Can I simply ask the logical flow of the below Mathematica code? What are the variables arg and abs doing? I have been searching for answers online and used ToMatlab but still cannot get the answer. Thank you.
Code:
PositiveCubicRoot[p_, q_, r_] :=
Module[{po3 = p/3, a, b, det, abs, arg},
b = ( po3^3 - po3 q/2 + r/2);
a = (-po3^2 + q/3);
det = a^3 + b^2;
If[det >= 0,
det = Power[Sqrt[det] - b, 1/3];
-po3 - a/det + det
,
(* evaluate real part, imaginary parts cancel anyway *)
abs = Sqrt[-a^3];
arg = ArcCos[-b/abs];
abs = Power[abs, 1/3];
abs = (abs - a/abs);
arg = -po3 + abs*Cos[arg/3]
]
]
abs and arg are being reused multiple times in the algorithm.
In a case where det > 0 the steps are
po3 = p/3;
b = (po3^3 - po3 q/2 + r/2);
a = (-po3^2 + q/3);
abs1 = Sqrt[-a^3];
arg1 = ArcCos[-b/abs1];
abs2 = Power[abs1, 1/3];
abs3 = (abs2 - a/abs2);
arg2 = -po3 + abs3*Cos[arg1/3]
abs3 can be identified as A in this answer: Using trig identity to a solve cubic equation
That is the most salient point of this answer.
Evaluating symbolically and numerically may provide some other insights.
Using demo inputs
{p, q, r} = {-2.52111798, -71.424692, -129.51520};
Copyable version of trig identity notes - NB a, b, p & q are used differently in this post
Plot[x^3 - 2.52111798 x^2 - 71.424692 x - 129.51520, {x, 0, 15}]
a = 1;
b = -2.52111798;
c = -71.424692;
d = -129.51520;
p = (3 a c - b^2)/3 a^2;
q = (2 b^3 - 9 a b c + 27 a^2 d)/27 a^3;
A = 2 Sqrt[-p/3]
A == abs3
-(b/3) + A Cos[1/3 ArcCos[
-((b/3)^3 - (b/3) c/2 + d/2)/Sqrt[-(-(b^2/9) + c/3)^3]]]
Edit
There is also a solution shown here
TRIGONOMETRIC SOLUTION TO THE CUBIC EQUATION, by Alvaro H. Salas
Clear[a, b, c]
1/3 (-a + 2 Sqrt[a^2 - 3 b] Cos[1/3 ArcCos[
(-2 a^3 + 9 a b - 27 c)/(2 (a^2 - 3 b)^(3/2))]]) /.
{a -> -2.52111798, b -> -71.424692, c -> -129.51520}
10.499
Related
I have used Solve to find the solution of an equation in Mathematica (The reason I am posting here is that no one could answer my question in mathematica stack.)The solution is called s and it is a function of two variables called v and ro. I want to find imaginary and real part of s and I want to use the information that v and ro are real and they are in the below interval:
$ 0.02 < ro < 1 ,
40
The code I used is as below:
ClearAll["Global`*"]
d = 1; l = 100; k = 0.001; kk = 0.001;ke = 0.0014;dd = 0.5 ; dr = 0.06; dc = 1000; p = Sqrt[8 (ro l /2 - 1)]/l^2;
m = (4 dr + ke^2 (d + dd)/2) (-k^2 + kk^2) (1 - l ro/2) (d - dd)/4 -
I v p k l (4 dr + ke^2 (d + dd)/2)/4 - v^2 ke^2/4 + I v k dr l p/4;
xr = 0.06/n;
tr = d/n;
dp = (x (v I kk/2 (4 dr + ke^2 (d + dd)/2) - I v kk ke^2 (d - dd)/8 - dr l p k kk (d - dd)/4) + y ((xr I kk (ro - 1/l) (4 dr + ke^2 (d + dd)/2)) - I v kk tr ke^2 (1/l - ro/2) + I dr xr 4 kk (1/l - ro/2)))/m;
a = -I v k dp/4 - I xr y kk p/2 + l ke^2 dp p (d + dd)/8 + (-d + dd)/4 k kk x + dr l p dp;
aa = -v I kk dp/4 + xr I y k p/2 - tr y ke^2 (1/l - ro/2) - (d - dd) x kk^2/4 + ke^2 x (d - dd)/8;
ca = CoefficientArrays[{x (s + ke^2 (d + dd)/2) +
dp (v I kk - l (d - dd) k p kk/2) + y (tr ro ke^2) - (d -
dd) ((-kk^2 + k^2) aa - 2 k kk a)/(4 dr + ke^2 (d + dd)/2) == 0, y (s + dc ke^2) + n x == 0}, {x, y}];
mat = Normal[ca];
matt = Last#mat;
sha = Solve[Det[matt] == 0, s];
shaa = Assuming[v < 100 && v > 40 && ro < 1 && ro > 0.03,Simplify[%]];
reals = Re[shaa];
ims = Im[shaa];
Solve[reals == 0, ro]
but it gives no answer. Could anyone help? I really appreciate any solution to this problem.
I run your code down to this point
mat = Normal[ca]
and look at the result.
There are lots of very tiny floating point coefficients, so small that I suspect most of them are just floating point noise now. Mathematica thinks 0.1 is only known to 1 significant digit of precision and your mat result is perhaps nothing more than zero correct digits now.
I continue down to this point
sha = Solve[Det[matt] == 0, s]
If you look at the value of sha you will see it is s->stuff and I don't think that is at all what you think it is. Mathematica returns "rules" from Solve, not just expressions.
If I change that line to
sha = s/.Solve[Det[matt] == 0, s]
then I am guessing that is closer to what you are imagining you want.
I continue to
shaa = Assuming[40<v<100 && .03<ro<1, Simplify[sha]];
reals = Re[shaa]
And I instead use, because you are assuming v and ro to be Real and because ComplexExpand has often been very helpful in getting Re to provide desired results,
reals=Re[ComplexExpand[shaa]]
and I click on Show ALL to see the full expanded value of that. That is about 32 large screens full of your expression.
In that are hundreds of
Arg[-1. + 50. ro]
and if I understand your intention I believe all those simplify to 0. If that is correct then
reals=reals/.Arg[-1. + 50. ro]->0
reduces the size of reals down to about 20 large screen fulls.
But there are still hundreds of examples of Sqrt[(-1.+50. ro)^2] and ((-1.+50. ro)^2)^(1/4) making up your reals. Unfortunately I'm expecting your enormous expression is too large and will take too long for Simplify with assumptions to be able to be practically effective.
Perhaps additional replacements to coax it into dramatically simplifying your reals without making any mistakes about Real versus Complex, but you have to be extremely careful with such things because it is very common for users to make mistakes when dealing with complex numbers and roots and powers and functions and end up with an incorrect result, might get your problem down to the point where it might be feasible for
Solve[reals == 0, ro]
to give you a meaningful answer.
This should give you some ideas of what you need to think carefully about and work on.
I'm trying to minimize a non-linear function of four variables with some linear constraints. Mathematica 8 is unable to find a good solution giving complex values of the function at some point in the iteration. This implies that one or some contraints are not being enabled in the process. Is this a bug or limitation of the optimization function ?
Function to minimize is
ff[lxw_, lwz_, c_, d_] := - J1 (lxw + lwz) - 2 J2 c +
T (-Log[2] - 1/2 (1 - lxw) Log[(1 - lxw)/4] -
1/2 (1 + lxw) Log[(1 + lxw)/4] -
1/2 (1 - lwz) Log[(1 - lwz)/4] -
1/2 (1 + lwz) Log[(1 + lwz)/4] + 1/2 (1 - d) Log[(1 - d)/16] +
1/8 (1 + 2 c + d - 2 lwz - 2 lxw) Log[
1/16 (1 + 2 c + d - 2 lwz - 2 lxw)])
where
T = 10;
J1 = 1;
J2 = -0.2;
are constant parameters. Then I try
NMinimize[{ff[lxw, lwz, c, d],
2 c + d - 2 lwz - 2 lxw >= -0.999 &&
-0.999 <= lxw <= 0.999 &&
-0.999 <= lwz <= 0.999 &&
-0.999 <= c <= 0.999 &&
d <= 0.9999}, {lxw, lwz, c, d}]
with the result
NMinimize::nrnum: "The function value 5.87777[VeryThinSpace]-4.87764\ I\n
is not a real number at {c,d,lwz,lxw} = {-0.718817,-1.28595,0.69171,-0.932461}.
I would appreciate if someone can give a hint at what is happening here.
Try this:
Clear[ff];
ff[lxw_, lwz_, c_, d_] /; 2 c + d - 2 lwz - 2 lxw >= -0.999 :=
< your function def >
This will cause the cause the function to be unevaluated in case NMinimize takes an excursion out of bounds. Sorry i cant test this from here.. If that doesn't do try asking on mathematica.stackexchange.com
Aside, why use <=.999 instead of simply < 1 ?
It just might help if you fix that too ( use integer 1, not 1. )
The warning is appearing because at the values given in the warning the last term in ff is complex, due to taking the log of a negative number, i.e.
{c, d, lwz, lxw} = {
-0.7188174745559741`,
-1.2859482844800894`,
0.6917100913968041`,
-0.9324611085040573`};
Log[1/16 (1 + 2 c + d - 2 lwz - 2 lxw)]
-2.5558 + 3.14159 i
1/16 (1 + 2 c + d - 2 lwz - 2 lxw)
-0.0776301
In Mathematica 9 a result is produced in addition to the warning :-
{-4.90045, {c -> 0.94425, d -> -0.315633, lwz -> 0.900231, lxw -> -0.191476}}
I.e.
{c, d, lwz, lxw} = {
0.9442497691706085`,
-0.31563295950647885`,
0.900230825707721`,
-0.1914760216875171`};
ff[lxw, lwz, c, d]
-4.90045
I would like to ask:
how I can add expressions in Maxima? i.e. I have:
A = x + y;
B = 2*x + 2*y;
How to get Maxima to give me (A + B)?
how I can do numerical calculation in Maxima? I want to assign
x = 1;
b = 2;
How to get the numerical value of (A + B)?
(1) assignment in Maxima uses the colon symbol (i.e., ":") not the equal sign ("=").
(2) there are a couple of ways to evaluate with specific values.
(2a) subst([x = ..., y = ...], foo) where foo is some expression such as foo : A + B.
(2b) ev(foo, x = ..., y = ...)
So:
(%i1) A : x + y;
(%o1) y + x
(%i2) B : 2*x + 2*y;
(%o2) 2 y + 2 x
(%i3) foo : A + B;
(%o3) 3 y + 3 x
(%i4) subst ([x = 1, y = 2], foo);
(%o4) 9
(%i5) ev (foo, x = 1, y = 2);
(%o5) 9
Yet another way to substitute values into a formula is with the '' operator as follows:
(%i57) A : 2*a+b ; B : a-b;
(%o57) b + 2 a
(%o58) a - b
(%i59) a : 4; b : 10;
(%o59) 4
(%o60) 10
(%i61) A;
(%o61) b + 2 a
(%i62) ''A;
(%o62) 18
(%i63) ''B;
(%o64) - 6
(%i65) ''A + ''B;
(%o65) 12
(%i66) ''(A+B);
(%o66) 12
I have two lines:
y = -1/3x + 4
y = 3x + 85
The intersection is at [24.3, 12.1].
I have a set of coordinates prepared:
points = [[1, 3], [4, 8], [25, 10], ... ]
#y = -1/3x + b
m_regr = -1/3
b_regr = 4
m_perp = 3 #(1 / m_regr * -1)
distances = []
points.each do |pair|
x1 = pair.first
y2 = pair.last
x2 = ((b_perp - b_regr / (m_regr - m_perp))
y2 = ((m_regr * b_perp) / (m_perp * b_regr))/(m_regr - m_perp)
distance = Math.hypot((y2 - y1), (x2 - x1))
distances << distance
end
Is there a gem or some better method for this?
NOTE: THE ABOVE METHOD DOES NOT WORK. See my answer for a solution that works.
What's wrong with using a little math?
If you have:
y = m1 x + b1
y = m2 x + b2
It's a simple system of linear equations.
If you solve them, your intersection is:
x = (b2 - b1)/(m1 - m2)
y = (m1 b2 - m2 b1)/(m1 - m2)
After much suffering and many different tries, I found a simple algebraic method here that not only works but is dramatically simplified.
distance = ((y - mx - b).abs / Math.sqrt(m**2 + 1))
where x and y are the coordinates for the known point.
For Future Googlers:
def solution k, l, m, n, p, q, r, s
intrsc_x1 = m - k
intrsc_y1 = n - l
intrsc_x2 = r - p
intrsc_y2 = s - q
v1 = (-intrsc_y1 * (k - p) + intrsc_x1 * (l - q)) / (-intrsc_x2 * intrsc_y1 + intrsc_x1 * intrsc_y2);
v2 = ( intrsc_x2 * (l - q) - intrsc_y2 * (k - p)) / (-intrsc_x2 * intrsc_y1 + intrsc_x1 * intrsc_y2);
(v1 >= 0 && v1 <= 1 && v2 >= 0 && v2 <= 1) ? true : false
end
The simplest and cleanest way I've found on the internet.
Think of a equations system like the following:
a* = b + f + g
b* = a + c + f + g + h
c* = b + d + g + h + i
d* = c + e + h + i + j
e* = d + i + j
f* = a + b + g + k + l
g* = a + b + c + f + h + k + l + m
h* = b + c + d + g + i + l + m + n
...
a, b, c, ... element of { 0, 1 }
a*, b*, c*, ... element of { 0, 1, 2, 3, 4, 5, 6, 7, 8 }
+ ... a normal integer addition
Some of the variables a, b, c... a*, b*, c*... are given. I want to calculate as much other variables (a, b, c... but not a*, b*, c*...) as logically possible.
Example:
given: a = 0; b = 0; c = 0;
given: a* = 1; b* = 2; c* = 1;
a* = b + f + g ==> 1 = 0 + f + g ==> 1 = f + g
b* = a + c + f + g + h ==> 2 = 0 + 0 + f + g + h ==> 2 = f + g + h
c* = b + d + g + h + i ==> 1 = 0 + d + g + h + i ==> 1 = d + g + h + i
1 = f + g
2 = f + g + h ==> 2 = 1 + h ==> h = 1
1 = d + g + h + i ==> 1 = d + g + 1 + i ==> d = 0; g = 0; i = 0;
1 = f + g ==> 1 = f + 0 ==> f = 1
other variables calculated: d = 0; f = 1; g = 0; h = 1; i = 0;
Can anybody think of a way to perform this operations automatically?
Brute force may be possible in this example, but later there are about 400 a, b, c... variables and 400 a*, b*, c*... variables.
This sounds a little like constraint propogation. You might find "Solving every Sudoku Puzzle" a good read to get the general idea.
The problem is NP-complete. Look at the system of equations:
2 = a + c + d1
2 = b + c + d2
2 = a + b + c + d3
Assume that d1,d2,d3 are dummy variables that are only used once and hence add no other constraints that di=0 or di=1. Hence from the first equation follows c=1 if a=0. From the second equation follows c=1 if b=0 and from the third one we get c=0 if a=1 and b=1 and hence we get the relation
c = a NAND b.
Thus we can express any boolean circuit using such a system of equations and therefore the boolean satisfyability problem can be reduced to solving such a system of equations.