount of draws needed, however, swapping textures of nodes that need to be animated was still very slow and had a huge detrimental effect on frame rate.
I'm attempting to display a 44x44 tile map where each tile is 16x16 pixels. I know here must be an efficient (or perhaps more correct way) to do this. This leads to my question:
Is there an efficient way to support 1500+ nodes in SpriteKit and which are animated through changing their textures? More importantly, am I taking the wrong approach by using SpriteKit and SKSpriteNode for each tile in the map (even if I only redraw the dirty ones)? Would another approach (perhaps, OpenGL?) be better?
Any help would be greatly appreciated. I'd be happy to provide code samples, but I'm not sure how relevant/helpful they would be for this question.
Edit
Here are some links to relevant drawing code and images to demonstrate the issue:
Screenshot:
When the player clicks on the small map, the center position of the large map changes. An event is fired from the small map the central engine powering the game which is then forwarded to listeners. The code that gets executed on the large map the change all of the textures can be found here:
https://github.com/chrisbenincasa/Swiftopolis/blob/drawing-performance/Swiftopolis/GameScene.swift#L489
That code uses tileImages which is a wrapper around a Texture Atlas that is generated at runtime.
https://github.com/chrisbenincasa/Swiftopolis/blob/drawing-performance/Swiftopolis/TileImages.swift
Please excuse the messiness of the code -- I made an alternate branch for this investigation and haven't cleaned up a lot of residual code that has been hanging around from pervious iterations.
I don't know if this will "answer" your question, but may help.
SpriteKit will likely be able to handle what you need but you need to look at different optimizations for SpriteKit and more so your game logic.
SpriteKit. Creating a .atlas is by far one of the best things you can do and will help keep your draw calls down. Also as I learned the hard way keep a pointer to your SKTextures as long as you need them and only generate the ones you needs. For instance don't create textureWithImageNamed#"myImage" every time you need a texture for myImage instead keep reusing a texture and store it in a dictionary. Also skView.ignoresSiblingOrder = YES; helps a bunch but you have to manage your own zPosition on all the sprites.
Game logic. Updating every tile every loop is going to be very expensive. You will want to look at a better way to do that. keeping smaller arrays or maybe doing logic (model) updates on a background thread.
I currently have a project you can look into if you want called Old Frank. I have a map that is 75 x 75 with 32px by 32px tiles that may be stacked 2 tall. I have both Mac and iOS target so you could in theory blow up the scene size and see how the performance holds up. Not saying there isn't optimization work to be done (it is a work in progress), but I feel it might help get you pointed in the right direction at least.
Hope that helps.
Related
i want to ask a question about the effect of object size object performance. I have made 10 cubes of 100units size and 10 cubes of 1 unit size. Will my fps be lower in the first case.
If you are going to be making a map try to make the shapes as simple as possible, what I mean is if you have a room, don't put 6 cubes that all connect to form a room, just use a plane and connect it, or make the inside of your cube transparent. This comes very useful if you are building large maps, if you are making something simple, than this won't really make a difference. But I recommend getting in the practice of making everything as simple as possible, so you already have practice when you make a bigger game.
It all depends on the camera's field of vision actually. The more items visible at a time will demand more from the system. Also, Sizes won't be that much of a trouble in orthographic but in the perspective mode, it will surely hit the system's demand.
Let's say I want to develop a Paint app and need to implement a brush engine. For a raster brush, you basically need to stamp a texture on touch locations with a given spacing.
-- Task: Composite a small image (brush tip) over a bigger one.
I decided to build a prototype first in CG using a CGContext to render the stamps and found out it performed pretty well even with coalesced touches and a decent size canvas (CGContext output size).
However, since I need to paint onto really big textures (8000x6000 would be great), I decided to give metal a chance. I know that this task might be trivial for someone with a background in Metal but I'm new in this field. So I tried to use CIFilters (Metal backed) for compositing the brush over the canvas and displaying it in a custom MetalImageView: GTKView.
I thought having the canvas and the brush as CIImages and displaying them in a Metal Layer would already be more performant than the naive CG implementation. But it's not. The CIFilter approach renders the entire canvas every single stamp(at: Point), whether in CG I just refresh a small rect around that point.
Now, I think I could accomplish that with the CIFilter if I could change the extent that is computed. I don't know if that can be done with Core Image, but I'm sure in metal would be really easy for someone with experience.
-- Question: Can a pure metal implementation be faster stamping images than the CG one, given that CG runs with Metal under the hood? If so, how faster? Is it worth learning how to do it, or should I better spend that time improving the CG implementation?
Note that I'm asking for a raster brush, not a vector brush with Bezier Paths which is way easier to code and runs faster but textured brushes can't be used.
I really appreciate any help.
There is actually a chapter in the Core Image Programming Guide about that. They describe continuous painting into the same texture using the CIImageAccumulator class. You can also download the sample app.
I think performance-wise there shouldn't be a huge difference. You should be able to optimize heavily by telling Core Image the region of interest and domain of definition (extent) of your brush stroke filter. Then it should be able to render only the necessary parts of the image instead of the whole thing in every frame.
I think this requires a bit of background information:
I have been modding Minecraft for a while now, but I alway wanted to make my own game, so I started digging into the freshly released LWJGL3 to actually get things done. Yes, I know it's a bit ow level and I should use an engine and stuff...indeed, I already tried some engines and they never quite match what I want to do, so I decided I want to tackle the problem at its root.
So far, I kind of understand how to render meshes, move the "camera", etc. and I'm willing to take the learning curve.
But the thing is, at some point all the tutorials start to explain how to load models and create skeletal animations and so on...but I think I do not really want to go that way. A lot of things in working with Minecraft code was awful, but I liked how I could create models and animations from Java code. Sure, it did not look super realistic, but since I'm not great with Blender either, I doubt having "classic" models and animations would help. Anyway, in that code, I could rotate a box around to make a creature look at a player, I could use a sinus function to move legs and arms (or wings, in my case) and that was working, since Minecraft used immediate mode and Java could directly tell the graphics card where to draw each vertex.
So, actual question(s): Is there any good way to make dynamic animations in modern (3.3+) OpenGL? My models would basically be a hierarchy of shapes (boxes or whatever) and I want to be able to rotate them on the fly. But I'm not sure how to organize that. Would I store all the translation/rotation-matrices for each sub-shape? Would that put a hard limit on the amount of sub-shapes a model could have? Did anyone try something like that?
Edit: For clarification, what I did looked something like this:
Create a model: https://github.com/TheOnlySilverClaw/Birdmod/blob/master/src/main/java/silverclaw/birds/client/model/ModelOstrich.java
The model is created as a bunch of boxes in the constructor, the render and setRotationAngles methods set scale and rotations.
You should follow one opengl tutorial in order to understand the basics.
Let me suggest "Learning Modern 3D Graphics Programming", and especially this chapter, where you move one robot arm with multiple joints.
I did a port in java using jogl here, but you can easily port it over lwjgl.
What you are looking for is exactly skeletal animation, the only difference being the fact you do not want to load animations for your bones but want to compute / generate transforms on the fly.
You basically have a hierarchy of bones, and geometry attached to it. It looks like you want to manipulate this geometry "rigidly", so before sending your meshes / transforms to the GPU (the classic way), you want to start by computing the new transforms in model or world space, then send those freshly computed matrices to draw your geometries on the gpu the standard way.
As Sorin said, to compute each transform you simply have to iterate over your hierarchy and accumulate transforms given the transform of the parent bone and your local transform w.r.t the parent.
Yes and no.
You can have your hierarchy of shapes and store a relative transform for each.
For example the "player" whould have a translation to 100,100, 10 (where the player is), and then the "head" subcomponent would have an additional translation of 0,0,5 (just a bit higher on the z axis).
You can store these as matrices (they can encode translation, roation and scaling) and use glPushMatrix and glPop matrix to add and remove a matrix to a stack maintained by openGL.
The draw() function(or whatever you call it) should look something like :
glPushMatrix();
glMultMatrix(my_transform); // You can also just have glTranslate, glRotate or anything else.
// Draw my mesh
for (child : children) { child.draw(); }
glPopMatrix();
This gives you a hierarchical setup so that objects move with their parent. Alternatively you can have a stack in the main memory and do the multiplications yourself (use a library). I think the openGL stack may have a limit (implementation dependent), but if you handle it yourself the only limit is the amount of ram you can use. Once all the matrices are multiplied rendering is done in the same amount of time, that is it doesn't matter for performance how deep a mesh is in the hierarchy.
For actual animations you need to compute the intermediate transformations. For example for a crouch animation you probably want to have a few frames in between so that the camera doesn't just jump to the low position. You can do this with a time based linear interpolation between the start and end positions, but this only covers simple animations and you still have to implement it yourself.
Anything more complicated (i.e. modify the mesh based on the bone links) you would need to implement yourself.
I'm sorry if my question is somewhat vague. It's been a few years since I did anything with Qt, and back then I never did any fancy image stuff. What I'm asking for below is just some general suggestions on which classes to consider using. I'm trying to avoid barking up the wrong tree from the very start.
The situation: I'm writing a Qt-based program in which I need to display a somewhat large (let's say 5000x5000) raster image. The user should be able to zoom (quickly) in and out, and pan around the image in a way similar to for example Google maps. So far, this is not very different from the Qt ImageViewer example, except perhaps for the requirement that zooming happens quickly. However, I need to draw on the order of 50k simple geometric shapes (let's say circles) on top of the image, and be able to add and remove some of these in a simple way. The circles should have the same size no matter the zoom level, and should thus either be redrawn whenever the user zooms, or should be drawn with vector graphics. Think of the circles as map annotations. These should look the same at any zoom level, and also behave nicely with respect to panning.
I guess my question is twofold:
Can Qt draw vector graphics on top of a raster image?
In general, which classes should I consider for the above?
Thanks in advance. I don't like answering vague questions myself, but maybe someone with experience with Qt's graphics capabilities has an answer.
I suggest you use QGraphicsView and friends for this. It helps handling all the view/world transformation and the vector items can be achieved with various QGraphicsItems.
You can change the sizes of the items whenever the zoom level changes to maintain constant apparent sizes.
I have a hierarchical animated model in DirectX which loads and animates based on the following DirectX sample: http://msdn.microsoft.com/en-us/library/ee418677%28VS.85%29.aspx
As good as the sample is it does not really go into some of the details of animation that I'd like. For example, if I have a mesh which has a running animation and a throwing animation as seperate animation sets how can I get the throwing animation to occur for bones above the hip and the walking animation to occur for bones underneath the hip?
Also if I wanted to for example have the person lean left or right would I simply have to find the bone for the hip and multiplay a rotation matrix by its matrix? In this case I think the matrix is m_amxBoneOffsets?
Composing multiple animations to a single one is usually the job of an animation system, something that is way out of scope of the D3D sample.
Let's look at your 2 examples:
running and throwing
Well, in this case you could apply the animation for the lower part of the body from the running animation and the animation for the upper part of the body from the throwing animation. And you'd get a very crappy result.
The how is just a matter of knowing which bones are where in the bone palette (something that depends on how they are stored, and in which order, but nothing inherently hard. The definite reference should be the documentation of the tool generating the animation data)
In practice, you're better off with a blending of the 2 animation. This is, in general, is hard, and software packages exist out there that do this for you. Gamebryo, e.g.
Or, an animation of a running guy who throws is different enough from a standing guy who throws that you might be better off having 2 animations.
Leaning
If you apply a rotation matrix to the root bone, you'll simply rotate your whole character.
Now if you rotate the next bone in the hierarchy (from the spine), you'll get all the bones that depend on it to rotate likewise. It will probably do what you want, but there's a sure way to find out. Try it!
Well the thing is the running animation SHOULD affect the throwing animation slightly. What you need to look into is animation blending.
I'm sure Valve wrote a good paper on how they implemented it in Counter-strike many years ago. Its not on the valve site though so I'm not sure where I got this memory from ...